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Dynamics of topological defects

Normal phase ⟨Φ⟩ = 0

Restoration of symmetry

Individual topological defects proliferate

Berezinsky-Kosterlitz-Thouless
transition: topological defects condense

Pairs of topological defects form

Symmetry spontaneously broken
⟨Φ⟩ ̸= 0

[Fang et al’19]
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T > Tc : Low energy dynamics in the normal phase

Resolving molecular dynamics not efficient or needed for low energy
dynamics λ ≫ ℓth: Effective Field Theory (EFT) approach ⇒
hydrodynamics.

Also describes e.g. Quark-Gluon Plasma or electron flows in
Graphene.

Systematic construction from global symmetries (translations,
rotations, U(1), etc.)

⇒ conserved currents: ∂µJµ = 0 , µ = t, x i .
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T < Tc : Low energy dynamics in the broken symmetry
phase

Include gapless Goldstone field in the EFT.

In the absence of defects, well-known: e.g. superfluid/crystal
hydrodynamics, pion hydrodynamics (chiral limit of QCD).

Defects: non-trivial winding∫
C

∇⃗ϕ · d ℓ⃗ = 2πNw

⇒ Goldstone field multi-valued

Bad starting point for EFTs.

Tracking motion of many defects: goes contrary to EFT spirit.
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Zero temperature superfluids

T = 0 low-energy EFT [Son’02]:

Lφ = −χnn
2 (∂tφ)2 + ns

2 (∂ iφ)2

χnn ≡ ∂n/∂µ: charge static
susceptibility,
ns ≡ ∂2f /∂|∂ iφ|2: superfluid density.

Linear dispersion relation:

ω± = ±csq , c2
s = ns

χnn

Higher energies: outside of regime of
validity of EFT, extra gapped dofs
(rotons, vortices...).

6



Zero temperature superfluids

The Goldstone shifts under U(1) gauge transformations:

φ 7→ φ + λ

Noether: U(1) charge conservation

∇µJµ = 0 , (J t , J i) =
(
−χnn∂tφ , ns∂

iφ
)

Constitutive relations + Josephson relation

J t = −χnn∂tφ ⇔ ∂tφ = −µ

No vortices: conserved winding number

Nw = 1
2π

∮
dφ ⇒ ∂[µ∂ν]φ = 0 (Stokes’ theorem)
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Emergent higher-form symmetry

External gauge field ⇒ covariant derivative (gauge invariance)

Lφ 7→ Lφ − AµJµ ⇒ ∂µφ 7→ Dµφ = ∂µφ − a Aµ

a : charge of the condensed operator.

Hodge dualize, [Delacrétaz, Hofman & Mathys’19]

(⋆K )µ ≡ Dµφ

⋆K : d-form in d + 1 dimensions.

No vortices:

∂[µ∂ν]φ = 0 ⇒ d ⋆ K = −aF , F ≡ dA .

U(1)d−1
w symmetry [Gaiotto et al’14] :

Conservation equation for the number of
winding hyperplanes.
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Ordinary symmetries vs higher-form symmetries

0-form symmetry in D=3+1 2-form symmetry in D=3+1

1-form current Jµ 3-form current (⋆K )µ = Dµφ

∇µJµ = 0 Anomalous conservation law
∇κKµνκ = a

2 ϵκλµνFκλ

counts particles ⟨J t⟩ = n counts planes ⟨(⋆K )i⟩ = ρ̃i
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Maxwell E&M
Maxwell equations + Bianchi identity

∇µF µν = jν
el , ϵλµν∇λFµν = 0

Define two 2-form currents: Jµν
el = F µν , Jµν

mag = (⋆F )µν ,
corresponding to Uel

1 (1) and Umag
1 (1), [Gaiotto et al’14].

If ⟨jµ
el⟩ = 0: both are conserved

∇µJµν
el = 0 ∇µJµν

mag = 0

Conservation of electric and magnetic field lines.

