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AdS Gravity

What are the EFT that admit a UV completion in QG?
Landscape

What are the consequences of this connection?
Principles & Laws in QG

CFTD ➛ AdSD+1 Gravity 



Engineering AdS3 Quantum Gravity

Symmetric Product Orbifolds



Engineering AdS3 Quantum Gravity

o Define gravity via the dual CFT

o Identify necessary conditions

o Possible designs we can achieve
Gravitational 
Theory 
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Symmetric Product Orbifolds

o Implement conditions

o Precise outcomes (with surprises)

o New features in the design of AdS/CFT

A. Belin, J. Gomes, C. Keller, AC, 2016, 2018
A. Belin, C. Keller, B. Mühlmann, AC, 2019 (x2)
A. Belin, N. Benjamin, C. Keller and S. Harrison, AC, 2020
L. Apolo, A. Belin, S. Bintanja, C. Keller, AC 2022
N. Benjamin, S. Bintanja, J. Hollander, AC 2022
L. Apolo, A. Belin, S. Bintanja, C. Keller, AC 2023



Engineering AdS3 Quantum Gravity
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Gravitational theory in D+1 dimensions is equivalent to
 quantum field theory in D dimensions

Holographic Principle
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Gravitational theory in D+1 dimensions is equivalent to
 quantum field theory in D dimensions

BULK theory
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BULK theory

Control and precision: 
AdSD+1/CFTD

Holographic Principle



AdSD+1/CFTD

AdS Gravity

AdSD+1 = gravity with 
negative cosmological 

constant 
in D+1 spacetime 

dimensions.
 

Conformal Field Theory

CFTD = quantum system invariant 
under dilations 

in D spacetime dimensions.

Born and refined in String Theory, the most precise incarnation states: 

CFT

AdS
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CFTD = quantum system invariant 
under dilations 
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Born and refined in String Theory, the most precise incarnation states: 
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AdS Quantum Gravity 

Weakly coupled



AdSD+1/CFTD

AdS Gravity

AdSD+1 = gravity with 
negative cosmological 

constant 
in D+1 spacetime 

dimensions.
 

Conformal Field Theory

CFTD = quantum system invariant 
under dilations 

in D spacetime dimensions.

Born and refined in String Theory, the most precise incarnation states: 

CFT

AdS EFT: General Relativity + matter

Strongly coupled



AdSD+1/CFTD

It is a duality: 
It maps a gravitational theory to a CFT and viceversa.

It is a framework:
The dual CFT predicts the adequate observables in QG.

CFT

AdS Bulk theory

Bound
a

ry theory



CFT

AdS

If we want to capture the fundamental mechanism of AdS/CFT, we 
need more than a few examples. 
 
Possible Directions: 

o Given a CFT, how to organize it such that quantum gravity is 
manifest?

o Which CFTs capture classical (geometric) properties of gravity?

o Select a theory of gravity, what are properties of the dual?



If we want to capture the fundamental mechanism of AdS/CFT, we 
need more than a few examples. 
 
Possible Directions: 

o Given a CFT, how to organize it such that quantum gravity is 
manifest?

o Which CFTs capture classical (geometric) properties of gravity?

o Select a theory of gravity, what are properties of the dual?

CFT2

AdS3

We will focus on the difficulties you 
encounter in AdS3/CFT2.

Not universal, but it illustrates the 
challenges.
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The theory:

Basic Requirements:
Gravitational theories that have the property that their low-
energy description is given by a local EFT.

AdS3 Gravity

Universal entry in AdS3/CFT2: 𝑐 = !ℓ
#$!

≫ 1

𝐼!" =
1

16𝜋 𝐺#
'𝑑!𝑥 −𝑔 𝑅 +

2
ℓ$ + matter content: scalars, gauge fields, fermions



CFT2

Primary Operators: Δ! (Conformal dimensions)

3-point functions: 𝐶"!# (OPE coefficients) 

Central Charge: 𝑐 



CFT2

Warning: Sizes are not meaningful.

o Which CFTs capture classical 
(geometric) properties of gravity?

Primary Operators: Δ! (Conformal dimensions)

3-point functions: 𝐶"!# (OPE coefficients) 

Central Charge: 𝑐 



CFT2

EFT of gravity + matter:

o 𝑐 = !ℓ
#$!

≫ 1
o Few states
o … 

Warning: Sizes are not meaningful.

