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Neyman-Pearson Testing

An Hypothesis H 1n Statistics 1s a p.d.f. according to which data
might be distributed:
H < Py(data)

The Likelihood 1s probability seen as function of the hypothesis,
and not of the data:
Z(H) = Py(data)

A Test of Hypothesis 1s a comparative statement on the relative
plausibility of two Hypotheses as distribution of a data instance.



Neyman-Pearson Testing

For two simple Hypotheses H, vs H;: H, ,HO

N&P found the best test, the one with highest chance to falsity H,
if H, 1s true, and viceversa. The Neyman—Pearson lemma:
“ The best test employs as test statistics the variable t:

Z(H))

t =2log
Z(Hp)




Neyman-Pearson Testing

For two simple Hypotheses H,, vs H;: H, .HO

N&P found the best test, the one with highest chance to falsity H,
if H, 1s true, and viceversa. The Neyman—Pearson lemma:
“ The best test employs as test statistics the variable t: “

Z(H,)
t=2log
Z(Hy)
For simple vs composite Hypothesis: Hy, .HO

“Best” test unknown, but good test 1is Maximum Likelihood:
“The ML test employs as test statistics the variable ty; -

2 (Hy,) 2 (Hg)
v = 2 max log = 2log
w Z(Hy) Z(Hy)




Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.*
Be & some data, and R one hypothesis for their distribution
Does R provide the right description of & ?

Not a problem of Hypothesis testing, as only one hyp. involved.
But, it can be addressed by performing an HT, with Hy =R .

*often question emerges after optimising distribution free parameters on the data, as
a way to assess fit quality. But the problem 1s more general



Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.
Be & some data, and R one hypothesis for their distribution

Does R provide the right description of & ?

Example: are these data described by a Standard Gaussian?

We try to answer by comparing the SG with some Alternative
Hypothesis H,. If H; works much better, R 1s 1n trouble.
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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.
Be & some data, and R one hypothesis for their distribution

Does R provide the right description of & ?

Example: are these data described by a Standard Gaussian?

We try to answer by comparing the SG with some Alternative
Hypothesis H,. If H; works much better, R 1s 1n trouble.

Conclusion strongly depends on which H; we try:
o [f H; = Hr 1s true distribution, very likely we see tension of R (low p-value)

bi-Gauss. N\




Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.
Be & some data, and R one hypothesis for their distribution

Does R provide the right description of & ?

Example: are these data described by a Standard Gaussian?

We try to answer by comparing the SG with some Alternative
Hypothesis H,. If H; works much better, R 1s 1n trouble.

Conclusion strongly depends on which H; we try:
o [f H; = Hr 1s true distribution, very likely we see tension of R (low p-value)
o If H, # Hy, we are likely to conclude that R 1s “good” (high p-value)

H, = exp. dist




Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.
Be & some data, and R one hypothesis for their distribution
Does R provide the right description of & ?

Answering 1s more easy the more restrictive assumptions we
make on how the true distribution, if not R, can look like.

But, more partial as well.



Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.

Be & some data, and R one hypothesis for their distribution
Does R provide the right description of & ?

Answering 1s more easy the more restrictive assumptions we
make on how the true distribution, if not R, can look like.

But, more partial as well.

H
Simple vs Simple > T

hypothesis test Hl . R

* Optimal approach provided by
Neyman—Pearson Lemma

* Optimal answer to very specific
question: test has no or very
limited power if truth # H;
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Statisticians

Goodness of Fit

'ormulate an interesting problem: g.o.f.

Be & some data, and R one hypothesis for their distribution

Does R provide the right description of & ?

Answering 1s more easy the more restrictive assumptions we
make on how the true distribution, if not R, can look like.

But, more partial as well.

Simple vs Simple ?HT Simple vs Composite ?HT
hypothesis test Hl R hypothesis test HW R
® ®
* Optimal approach provided by * No Optimal solution. But, Maximum
Neyman—Pearson Lemma Likelihood Ratio is Good solution
* Optimal answer to very specific * Answers a more general question.
question: test has no or very It has some power if truth is in Hy.

limited power

if truth # Hy But, larger Hy = less power
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Probability

Probability

Goodness of Fit

Toy example: 2 datasets, not from R, tested with 3 different H,,’s.

