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HL-LHC computing challenges



High Luminosity LHC can do physics @ unprecedented
level of precision

Higgs : measure fermions and bosons couplings at % level
Electro-weak sector, top quark, multi-bosons states
New physics searches, dark matter, etc..

HL-LHC: Computing Challenges

Large amount of data, O(100) simultaneous
collisions, high granularity detectors will require:

• Equally accurate theoretical predictions: improved
theory calculations, faster Monte Carlo simulation

• Fast and accurate analysis methods (AI-based?)

S. Campana et al. arXiv:2203.07237



Quantum Field Theory1
• Lattice QCD, Sign problems

Parton showering
Event Generation & Cross section integration
Phase space sampling scales exponentially with number of final
state particles2

• HL-LHC @ 3 10-3 fb-1 will have percent-level precision @Njet = 9 
• Need comparable (higher-order) MC 
• Njet increases with center-of-mass energy

Precision studies at FCC

Theory and Simulation

1 D. Grabowska’s presentation at the CERN QTI workshop 
(https://indico.cern.ch/event/1098355)
2 arxiv:1905.05120

Time and memory usage (Sherpa 3.x.y + HDF5) (H. Schulz 2018)

arxiv:1702.05725

https://indico.cern.ch/event/1098355


Deep Generative 
Models



Representation Learning

• Generative Models learn the 
representation of an intractable probability 
distribution, pdata defined on ℝn

• Don’t define explicit mathematical 
expression of pmodel ≈ pdata

• Trained as generators ℊ:ℝ! → ℝ" that 
map samples from a tractable distribution 
𝒵 supported in ℝ! to points in ℝn

Bommasani, Rishi, et al. "On the opportunities and risks of foundation 
models." arXiv:2108.07258 (2021)



Internal representations

• Lower-dimension manifold representing the original information
• Beneficial to connect representation to specific underlying 

symmetry group. 
• Manipulate latent space:

• Style specification or Hypothesis testing directly in data

Gong, Shiqi, et al. "An Efficient Lorentz 
Equivariant Graph Neural Network for Jet 
Tagging." arXiv:2201.08187 (2022)

Kevin Schawinski et al.: Exploring galaxy 
evolution with generative models, Astronomy 

and Astrophysics, 616 (2018): L16



Examples



Jason M. Allen, "Théâtre D'opéra Spatial”, August 2022



High Energy Physics 
examples 

GAN – AutoEncoder hybrid

Buhmann, Erik, et al. "Getting high: high 
fidelity simulation of high granularity 
calorimeters with high 
speed." Computing and Software for Big 
Science 5.1 (2021): 1-17.

Knapp, Oliver, et al. "Adversarially Learned 
Anomaly Detection on CMS Open Data: re-
discovering the top quark." The European 
Physical Journal Plus 136.2 (2021): 236.

GAN-based anomaly detection

Winterhalder, Ramon, Marco Bellagente, and Benjamin 
Nachman. "Latent Space Refinement for Deep Generative 
Models." arXiv preprint arXiv:2106.00792 (2021).

Latent space refinement



Generalization & 
limitations

• Assessing generalisation is particularly
complex in case of unsupervised learning and 
generative modeling

• Definitions and metrics
• Comparison among models

• Continuous vs discrete

Evaluating Generalization in Classical and Quantum 
Generative Models, K. Gili, M. Mauri and A. Perdomo-Ortiz, 
arxiv: 2201.0877 (2022)

Jaruskova, K. and Vallecorsa S. "Estimating the 
Support Size of GANs for High Energy Physics 
Detector Simulation.”ML4PS NEURIPS2021

• Typical optimisation metrics might
favor «copying»



Quantum 
Computing at CERN



The CERN Quantum 
Technology Initiative 

CERN established the QTI in 2020

T1 - Scientific and 
Technical Development 
and Capacity Building

T2 - Co-development

T3 - Community 
Building

T4 - Integration with 
national and 

international initiatives 
and programmes

15.12.22 14

• Roadmap in 2021
• Publicly available on Zenodo
https://doi.org/10.5281/zenodo.5553774