Primary Operators: Δ! (Conformal dimensions)

3-point functions: 𝐶"!# (OPE coefficients) 

Central Charge: 𝑐 



CFT2

SCardy = 2⌅

⇤
c

6
E (0.31)

T = 0 T �= 0 (0.32)

SBH = SCardy (0.33)

ZGrav(⇧, ⇧̄) =

⇥

⌅M=T 2

Dg e�SGrav[g]

= Tr(e��H�i⇤J)CFT (0.34)

ZGrav(⇧, ⇧̄) =
�

⇥⇥�c\SL(2,Z)

Zvac(⇥⇧, ⇥⇧̄)

= Tr(e��H�i⇤J)CFT (0.35)

ZGrav(⇧, ⇧̄) =
�

⇥⇥�c\SL(2,Z)

Zvac(⇥⇧, ⇥⇧̄) = Tr(e��H�i⇤J)CFT (0.36)

ZGrav(⇧, ⇧̄) = Tr(e��H�i⇤J)CFT (0.37)

h >
c

24
(0.38)

ZCFT(�) = TrH(e��H) (0.39)

= ZHS(�)

=

⇥

⌅M
[Dg · · · ] e�SE (0.40)

Re⇧ = ⇤ Im⇧ = � (0.41)

3

Warning: Sizes are not meaningful.

EFT of gravity + matter:

o 𝑐 = !ℓ
#$!

≫ 1
o Few states
o … 

Primary Operators: Δ! (Conformal dimensions)

3-point functions: 𝐶"!# (OPE coefficients) 

Central Charge: 𝑐 



CFT2

Warning: Sizes are not meaningful.

EFT of gravity + matter:

o 𝑐 = !ℓ
#$!

≫ 1
o Few states
o … 

Strongly coupled

Primary Operators: Δ! (Conformal dimensions)

3-point functions: 𝐶"!# (OPE coefficients) 

Central Charge: 𝑐 



Strong 
coupling

Moduli space: set of exactly marginal deformations

𝜆	Φ(&,&)

o 𝑐 = !ℓ
#$!

≫ 1

o Few states

o … 



Strong 
coupling

Weak
coupling

Moduli space: set of exactly marginal deformations

𝜆	Φ(&,&)

o 𝑐 = !ℓ
#$!

≫ 1

o Few states

o … 



Strong 
coupling

Weak
coupling

o 𝑐 = !ℓ
#$!

≫ 1

o Few states

o … 

Moduli space: set of exactly marginal deformations

o 𝑐 = !ℓ
#$!

≫ 1

o Moduli (deformations)

o BPS spectrum sparse

𝜆	Φ(&,&)



Symmetric Product Orbifolds



N copies of a unitary 
and compact CFT2. 
𝐶	= seed theory

Symmetric Product Orbifolds

𝑆𝑦𝑚% 𝐶 =
𝐶⊗%

𝑆%

𝐶
𝐶

𝐶 …
…

Orbifold by the permutation group 𝑆%



Symmetric Product Orbifolds

𝑆𝑦𝑚% 𝐶 =
𝐶⊗%

𝑆%

𝐶
𝐶

𝐶 …
…

The orbifold introduces two class of states: 

o untwisted sector: it keeps states that are invariant under 𝑆%.

o twisted sectors:  new states labelled by conjugacy classes of 𝑆%.

N copies of a unitary 
and compact CFT2. 
𝐶	= seed theory

Orbifold by the permutation group 𝑆%



Symmetric Product Orbifolds

o Appeal: Mathematical and analytic control, e.g., DMVV formula. 

o Familiarity: D1D5 CFT. 

o Universality: large-N behavior is robust.

o Utility: compelling features for AdS/CFT.

𝐶

𝐶……



Symmetric Product Orbifolds

Today: non-universal properties. 
Demonstrate that there are different 

classes, and their features challenge the 
lore of AdS/CFT. 
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Symmetric Product Orbifolds

𝐶

𝐶……

Today: non-universal properties. 
Demonstrate that there are different 

classes, and their features challenge the 
lore of AdS/CFT. 

o Appeal: Mathematical and analytic control, e.g., DMVV formula. 

o Familiarity: D1D5 CFT. 

o Universality: large-N behavior is robust.

o Utility: compelling features for AdS/CFT.



Universal Aspects

𝑆𝑦𝑚% 𝐶 =
𝐶⊗%

𝑆%

𝐶
𝐶

𝐶 …
…

All symmetric product orbifolds satisfy:

o Correlation functions comply with large-N factorization.

o Hawking-Page transition at large-N.

o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states.

[Pakman et.al., Mathur et.al., Belin et.al., Hael et.al., …]

[Keller 2011; Hartman, Keller, Stoica 2014; Benjamin et.al. 2015]

[Keller 2011] 
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like a tensionless string theory (or higher spin 
gravity). 
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o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states.