Red 1s good: means R 1n trouble — 1s bad: means that R looks OK
e R —mgpyom | cap, - R O— mppjcem | TUD - R — ' One Gaussian
with free u, o
0.6} A
0.4} —
a )
0.2 .R
0.0 :
Dy, -- a
0.8} L
0.6} \Hé’v J
0.4} ~ \I_,Igv
v
0.2 M 2 Gauss.
0.0 S e s T o o 35 15 Gauss.

12



Probability

Probability

Goodness of Fit

Toy example: 2 datasets, not from R, tested with 3 different H,,’s.

Red 1s good: means R 1n trouble — 1s bad: means that R looks OK
o D, == R — H,pD=006 | 1D, -- R — HipD =009 | 1D, -- I‘ I One Gaussian
with free u, o
0.6} A
0.4} —
- )
0.2 .R
0.0 :
D, -- a
0.8} HY,
0.6} G _J
0.4} ~ \I_,Igv
v
0.2 M 2 Gauss.
0.0 e B T R N s o, —3 15 Gauss.

We need large H,, but avoid overfitting
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New Physics Learning Machine (NPLM)

Data: 1.1.d. measurements of feature vector x (e.g., particle mom.)
D = {xi};'/lzfl

In LHC, number of points 1s Poisson variable with expected N
Hypotheses: number density 1n x space (in LHC, do X lumi . )
nx) =N-Px), N = den(x)

Reference Hypothesis: n(x|R)
In LHC, the SM prediction

Alternative Hypothesis:
n(x|H,,) = n(x|R) e/ W)

H, H,

W o
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New Physics Learning Machine (NPLM)

Data: 1.1.d. measurements of feature vector x (e.g., particle mom.)
D = {xi};'/lzfl

In LHC, number of points 1s Poisson variable with expected N

Hypotheses: number density 1n x space (in LHC, do X lumi . )
nx) =N-Px), N = den(x)

Reference Hypothesis: n(x|R)
In LHC, the SM prediction

Alternative Hypothesis:
n(x|H,,) = n(x|R) e/ W)

In NPLM, set of functions f(x; w) that defines the

HW .HO Alternatives 1s Neural Network or other approximant

good 1n many dimensions, like kernels
15



New Physics Learning Machine (NPLM)

NPLM computes the Maximum Likelihood test statistic

L (Hg —N(W) n(x | Hy
(@) = 2log — ¥ = 210g T 2T
Z(R) e—NR) o n(x|R)
Using (since n(x | R) not available) a Reference Sample
% = {x}.4

A 1s made of instances of x that follow the R distribution
If possible, N, > N(R), but this is not a strict requirement

16



New Physics Learning Machine (NPLM)

NPLM computes the Maximum Likelihood test statistic

Z(H,) e NW) —_ n(x|Hg)
tir (D) =210 ~— =2]o d
ML) = 21085 Ry T 20 g n(x|R)
Using (since n(x | R) not available) a Reference Sample
% = {x}.4

A 1s made of instances of x that follow the R distribution
If possible, N, > N(R), but this is not a strict requirement

Computation of ¢ by supervised training & vs &2

In NN implementation, using special loss function that gives t = — 2 min[loss]
In kernel implementation, by learning “w” and plugging in

17



INPUT

Reference sample (R)
label=0

Data sample (D)
label=1

Unbinned training samples!

BSM network

M\
- > ' Wi
.\’\Qf'! WH\'W ‘
MA A A

v“ “V w
/ \\ ‘
ok
Q Ao

NN training
W »W

OUTPUT

Single training

H(D) = — 2L [f(x; W)]

n(x|Hg)

fx; w) = log

n(x|Ry) ]

fe; W) T

__J

L

Many trainings
(with pseudo-data)

Empirical distribution of t

— p-value for new datasets

P(t) |
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[llustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

L 0.10} 4 Neurons
=== ===p P(tR) Peak in the Tail |
0.08} No cut
< 0.06} ]
Ay= === = === »P(NP) |
0.04} -
co | e ++ :
0 ' .
0% 20 40 60 30
i
t
i

