Fundamental Physics from the Microwave Sky

Results from ACT and Prospects for Simons Observatory

Arthur Kosowsky, University of Pittsburgh kosowsky@pitt.edu

The Atacama Cosmology Telescope

Atacama Cosmology Telescope 2008-2022

The Atacama Cosmology Telescope

- Observed 2007-2022

 >5x Planck resolution. ACT&SPT only high-res CMB telescopes Near equator at -23° lat. Access to most of the sky • 5200 m altitude in Atacama desert • Typical PWV 1.2 mm (about 3x south pole, 9x ridge A)

CCAT

CLASS

POLARBEAR

ACT

Image credit: Debra Kellner

SO

The ACT Collaboration 160 collaborators at 45 institutions PI: Suzanne Staggs (Princeton University)

Current Maps and Power Spectra

20

Advanced ACT survey

- Observed 2017-2022 in 5 bands
- Combined sensitivity of 6.1 μ K \sqrt{s}
- Deeper than Planck over 19000°²
- Median depth of 10 μ K arcmin
- 10x as much statistical power as DR4 (prev. cosmology release)

DR6 map example (from 4-5 μK arcmin region)

-300 (a) ACT & *Planck* NILC CMB tempera

(a) ACT & *Planck* NILC CMB temperature and kinetic Sunyaev-Zel'dovich anisotropy map.

Coulton et al. 2023

 μK

(b) ACT & *Planck* NILC CMB E-mode anisotropy map.

20

Coulton et al. 2023

ACT+Planck E,B vs. Planck E,B

Visualization by S. Naess

CMB power spectrum forecast

- Data not quite ready yet: (But we have a preliminary forecast
- Same bin size for Planck and DR6
- Larger bins for DR4
- Hard to see the error bars!

TT

ACT DR6: forecast in yellow (coming soon!)

Forecast from Knox (1993) approximation courtesy S. Naess

S/N per I mode

EΕ

Forecast for cosmological parameters (Hopefully the real measurements will be out soon!)

2x improvement in sensitivity to new light relic particles (N_{eff})

Planck	DR6 + Planck	
0.5	0.4	
0.004	0.003	
0.2	0.1	

Preliminary Forecast

ACT DR4 power spectra (2018)

Does 400 < I < 700 EE show early dark energy (?!?)

Not seen in Planck

ACT DR6 will have more EE weight than Planck

Hill et al. 2022

Gravitational Lensing

- Exaggerated example of lensing of CMB by a point mass
- More mass \Rightarrow more magnification
- Can recover mass distribution by comparing power spectra in different areas of the map

• In practice a fancier algorithm is used, but principle is the same

What does CMB lensing tell us?

Sensitive to integral of matter power spectrum over all redshifts Probes higher redshifts than galaxy surveys, but lower than the CMB

Background: ACT lensing map

Contours: Planck Cosmic Infrared Background (CIB) map High correlation because both are sensitive broad redshift range around z = 2

12 years of CMB lensing progress

time split 1 - time split 2

South patch - North patch

Poor cross-linking region

Aggressive ground pick up

Passing over 100 null tests for lensing power spectra

 $\sigma_8 \Omega_m^{0.25} = 0.606 \pm 0.016.$

 Ω_{m}

CMB lensing + BAO gives sigma-8 consistent with Planck cosmology, higher than optical weak lensing values

Planck CMB anisotropies WMAP+ACT DR4 CMB aniso. SPT-3G CMB anisotropies ACT lensing + BAO + BBN ACT+Planck lensing + BAO + BBN Planck lensing + SNe + BBN (no r_s) ACT lensing + SNe + BBN (no r_s) ACT+Planck lensing + SNe + BBN (no r_s) **Direct: SNe Cepheid-calibrated Direct: SNe TRGB-calibrated** Direct: TDCOSMO Strong Lensing Direct: TDCOSMO Strong Lensing Alt.

CMB primary **constrains Hubble** constant

CMB lensing + CMB primary constrains geometry

Galaxy Clusters

-2×10^{-6}

 2×10^{-5}

(a) ACT & *Planck* NILC Compton-y map.

Coulton et al. 2023

Galaxy clusters appear as dark spots in CMB map below 230 GHz

Intensity map R:f090,G:f150,B:f220

Compton y map

DES optical image (zoom)

Detect by looking for negative point sources in the CMB map (or positive point sources in the y map)

Cluster catalog

DR5 SZ cluster catalog from Hilton et al. (2021) (>4000 confirmed SNR>4 clusters)

Preliminary number for DR6 catalog: 6800 SNR>4 clusters! Comparison: Planck has 1203 confirmed clusters

tSZ gives almost redshift-independent selection function Very different from optical surveys like DES!