Collaboration ecosystem

16

Organizations and Projects Industry

Academia, Research Labs and Agencies

Xanadu

11/05/2022



CERN Quantum Hub
CERN is a Hub Member of the IBM Quantum Network since 
2021
Access to IBM hardware based on quotas for Hub members and 
projects
Agreement for an initial 3-years phase

Going Beyond Classically Computable Problems
Building Experience on the Possibilities and Limits of 

Quantum Computing
for Chemistry and Physics Challenges

Hub members

15.12.22 17



• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Scientific Objectives

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks

• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Computing & Algorithms

• Identify and develop 
techniques for quantum 
simulation in collider 
physics, QCD, cosmology 
within and beyond the SM

• Co-develop quantum 
computing and sensing 
approaches by providing 
theoretical foundations 
to the identifications of 
the areas of interest

Simulation & Theory

• Develop and promote 
expertise in quantum 
sensing in low- and high-
energy physics 
applications

• Develop quantum sensing 
approaches with 
emphasis on low-energy 
particle physics 
measurements

• Assess novel 
technologies and 
materials for HEP 
applications

Sensing, Metrology & 
Materials

• Co-develop CERN 
technologies relevant to 
quantum infrastructures
(time synch, frequency 
distribution, lasers)

• Contribute to the 
deployment and 
validation of quantum 
infrastructures

• Assess requirements and 
impact of quantum 
communication on 
computing applications
(security, privacy)

Communications & 
Networks



• Assess the areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Quantum Computing Objectives at CERN

Computing & Algorithms

• Identify areas of 
potential quantum 
advantage in HEP (QML, 
classification, anomaly 
detection, tracking)

• Develop common 
libraries of algorithms, 
methods, tools; 
benchmark as technology 
evolves

• Collaborate to the 
development of shared, 
hybrid classic-quantum 
infrastructures

Computing & Algorithms

• Baseline for application prioritisation and systematisation
• Formal approach to algorithms, methods, error characterisation 

and correction
• Quantum Machine Learning 

• Increasing use of ML in many computing and data analysis flows
• Can be built as hybrid models where quantum computers act as 

accelerators
• Efficient data handling is a challenge

• Algorithms beyond QML
• Test different hardware
• Contribute to the development of a quantum infrastructure



Machine Learning Model Lifecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation



Investigating the full QML Lifecycle

Data 
Preparation

Model 
Definition

Model 
Training

Model 
Testing

Model 
Interpretation

Data Reduction
Data Encoding [1,2,3]

[1] Robust data encodings for quantum classifiers, Ryan 
LaRose and Brian Coyle, Phys. Rev. A 102, 032420 
[2] Quantum convolutional neural network for classical data 
classification, https://arxiv.org/pdf/2108.00661.pdf
[3] Quantum Support Vector Machines for Continuum 
Suppression in B Meson Decays, 
https://arxiv.org/abs/2103.12257

Quantum advantage of 
many known QML 

algorithms is impeded by 
I/O bottleneck

Read Out

Trainability (BP…)

https://arxiv.org/pdf/2108.00661.pdf
https://arxiv.org/abs/2103.12257


Model definition

Define a parametric quantum circuit with trainable parameters 𝜗
𝑈 𝑥, 𝜗

Given an observable O, build a model 
𝑦 𝑥, 𝜗 = 0 𝑈!(𝑥, 𝜗)𝑂𝑈(𝑥, 𝜗) 0

• Trained using gradient-free or gradient-based optimization in a classical loop

• Data Embedding 𝒱" 𝑥 can be learned

• Improve performance by designing architectures to leverage data symmetries1

• Aim at quantum circuits that are hard to simulate classically

Variational algorithms - EXPLICIT

1 Bogatskiy, Alexander, et al. "Lorentz group equivariant neural network for particle physics." International Conference on Machine Learning. PMLR, 2020.