Couple to charged matter ⟨jµ
el⟩ ≠ 0: Uel

1 (1)
broken, electric field lines end on charges.

MHD: conservation of T µν + magnetic
higher form symmetry Jµν

mag = (⋆F )µν ,
[Grozdanov, Hofman & Iqbal’16, Armas & Jain’18].

10



Superfluids as emergent anomalous higher-form symmetries

d ⋆ K = − a F .

The source for the 0-form U(1) appears on the rhs of the
conservation equation of the d − 1-form density: mixed ‘t Hooft
anomaly, [Delacrétaz et al’19].

Anomaly coefficient fixed in the UV (UV-IR mixing).

Anomalies
Well-known from QED (axial anomaly)
Source hydrodynamic terms at first order in gradients [Son &

Surowka’09]: chiral magnetic/vortical effect.
Mixed axial-gravitational anomalies (review [Landsteiner’16]),
measured in Weyl semi-metals [Gooth et al’17].
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Hydrodynamics with anomalous higher-form symmetries

Here, the anomaly sources ideal, zeroth-order terms:

(⋆K )t = aµ , J i = aµ̃i

Anomaly implies gapless superfluid
sound modes

ω± = ±a
√ns√
χnn

q + . . . , ns ≡ 1
χ̃

.

Divergent dc conductivity:

σ(ω) ≡ i
ω

GR
Jx Jx

(ω, q = 0) = i
ω

a2ns
µ

,
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T > TBKT : Broken anomalous higher-form symmetries

At T > TBKT , vortices condense: ⟨Jµ
v ⟩ ≠ 0

∂µKµν = −aϵλµνFλµ + Jµ
v

Explicitly breaks winding conservation

Constitutive relation:

⟨Jµ
v ⟩ = − Γ uµKµν + . . .

Gaps one of the sound modes:
ω+ = −i Γ + O(q2), ω− = O(q2).

Finite conductivity:

σ(ω) = ns
µ

1
Γ − iω
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Conclusion and outlook part I

Higher-form symmetries are useful to avoid using multi-valued fields
in phases with SSB.

The anomaly plays a crucial role. What about other SSB phases
(translations, etc.)?

When vortices condense, treat breaking of symmetry more
systematically within hydro (similar to momentum relaxing hydro):
analogous to formulating Navier-Stokes equations.

Use it to simulate fluids of defects: BECs in cold atom systems, etc.
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Quantum critical points

[Sachdev’08]

QCPs: Mediate phase transition at fixed (zero) temperature as a
function of external parameter (magnetic field, pressure, doping...).

Temperature is the only scale ⇒ scale-invariant physics
[σ] = d − 2 ⇒ σ(ω, T ) = Σ(ω/T )
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Quantum criticality and strange metals

[Cooper et al’09]

Conondrum: strange metals reminiscent of QCPs, but

No order parameter clearly associated to strange metal phase.

ρdc ≡ 1/σdc ∼ 1/T incompatible with scale invariance.

Outside Landau paradigm? Unconventional quantum criticality?
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Deconfined Quantum criticality

DQCPs: different order parameters on either side of the QCP

Emergent dofs at the QCP (typically emergent gauge fields):
emergent topological conservation law

S[z , a] =
∫

d3x
[
|(∂ − ia)z |2 + r |z |2 +

(
u|z |2

)2 + 1
g2 f 2

]
z : spinon; a emergent gauge field;

Maps back to Wilson-Fisher type action through Φ = zασαβzβ

In the DQCP scenario, the a’s become dynamical at the QCP and
gauge the U(1) redundancy of the spinon description.
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Deconfined Quantum criticality

Scenarii with deconfined gauge fields put forward to describe the
pseudogap phase of high Tc superconductors (review [Sachdev &

Chowdhury’16]).