Need to calibrate tSZ-mass relationship to do cosmology with clusters. Solution: Cluster lensing!

Preliminary! Eunsong Lee at al. (in prep)

Simons Observatory

Simons Observatory site, Cerro Toco, 2023

Simons Observatory Large Aperture Telescope mechanical structure on site, 2023

- 1. Lifting the LATR into the receiver cabin (IS1)
- 2. LATR receiver installed on the co-rotator in IS1
- 3. Replacing the Dilution Refrigerator INSIDE the LAT

SO Small-Aperture Telescope focal plane (at site, Nov. 2023)

Simons Observatory

Large Aperture Telescope: 6-meter primary mirror

Each optics tube contains 3 detector arrays 6 optics tubes in 2024 Space for 13 optics tubes Up to 65,000 total bolometer detectors (ACT: around 4000 detectors)

Small Aperture Telescopes: 1-meter primary lens

Each telescope contains 7 detector arrays 3 telescopes in 2024 Plans for 6: 2 UK, 1 Japan Rotating half-wave plates for polarization modulation

SO LAT aims to make maps over 1/3 of the sky with arcminute resolution, blackbody sensitivity 5 muK arcmin, 6 frequency bands (ACT: 11 muK arcmin)

SO SATs aim to establish tensor amplitude r < 0.003 at 95% CL. Will compete with BICEP3. Litebird satellite: aims for r < 0.001 after 2030

Ade et al. JCAP 02, 056 (2019) for science projections Hensley et al. ApJ 929, 166 (2022) for galactic science

CMB-S4 is a main recommendation of the US P5 report last week: likely to be a major DOE-funded project over the next decade

S4 will be roughly SO x 3. Aims for 1 muK-arcmin sensitivity maps, r limits at 0.001

ACT lensing curl consistent with zero

ACT lensing frequency nulls consistent with zero

ACT DR6 \times unWISE

Ferren et al. 2023

Both ACT and Planck CMB lensing agree with CMB anisotropies

ACT lensing ($z\sim2$): $\sigma_8 = 0.819 \pm 0.015$ ACT+Planck lensing ($z\sim2$): $\sigma_8 = 0.815 \pm 0.013$ Planck CMB aniso ($z\approx1000$): $\sigma_8 = 0.811 \pm 0.006$ No sign of the low σ_8 (or equivalently S₈) seen in galaxy lensing! Problem with non-linear scales?

Table 2. Marginalized constraints on cosmological parameters in a consistent analysis of various weak lensing data-sets shown alongside CMB anisotropy (two-point) constraints. Throughout this work, we report the mean of the marginalized posterior and the 68% confidence limit, unless otherwise mentioned.

Data

Planck CMB aniso. (PR4 TT+TE+EE) + SRoll2 low- ℓ E Planck CMB aniso. (+ A_{lens} marg.) ACT CMB Lensing + BAO ACT+*Planck* Lensing + BAO ACT+*Planck* Lensing (extended) + BAO KiDS-1000 galaxy lensing + BAO DES-Y3 galaxy lensing + BAO HSC-Y3 galaxy lensing (Fourier) + BAO HSC-Y3 galaxy lensing (Real) + BAO

	σ_8	S_8	$\Omega_{ m m}$	H_0
				$(\mathrm{kms^{-1}Mp}$
EE	0.811 ± 0.006	0.830 ± 0.014	0.314 ± 0.007	67.3 ± 0.6
	0.806 ± 0.007	0.817 ± 0.016	0.308 ± 0.008	$67.8\pm0.$
	0.820 ± 0.015	0.840 ± 0.028	0.315 ± 0.016	$68.2 \pm 1.$
	0.815 ± 0.013	0.830 ± 0.023	0.312 ± 0.014	$68.1 \pm 1.$
	0.820 ± 0.013	0.841 ± 0.022	0.316 ± 0.013	$68.3 \pm 1.$
	0.732 ± 0.049	0.757 ± 0.025	0.323 ± 0.034	$68.9 \pm 2.$
	0.751 ± 0.035	0.773 ± 0.025	0.319 ± 0.025	$68.7 \pm 1.$
	0.719 ± 0.054	0.766 ± 0.029	0.344 ± 0.038	$70.2 \pm 2.$
	0.752 ± 0.045	0.760 ± 0.030	0.308 ± 0.024	$68.0 \pm 1.$