Image credit SwissQuantumHub



Model definition
Kernel methods - IMPLICIT

Feature maps as quantum kernels
Use quantum computers to create classically intractable features |𝝓(𝒙 ⟩)
• Build inner product of feature vectors  à Ο(𝑁#$%$& )
• Use classical kernel-based training

• Convex losses, global minimum
• Identify classes of kernels that relate to specific data structures1

• Given a variational circuit of the form 𝑈 𝑥, 𝜗 = 𝒱'𝑈" 𝑥 , can define a quantum kernel method with better 
accuracy:  |𝝓(𝒙 ⟩) = 𝑈" 𝑥 | ⟩0

• Classically: not all machine learning models can be described by kernel methods. 

Image credit M. Schuld

1 Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv preprint arXiv:2105.03406 (2021).

Schuld, Maria. "Supervised quantum machine learning models are kernel methods." arXiv preprint arXiv:2101.11020 (2021).



Characterize models behaviour, similarities among them
and link to data properties. 
Ex: 

• Data Re-Uploading circuits: alternating data encoding and 
variational layers. 

• Represented as explicit linear models (variational) in larger 
feature space

à can be reformulated as implicit models (kernel)

• Representer theorem: implicit models achieve better 
accuracy

• Explicit models exhibit better generalization performance

Equivalent interpretations?  

Jerbi, Sofiene, et al. "Quantum machine learning beyond 
kernel methods." arXiv preprint arXiv:2110.13162 (2021).

KERNEL-BASED

DATA RE-UP

VARIATIONAL



The size of the Hilbert space requires compromises between 
expressivity, convergence and generalization
Classical gradients vanish exponentially with the number of 
layers (J. McClean et al., arXiv:1803.11173)

• Convergence still possible if gradients consistent between 
batches.

Quantum gradient decay exponentially in the number of 
qubits

• Random circuit initialization
• Loss function locality in shallow circuits (M. Cerezo et al., arXiv:2001.00550)
• Ansatz choice: TTN, CNN (Zhang et al., arXiv:2011.06258, A Pesah, et al., Physical 

Review X 11.4 (2021): 041011. )

• Noise induced barren plateau (Wang, S et al., Nat Commun 12, 6961 (2021))

Model Convergence and Barren Plateau

QCNN: A Pesah, et al., Physical 
Review X 11.4 (2021): 041011

TTN for MNIST classification (8 qubits), 
Zhang et al., arXiv:2011.06258 

J. McClean et al., arXiv:1803.11173



Defining quantum Advantage 
for QML

Different possible definitions
Runtime speedup 
Sample complexity
Representational power

Classical Intractability: a quantum algorithm that cannot be efficiently simulated classically
• No established recipe for classical data
• Need to use the whole exponential advantage in Hilbert space, but will it converge ? 

(Algorithm expressivity vs convergence and generalization) 

26

Kübler, Jonas, Simon Buchholz, and Bernhard Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 (2021).
Huang, HY., Broughton, M., Mohseni, M. et al. Power of data in quantum machine learning. Nat Commun 12, 2631 (2021). https://doi.org/10.1038/s41467-021-22539-9

Abbas, Amira, et al. "The power of quantum neural 
networks." Nature Computational Science 1.6 (2021): 403-409.



Practical advantage
Practical implementation vs asymptotic complexity

Data embedding
NISQ vs ideal quantum devices
Realistic applications

Performance metrics and fair comparison to classical models

HEP data is classical, but originally produced by quantum processes. It is 
these intrinsically quantum correlations we are trying to identify  

A change of paradigm could reflect in interesting insights
• What are natural building blocks for QML algorithms?
• How can we construct useful bridges between QC and learning theory?
• How can we make quantum software ready for ML applications?

27

Khachatryan, Vardan, et al. "Measurement of Long-
Range Near-Side Two-Particle Angular Correlations 
in p p Collisions at s= 13 TeV." Physical review 
letters 116.17 (2016): 172302.

Schuld, Maria, and Nathan Killoran. "Is quantum advantage the right goal 
for quantum machine learning?." arXiv preprint arXiv:2203.01340 (2022).

Quantum information with top quarks in QCD
Yoav Afik, Juan Ramón Muñoz de Nova
https://arxiv.org › abs › 2101.10307

https://arxiv.org/search/quant-ph?searchtype=author&query=Afik%2C+Y
https://arxiv.org/search/quant-ph?searchtype=author&query=de+Nova%2C+J+R+M
https://arxiv.org/abs/2101.10307


Quantum Generative Models

QCBM
Sample variational pure state | ⟩ψ(θ)
by projective measurement through 
Born rule: 𝐩𝛉 𝐱 = |6𝐱|𝛙(𝛉 ⟩) |𝟐 .