Question: Which 𝑆𝑦𝑚% 𝐶 could admit in their moduli space a dual supergravity point? 

Strategy: Impose necessary conditions. Identify which 𝑆𝑦𝑚% 𝐶 comply with them.

𝑆𝑦𝑚% 𝐶
(weak)

Strong 
coupling
Λ&'()*+ ≫ Λ,-.

Λ&'()*+ ∼ Λ,-.

𝜆	Φ(&,&)

Moduli space: set of exactly marginal deformations



Strong 
coupling

Weak
coupling

Moduli space: set of exactly marginal deformations

Focus on theories with at 
least N=(2,2).
At large-N, classify them 
according to:
o Moduli (deformation)
o BPS spectrum 

𝜆	Φ(&,&)

Some requirements:
o Large-N: 𝑐 = !ℓ

#$!
≫ 1

o Sparse spectrum
o Large gap spectrum
o … 



Neccesary conditions
o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures BPS states).

Type I:
Both criteria

Type II:
Only criterion 1

Type III:
Neither criteria

Type IV:
Only criterion 2

Based on these two criteria, we will classify 𝑆𝑦𝑚) 𝐶 theories, and label them as



Neccesary conditions

1. We proved that both criteria (independently) imply that seed theory must have

1 ≤ 𝑐* ≤ 6

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures BPS states).

N CFTs
𝐶*

𝐶*

…
…

𝐶*
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Neccesary conditions

1. We proved that both criteria (independently) imply that seed theory must have

1 ≤ 𝑐* ≤ 6

2. Criterion 2 can be done systematically and is exhaustive. 

3. If Criterion 2 is satisfied, we proved that one always gets

𝑑 Δ ∼ 𝑒 '   where   Δ ≫ 1, Δ ∼ 𝑂(𝑁()	

N CFTs
𝐶*

𝐶*

…
…

𝐶*

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures BPS states).



Classification

Type I:
Both criteria

Type II:
Only criterion 1

Type III:
Neither criteria

Type IV:
Only criterion 2

Needles in a haystack. 
Comply with necessary conditions to lead to a 
holographic CFT.

Generic, most abundant. 
They will never lead to a supergravity point in moduli 
space.

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

Unicorns. 
No unitary example yet. Modular invariance does not rule it out. 
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c = 5 moduli check

Jildou Hollander

March 2022

1 Overview

Only giving the unique solutions, we have

Theory Sparse? Moduli? Composition
A6 ⌦A41 3 3 (11,88), (22,22)
A7 ⌦A23 3 3 (11,55),(22,22)
A8 ⌦A17 3 3 (11,44),(22,22)
A9 ⌦A14 3 3 (22,22)
A11 ⌦A11 3 3 (11,33),(33,11),(22,22)
A6 ⌦D22 7 7
A7 ⌦D13 7 3 (11,55)
A23 ⌦D5 7 3 (55,11)
A8 ⌦D10 7 7
A14 ⌦D6 7 7
A11 ⌦D7 3 3 (11,33),(33,11)
A8 ⌦ E7 7 7
A11 ⌦ E6 7 3 (33,11)
D5 ⌦D13 7 3 (11,55)
D7 ⌦D7 3 3 (11,33),(33,11)
D7 ⌦ E6 3 3 (33,11)
E6 ⌦ E6 7 7

A2 ⌦A5 ⌦A5 3 3 (11,11,22),(11,22,11)
A2 ⌦A5 ⌦D4 3 3 (11,22,11)
A2 ⌦D4 ⌦D4 7 7
A3 ⌦A3 ⌦A5 3 3 (11,11,22)
A3 ⌦A3 ⌦D4 7 7

1

Examples of theories where the seed has 𝑐* = 5

Type I

Type II



Comparisson

Type I:
Both criteria

Type II:
Only criterion 1

Needles in a haystack. 
Comply with necessary conditions to lead to a 
holographic CFT.

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

o Evaluated anomalous dimension of several holomorphic operators (currents).

o Type I and II theories exhibit no difference at leading order in perturbation theory. 😖

o What is the key feature that guarantees a supergravity point in moduli space? 



Summary

1 𝑐*3 6 Type IIIType I Type I, II, III

N CFTs
𝐶*

𝐶*

…
…

𝐶*



Summary

1 𝑐*3 6 Type IIIType I Type I, II, III

Comments:

o Only consider CFTs that are unitary and compact.

o Assume that the elliptic genus does not vanish.

o D1D5 on K3 sits at 𝑐( = 6.

o Search between 1 ≤ 𝑐( < 3 is exhaustive: N=2 Minimal Models.

o Search between 3 ≤ 𝑐( ≤ 6 is not exhaustive (but systematic). 