Distribution of “t” 1n one New Physics Model Hypothesis

t — p — Z-Score (weuse Z = d7(1 — p))
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[llustrating Performances

(Simple 1d example with exponential Reference)

Distribution of the test statistic “t” in Reference Hypothesis

L 0.10} S 4 Neurons
=== ===p P(tR) Peak in the Tail |
0.08} No cut

— 0.0l Notice agreement with Wilks’
ﬁ- - _E_ e = - "P(thP1) Formula:

1 0.04¢ Xi3g + ______________ ] _ Sufficiently regularised networks found to

L | j behave as if their number of d.o.f. was

I 0.02l '{' _- equal to number of parameters.

(Bl | . . :

. | M Theoretical reason mysterious

i O'OOO 20 40 60 80

0

t
0

Distribution of “t” 1n one New Physics Model Hypothesis

t — p — Z-Score (weuse Z = d7(1 — p))
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

6 —m™mmm——————————————+———vr—
S Peak in the Tail, 4 Neurons, No cut
104l NI;’1: Peak iln the Taill— 4 _ . ) 4 . .
Reference 3 Z_.M_eg.lg_n__NN____---___--____--2___._:.._,‘:.,._'?,.'.3-&:_}... e
1000} f i o eqtes :-‘."
»N °f e DI
100l | . T .- 5 T ol
1 : .° . o .o . :
o] S=10 1) . ) |
0.0 0.2 0.4 0.6 0.8 1.0 5 . |
X -1 Median Ideal &
0 1 2 3 4 5 6

“Ideal Z-score”: Z;
A “measure of dataset discrepancy”:
Z-score of optimal test for NP1 model
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

6 —m™—m—m————————————————————
Excess in the Tail, 4 Neurons i
5_-No cut !
1
T T . : I %
104} NP,: Excess in the Tail . ,'i"" ,
R Medlan NN TG JEIRY I ]
eference 3 .____________________________..__:_._.lo.ﬂ_.lm t ..’_. . o .————-—-..
1000} | | . Y -"'",:'57‘". '
N 2} . .;'.;'-",i g
100} : : . . con o et -
1 - N p ..:. . i
: ® o [ Y ° :
10. | | | | | 0 i
0.0 0.2 04 0.6 0.8 1.0 | ; . I
—_— n . 1
X : Median ldeal 1
0 1 2 3 4 5 6

“Ideal Z-score”: Ziq
A “measure of dataset discrepancy”:
Z-score of optimal test for NP2 model
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n(x)

[llustrating Performances

(Simple 1d example with exponential Reference)

S —
 Peak in the Bulk, 4 Neurons :
'No cut i
Pm—— 4 JRO
10*} NP3: Peak in the Bulk - - . . :t.: - e
Reference - Median NN . . . . o) ". L .' '
1000} °
% B=2000
ol S=70
0.0 0.2

“Ideal Z-score”: Z;
A “measure of dataset discrepancy”:
Z-score of optimal test for NP3 model
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[llustrating Performances

(Simple 1d example with exponential Reference)

 Peak in the Bulk, 4 Neurons
' No cut

[ Median NN

“Ideal Z-score”: Z;
A “measure of dataset discrepancy”:
Z-score of optimal test for NP3 model
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

Many classical methods for g.o.f. with one-dimensional data:

°Y 2: Bin data and compare with expected in each bin

 EDF tests: Compare EDF with CDF. Variants are KS, CvM, AD.
* Spacing tests: Spacings of CDF(points). Variants are Moran, RPS

25
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

Many classical methods for g.o.f. with one-dimensional data:

°Y 2: Bin data and compare with expected in each bin

 EDF tests: Compare EDF with CDF. Variants are KS, CvM, AD.
* Spacing tests: Spacings of CDF(points). Variants are Moran, RPS

While d = 1 g.o.f. 1s considered a “solved problem”, and d > 1 1s
what we care, interesting that NPLM works better.
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

For d > 1, most established solution are Classifier-Based Tests

e General idea: Train @ vs &#. Get more decisive classifier if @ ~ R

Use some metric evaluated on trained classifier output for Hypothesis Test.
[Friedman, 2003 ]

* C2ST: Most natural implementation. Uses classification accuracy metric.
[Lopez-Paz, Oquab, 2016]
Employed for generative models validation

* Variants: We studied different metric and compared in/out evaluation.