QGAN
Multiple implementations, mostly classical-quantum hybrid

Quantum Generator

Measurement Real
Data

Fake
Data

Classical 
Discriminator

Classical 
Data

Evaluate Gradients &
Update Parameters 

Uniform 
Initialization

QBM
Network of stochastic binary units with a quadratic energy function
that follows the Boltzman distribution (Ising Hamiltonian)

Delgado and Hamilton, arXiv:2203.03578 (2022)
Zoufal, et al., npj Quantum Inf 5, 103 (2019)
Leadbeater et al., Entropy 2021, 23, 1281.
Amin, et al. Physical Review X 8.2 (2018): 021050.

n dimensional 
binary strings
map to 2n bins of 
the discretized 
dataset.

Typical metrics:



Multiple QML prototypes for different applications
We can build expressive models and we can train them J

Increasing level of precision
Robustness against noise ?

Our results so far.. 

Scale is still a problem on current quantum hardware
Complex data pre-processing 

Generalization
Empirical results à Need theoretical grounding
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QML at CERN

Tüysüz, Cenk, et al. "Hybrid quantum classical graph neural 
networks for particle track reconstruction." Quantum 
Machine Intelligence 3.2 (2021): 1-20.

M. Shenk, V. Kain, Quantum Reinformcement Learning, 
BQiT 2021, 2022 CERN openlab Tech Workshop

p0=5%

Vasilis Belis, Samuel González-Castillo, Christina Reissel, Sofia 
Vallecorsa, Elías F. Combarro, Günther Dissertori, and Florentin
Reiter. Higgs analysis with quantum classifiers. EPJ Web of 
Conferences, 251:03070, 2021

Borras, Kerstin, et al. "Impact of quantum noise on the 
training of quantum Generative Adversarial 
Networks." arXiv preprint arXiv:2203.01007 (2022).

Chang S.Y. et al., Running the Dual-PQC 
GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21

O. Kiss, Quantum Born Machine for 
event generation, ACAT2021

Kinga Wozniak, Unsupervised clsutering for a 
Randall–Sundrum Graviton at 3.5TeV narrow 
resonance, 5th IML workshop, May 2022

Bravo-Prieto, Carlos, et al. "Style-based 
quantum generative adversarial networks 
for Monte Carlo events." arXiv preprint 
arXiv:2110.06933 (2021).



qGAN for quantum data preparation

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

Exact 

distribu�on 

loading

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Classical 

preprocessing

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

loading 

through qGAN

Applica�on of 

the domain 

�lter through 

quantum gates

Integra�on 

through QAE

Core quantum 

algorithm

Classical 

postprocessing

Distribu�on 

prepara�on 

(sampling and 

discre�sa�on)

qGAN training

Classical 

preprocessing

Quantum data 

prepara�on 

Cross section integration using Quantum Amplitude Estimation
Data encoding affects quality of integration

Test on  1 + 𝑥& distribution:
• 10k events, 3 qubits, 

circular entanglement

Agliardi, Gabriele, et al. "Quantum integration of elementary 
particle processes." arXiv preprint arXiv:2201.01547 (2022)

qGAN for data embedding

𝜎 =
1
𝐹
%𝑑Φ 𝑀 !Θ Φ − Φ"

matrix element

phase-space factor

phase-space 
cuts 

Electroweak example: 



qGAN for event generation

Generate  Mandelstam (s,t) + y
variables for t-tbar production
Introduce a style-based
approach

Bravo-Prieto et al. "Style-based quantum generative 
adversarial networks for Monte Carlo events." Quantum 6, 
777 (2022) , arXiv preprint arXiv:2110.06933 (2021).

IBM Q Santiago

Quantum simulator



QML can realistically simulate the energy deposited by particles in a detector

QNN (MMD loss)

The case of detector simulation

Scale is the  main
problem
Entirely change the 
formulation?