N CFTs
𝐶*

𝐶*

…
…

𝐶*



Type I: Examples

ADE

Series k untwisted moduli twisted moduli single trace twisted

A2 1 1 28 1 twist 5, 1 twist 7

A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5

A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, � 3 P (k + 2)� 2 9 1 twist 3

Ak+1 even, � 6 P (k + 2)� 2 10 +

k

2+2P
r=1

P (r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

D k

2+2 0 mod 4, � 8 P (k2 + 1) + P (k4 + 1) 8 +

k

4+1P
r=1

P (r) 1 twist 2, 1 twist 3

D k

2+2 2 mod 4, � 6 P (k2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2

E7 16 6 5 1 twist 2

E8 28 6 5 1 twist 2

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models.
We always take N large enough so that the moduli have converged. P (n) is the

integers partition function, i.e.
1P

n=0
P (n)qn =

1Q
n=1

1
(1�qn) .

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be

unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the

18

Necessary conditions:
o Criterion 1: Exactly marginal operator 
o Criterion 2: Sparse spectrum for elliptic genera 

N=2 Virasoro Minimal Models 
𝑐* =

!+
+,#

< 3
where  𝑘 = 1, 2, …
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Responsible of lifting most states.
Breaks higher spin symmetry
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Multi-trace deformations. 
Formally known, first explicit example of CFT with these BPS deformations.
They can turn on couplings, which hints to strongly coupled matter. 



Destroy Factorization
Consider any CFT that complies with Large-N Factorization

𝜆!	Φ(*,*)
! = 𝜆!:

-./

𝑂*-𝑂#
.𝑂!/

The coupling 𝜆 is independent of N. 

To make sure that the deformation is 
robust, we ask that Φ(&,&)

!  is: 
o Marginal
o ½-BPS

Note: it can be either twisted or 
untwisted.



Destroy Factorization
Consider any CFT that complies with Large-N Factorization. 
Next deform the theory by Φ(&,&)

!  = ∑-.+𝑂&-𝑂#
.𝑂!+

𝑂& 𝑧 𝑂# 𝑤 𝑂! 𝑤 / = 𝑂& 𝑧 𝑂# 𝑤 𝑂! 𝑤 * + 𝜆! > 𝑂& 𝑧 𝑂# 𝑤 𝑂! 𝑤 Φ&,&
! (𝑤) *𝑑𝑤 +⋯

Suppressed by 𝑂 𝑁0"#

Large-N factorization
Leading order 𝑂 𝑁*

Introduced a new coupling!



Destroy Factorization
Consider any CFT that complies with Large-N Factorization

𝜆	Φ(*,*)
! = 𝜆:

-./

𝑂*-𝑂#
.𝑂!/

The coupling 𝜆 is independent of N. 
This deformation does not affect the convergence of the large-N limit (observables finite).  

𝑂D𝑂$𝑂! E ∼ 𝜆 𝑁F +⋯

o Breaks large-N factorization
o Interactions that are not controlled by 𝐺)
o Type I theories have these deformations
o Argument is general: applies to CFTD



Typical theory: Couplings controlled by 𝐺%

AdS3/CFT2

𝐼!" =
1

16𝜋 𝐺#
'𝑑!𝑥 −𝑔 𝑅 +

2
ℓ$
− (𝜕Φ)$ −

9𝜆!
ℓ$
Φ! +⋯

New flavors: multi-trace deformations could turn on independent couplings.

𝐼!" =
1

16𝜋 𝐺#
'𝑑!𝑥 −𝑔 𝑅 +

2
ℓ$

+ '𝑑!𝑥 −𝑔 −(𝜕Φ)$ −
𝜆!
ℓ
Φ!



Outlook



Quantify the space of type I theories:
o Different from known examples 
o Systematic and tractable  
o Infinite family
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Theory 

Some requirements:
o Large-N
o Sparse spectrum
o Large gap spectrum 

Type I 𝑆𝑦𝑚) 𝐶
Conditions:
o Large-N
o Sparse elliptic genera
o Moduli



o Which CFTs capture classical (geometric) properties of gravity?

o What are possible theories of quantum gravity that can be designed?  

o What are the materials needed to assemble them?

Next steps:

o Multi-trace deformations (to appear by Apolo, Belin and Bintanja).

o String theory and supergravity description.

o Heavy states: contrast black holes among type I, II and III.

o Mock Modularity and asymptotic expansions. 

o Type I vs II: lifting of generic operators.