AdS/CFT allows to construct whole families of QCPs with
unconventional scaling properties:

Emergent dofs and symmetries?
New effective actions?
Relation to nature of charged black hole horizons?
Relevance for strange metals?
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Holographic duality primer

ZQFT [gϕ, Āµ, gµν ] = Zgravity [gϕ, Āµ, gµν ]
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Holographic quantum critical phases

Consider deforming holographic CFT by relevant scalar operator

L = R−1
2∂ϕ2−1

4Z (ϕ)F 2−V (ϕ) , V (ϕ → 0) → −2Λ , Z (ϕ → 0) → 1

In the IR, ϕ → ∞. Pick scalar couplings such that

V (ϕ → +∞) → Voe−δϕ , Z (ϕ → ∞) → Zoeγϕ

holographic quantum critical phases [Charmousis, B.G., Kim, Kiritsis &

Meyer’10] (a story similar to what follows applies to probe branes).

Hyperscaling-violating scaling solutions in the IR

ds2
IR = ζθ−2 (

−dt2 + dζ2 + dx⃗2)
, ϕIR = κ(θ) log ζ .

Vanishing ground state entropy s ∼ T (2−θ).
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Holographic quantum critical phases

Zero density: Maxwell field in background with UV AdS4 and IR
θ ̸= 0

SM = −
∫

d3+1x
√

−g 1
4Z (ϕ)FABF AB

Low temperatures, assume

Z (ϕ(ζ)) ∼ ζ∆χ−1 , ∆χ < 0 ⇒ σdc ∼ T ∆χ−1 ̸= T d−2=0

Compute ac conductivity:

σ(ω) = i
ω

GR
JJ(ω, q = 0) = σdc

1 − iωτ
,

T τ ∼ T ∆χ ≫ 1

Sharp Drude-like peak, similar to
superfluids with condensed vortices.
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Spatially resolved transport

Pole collision between gapped and diffusion pole

ω = −iDnq2 + . . . , + ω = −i/τ + iDnq2 + . . .

⇓

ω = ±csq − i
2τ

+ . . .
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Effective action at T ̸= 0

Split bulk action into UV (0 ≤ r < r⋆) and IR pieces (r⋆ ≤ r < rh),
[Nickel & Son’10]:

S[φ, Āµ, aµ] = 1
2

∫
d2+1x

[
−χnn

(
∂tφ − Āt + at

)2 + χJJ
(
∂x φ − Āx + ax

)2]
−1

2

∫
dωdq f 2

tx
−iωσdc

φ ≡
∫ 0

r⋆

dr Ar , Āµ ≡ Aµ(r = 0) , aµ = Aµ(r⋆)

Looks like the action for an ideal superfluid, up to aµ.

Emergent gauge field aµ, with a nonlocal kinetic term .
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Effective theory at T ̸= 0

Now integrate out aµ in SUV + SIR :

j t = χnn
(
∂tφ − Āt) = χnnµ , j i = σdc∂t

(1 + χ−1
JJ σdc∂t)

(
∂ iφ − Āi)

ω ≪ χJJσ−1
dc ≪ T : diffusive

hydro

j i = −σdc
(
∂ iµ − E i) ,

µ = ∂tφ − Āt

χJJσ−1
dc ≪ ω ≪ T :

‘superfluid’

j i = χJJ
(
∂ iφ − Āi) ,
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Emergent higher-form symmetry

j t = χnn
(
∂tφ − Āt) , j i = σdc∂t

(1 + χ−1
JJ σdc∂t)

(
∂ iφ − Āi)

⇓

∂t j i + χJJ∂ iµ = χJJ E i − j i/τ, τ ≡ σdcχ−1
JJ ≫ 1/T

‘t Hooft anomaly .

Define
(⋆K )µ = ∂µφ − Āµ + aµ

K obeys the equation

d ⋆ K = −F̄ + f

The emergent, dynamical gauge field a is responsible for the
relaxation of K ( ̸= from a superfluid).
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Effective action at T = 0

Does the symmetry persist at T = 0? Repeat the calculation:

Seff = 1
2

∫
d2+1x

[
−χnn

(
∂tφ − Āt + at

)2 + χJJ
(
∂x φ − Āx + ax

)2]
−1

2

∫
dωdq fti f ti − c2

IR fij f ij

i(ω2 − c2
IRq2)1−∆χ/2 ,

Collective mode
ω = csq − i#q1−∆χ + . . .