QML training process seems robust
against noise (error mitigation is needed
in extreme cases)

Robustness against noise
Borras, Kerstin, et al. "Impact of quantum noise on the training of quantum 
Generative Adversarial Networks." ACAT2021, arXiv preprint 
arXiv:2203.01007 (2022).



Muon Force Carriers, in muon fixed-target 
experiments (FASER) or muon interactions in 
calorimeters (ATLAS)1. 

Generate multivariate distribution (E, pt, η)

Maximum Mean Discrepancy for training

QCBM for event generation

1 Galon, I, Kajamovitz, E et al. "Searching for muonic forces with the ATLAS detector". In: Phys. Rev. D 101, 011701 (2020)

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)



Mean difference between 
the correlations in the MC 
and generated samples

Simulation Noisy 
simulation

IBMQ 
Mumbai

Classical

0.12 0.06 0.06 0.01

Kiss, Grossi, et al., Phys. Rev. A 106, 022612 (2022)

Multivariate PDFs



Conditional 
probability 
distribution

a) train: 100 GeV         b) train 150 GeV          c) test 125 GeV
We want to modelize 𝒑(𝒚|𝒙)
where x is the incoming energy Ein. 

1. Data re-uploading does not 
improve the sampling.

2. Training on hardware is 
important to assimilate the 
noise.



Correlate expected model performance to data set properties
Trainability vs expressivity robustness studies
Evaluating generalisation
Quantum vs classical data
Algorithms beyond QML

Research directions



Quantum machine learning for quantum data

Huang, et al., Science 376, 6598 (2022) 

Work directly with quantum states.

Task: Drawing phase diagrams

Cong, et al., Nat. Phys. 15, 1273–1278 (2019)

1. Supervised classification using a 
convolutional QNN using the 
groundstates as input data. 

2. Advantageous since quantum states are 
exponentially hard to save 
classically. 

3. Bottleneck: we need access to 
classical training labels!  Interpolation 
does not work



Setting the stage
§ Train in easy (integrable) subregions 

§ Generalize to a full model1

• Model: Axial Next Nearest Neighbor 

Ising (ANNNI) Hamiltonian:

Which is integrable for 𝜅 = 0 or ℎ = 0.
Binary Cross-entropy

Variational quantum data 

Monaco, at al.  arXiv: 2208.08748 (2022) 

Monte Carlo,
DMRG

Senk, Physics Reports, 170, 4 (1988)



Results Learn a similarity function between the data.
Kottman, et al., Phys. Rev. Research 3, 043184 (2021)

1. Out of Distribution 
Generalization? [M..Caro et al., Out-
of-distribution generalization for learning 
quantum dynamics, 

https://arxiv.org/abs/2204.10268]

2. Performance increases with 
the system’s size. 

3. Adresses the bottlneck of 
needing expensive training 
labels. 

4. QCNN gives quantitative 
predictions
[Banchi et all., Generalization in Quantum 
Machine Learning: A Quantum Information 
Standpoint, PRX QUANTUM 2, 040321 (2021) ]

Autoencoder(95%)

https://arxiv.org/abs/2204.10268


Other possible
applications



Inversion problem

Detectors measure the results of  particle 
interactions with matter

• Need particle production processes 

Go back from experiments to theory: 
• Disentangle production process from the experimental 

setup 

• Bayesian problem

Invertible networks and normalising flows

arxiv:1808.04730
arxiv:2006.06685



1-A. Bogatskiy et al. "Lorentz group equivariant neural network for particle physics." PMLR, 2020
2-J. Meyer et al “Exploiting symmetry in variational quantum machine learning“, 
https://arxiv.org/abs/2205.06217
3-S.Jerbi at all., Quantum Machine Learning Beyond Kernel Methods https://arxiv.org/abs/2110.13162
4- Glick, Jennifer R., et al. "Covariant quantum kernels for data with group structure." arXiv:2105.03406 (2021)

Introducing symmetry groups
A unitary representation of a symmetry group S can arise from data symmetries when the data points 

are suitably encoded or alternatively from physical considerations of a variational problem2. 

Alexander Bogatskiy, ML4Jets , Nov 2022

https://arxiv.org/abs/2205.06217
https://arxiv.org/abs/2110.13162


The CERN QTI is studying impact of Quantum Technologies  in High Energy Physics:

• Some preliminary hints of advantage

• So far..  we can do «as good as classical methods». In many cases, limitations are hardware-
related

• Need more robust studies to estimate performance and drive model development

We are now formulating a longer term research plan

• Identify cases where quantum approach could be more effective than classical algorithms... 

• …

Perspective



2023

Thank you!

Next November @CERN:



A priori methodology to assess 
Quantum Advantage

Complexity theory can set a rigorous 
upper bound on prediction error 1

Geometric Difference – gCQ (λ)

Approximate Dimension – d

Model Complexity – sK, λ (Ν)

Constraints:
• Encoding (feature) map of classical and     

quantum kernels
• Data structure - complex distribution function, 

dimensionality of the input space…
• Optimization of relevant parameters λ, γ

geometry test

gCQ ∝ √NgCQ << √N

dimensionality
test

complexity test

d << N else elsesQ << N
sC ≈ N

sC << N

Classical Classical
Quantum Classical Potential

QA
Classical
Quantum 

1 HY. Huang et al, Nature Communication 12, 2631 (2021)
2 F.Di Marcantonio et all., QuASK -- arXiv:2206.15284
https://quask.readthedocs.io/en/latest/#

Metrics implemented in QuASK2

https://quask.readthedocs.io/en/latest/


Analize the performance of quantum kernels

• Focus on H(tbb) classification 
• quantum kernels keep data in low-dimensional Hilbert spaces
• model complexity increases with the number of qubits for all ML models. 
• Model complexity are similar (sometimes below classical models)
• Projected kernels don’t  help

F. Di Marcantonio et al., The Role of Data in Projected 
Quantum Kernels: the
Higgs Boson Discrimination.

V. Belis, EPJ Web of 
Conferences 251, 
03070 (2021)



Definition and loading of probability distributions – exact loading

Class that implements the (complex amplitude) initialization of 

some flexible collection of qubit registers. 

Implements a recursive initialization algorithm, including 

optimizations [1].

Note that Initialize is an Instruction and not a Gate since it 

contains a reset instruction, which is not unitary.

Discrepancies from the truth by no more than 2% and is on 

average around 1%. 

Quality of the exact loading is directly dependent on the statistics 

of the sample given as input. 

NB we assume truth distribution is unknown analytically 

[1] "Synthesis of Quantum Logic Circuits" https://arxiv.org/abs/quant-ph/0406176v5

# gates scales as O(2n) 

https://arxiv.org/abs/quant-ph/0406176v5


Integration of probability distributions - QAE

• The Quantum Amplitude Estimation, grounded on QPE, is a tool to 
perform Monte Carlo-like simulations on quantum computers, with an 
almost quadratic speedup

• Different implementations of QAE: 
- original QAE implementation by Brassard et al;
- Iterative Amplitude Estimation which does not rely on Quantum 

Phase Estimation (QPE) but is only based on Grover’s Algorithm, 
which reduces the required number of qubits and gates;

- Maximum Likelihood Amplitude Estimation which limit resorting to 
expensive controlled operations;

I = ∫𝑑𝑥 𝑓 𝑥 𝑔(𝑥)

probability distributions 

integrand

𝜎 =
1
𝐹
,𝑑Φ 𝑀 ?Θ Φ − Φ@

probability distributions 

integrand
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Train models using noisy simulator and  test the inference of the model on the  superconducting (IBMQ) and 
trapped-ion (IONQ) quantum hardware

• For IBMQ machines, choose the qubits with the lowest CNOT gate error

qGAN Benchmarks on hardware
Chang S.Y. et al., Running the Dual-PQC GAN on Noisy Simulators and Real 
Quantum Hardware, QTML2021, ACAT21



Change of quantum state 
caused by the interaction 
with an external system:
• transition between 

superconducting and 
normal-conducting

• transition of an atom from 
one state to another

• change of resonant 
frequency of a system 
(quantized)

Quantum sensing
M. Doser, Physics frontiers, 9/10 Mar 2022