Different attenuation from a T = 0 superfluid. Holographic ‘zero
sound’ [Karch, Son & Starinets’08].
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Summary zero density

SM = −
∫

d3+1x
√

−g 1
4Z (ϕ)FABF AB , Z (ϕ(ζ)) ∼ ζ∆χ−1 , ∆χ < 0 .

Effective action in terms of a superfluid-like scalar coupled to an
emergent gauge field aµ with nonlocal action: evades scale
invariance.

σdc ∼ T ∆χ−1

T = 0: ‘zero sound’ mode with anomalous attenuation.

T ̸= 0: crossover from diffusive+gapped mode to propagating
modes.

Can be reformulated in terms of relaxed higher-form symmetry

d ⋆ K = −F̄ + f , f = da
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Outlook zero density

SM =
∫

d3+1x
√

−g 1
4Z (ϕ)FABF AB , Z (ϕ(ζ)) ∼ ζ∆χ−1 , ∆χ < 0 .

Does the symmetry survive at nonlinear level?

The same physics underlies probe brane models and the zero sound
mode there [Karch et al’08; Nickel & Son’10; Hoyos, O’Bannon & Wu’10; Davison &

Starinets’11; Chen & Lucas’17; Gushterov, O’Bannon & Rodgers’18], as well as
higher-derivative Maxwell theories [Witczak-Krempa & Sachdev’12,

Witczak-Krempa’13], [Grozdanov, Lucas & Poovuttikul’18].

(Some version of it) plausibly also underlies higher-derivative gravity
theories [Kaplis, Grozdanov & Starinets’16]
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Finite density in a nutshell

T ̸= 0, states with emergent z = 1 and θ ̸= 0 contain collective
excitation similar to zero density.

Reflects dynamics of the incoherent current

δjx
inc ≡ δjx − ρδux , χJinc P = 0 .

Different from phase-relaxed superfluid: long-lived mode affects all
thermoelectric conductivities.

T → 0:
χJinc Jinc ∼ χninc ninc → 0

⇒ Collective mode dissolves into branch cut at T = 0. Fate of the
emergent higher-form symmetry?
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Final comments

In these holographic states, the effective gauge coupling in the bulk
vanishes in the IR: higher-derivative terms might be important
[Goldstein, Kachru, Prakash & Trivedi’09]. Restore holographic zero sound?

Effective holographic action? Emergent gauge field, metric?
Complicated due to need to integrate out metric dofs.

Scaling theories with large anomalous dimensions were constructed
[Goutéraux’13,’14; Karch’14; Davison, Hartnoll & Goutéraux’15; Davison, Goutéraux &

Gentle’18] to reproduce the low T scalings of currents

[s] = d − θ , [n]IR = d − θ + Φ

θ: effective spatial dimensionality [Kanitscheider & Skenderis’09; Goutéraux &

Kiritsis’11; Goutéraux, Skenderis, Smolic, Smolic & Taylor’12].
Φ: Anomalous charge dimension?

Reflects presence of emergent dofs coupling to Jµ?
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Final comments

In DQCPs, emergent gauge fields lead to large anomalous
dimensions, [Senthil, Vishwanath, Balents, Sachdev & Fisher’03].

Emergent gauge fields often associated with emergent higher-form
symmetries, anomalies and fractionalized dofs [Sachev’18], [Else, Senthil &

Thorngren’20], which affect Luttinger theorem

j t = VolFS + negf

In holography, charged horizons dubbed fractionalized since no FS in
correlators, [Huijse & Sachdev’11, Hartnoll’11,...]. Make this more precise?
Deconfined nature of horizon dofs?

Use holographically-derived EFTs to study unconventional quantum
critical phases in cond mat?
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