NPLM vs C28T: d = 1

Expo ----- AN/+y/ N(R) —— NPLM-NN —+ C2ST
Hi | _ Hy | _H

1.0} o |
0.8

3
No0.6] . \
/\ ‘s N
NO4L Ny
A~ 0.2}

0.0f
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

For d > 1, most established solution are Classifier-Based Tests

* General idea: Train @ vs &#. Get more decisive classifier if & =~ R
Use some metric evaluated on trained classifier output for Hypothesis Test.

[Friedman, 2003 ]

* C2ST: Most natural implementation. Uses classification accuracy metric.

Employed for generative models validation
* Variants: We studied different metric and compared in/out evaluation.

NPLM vs C28T: d = 1

_ Student-t versus Gaussian (v=3)

5)
| o
®

©0-0 C2STACC, N(R)/Nr=1 |

@=@ C2ST BACC, N(R)/Nr=0.2
@=® NPLM, N(R)/AVr=0.2

—6 ° |

0

500

1000 1500 2000

Np

[Lopez-Paz, Oquab, 2016]

Student-t versus Gaussian (N(R) =2000)

1.0l ©© C2STACC, N(R)/Nr=1 |
"7| @=@ C2ST BACC, N(R)/Nr=0.2 6
=@ NPLM, N(R)/Nr=0.2
o, 0.8}
o
=
@ 0.6¢f
]
=
O 0.4
O,
P
4
0.2
(@)
0.0r e | | | B
0 5 10 15 20
y 29
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

For d > 1, most established solution are Classifier-Based Tests

* General idea: Train @ vs &#. Get more decisive classifier if & =~ R
Use some metric evaluated on trained classifier output for Hypothesis Test.
[Friedman, 2003 ]
* C2ST: Most natural implementation. Uses classification accuracy metric.

[Lopez-Paz, Oquab, 2016]

Employed for generative models validation
* Variants: We studied different metric and compared in/out evaluation.

NPLM vs C2ST: d = 5
60 - AN/y/N(R) —— NPLM-NN  —— C2ST

Z'-2-a Z'-2-b Z'-3 EFT-a EFT-b

N 0.4}
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Comparing Performances

[Grosso, Letizia, Pierini, AW, 2023]

For d > 1, most established solution are Classifier-Based Tests

e General idea: Train @ vs &#. Get more decisive classifier if @ ~ R

Use some metric evaluated on trained classifier output for Hypothesis Test.
[Friedman, 2003 ]

* C2ST: Most natural implementation. Uses classification accuracy metric.
[Lopez-Paz, Oquab, 2016]
Employed for generative models validation

* Variants: We studied different metric and compared in/out evaluation.

NPLM is a Classifier-Based Test. Why so much better?

After comparison of many CBT variants, we conclude that the key
1s using Maximum Likelithood Ratio as metric, and in-sample eval.

Distinctive feature of NPLM is implementing N&P Testing!
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Applications

Some of the many applications of g.o.f. are:

* Model-Agnostic BSM Searches
* Data Quality Monitoring: Tell if apparatus operates “normally”
* Generative Models: GM validation and selection

32



The LHC g.o.1. challenge

By analysing the LHC data, we would like to find evidence of
failure of the SM theory, suggesting need of BSM.

This is a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over co many we can measure

Our generic discussion ...

Simple vs Simple ?HT Simple vs Composite ?HT
hypothesis test Hl R hypothesis test H R
® W e

* Optimal approach provided by * No Optimal solution. But, Maximum
Neyman—Pearson Lemma Likelihood Ratio is Good solution

* Optimal answer to very specific * Answers a more general question.
question: test has no or very It has some power if truth is in Hy.
limited power if truth # H; But, larger Hyw = less power
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The LHC g.o.1. challenge

By analysing the LHC data, we would like to find evidence of
failure of the SM theory, suggesting need of BSM.

This is a tremendously hard gof problem!

BSM is tiny departure from SM, or large in tiny prob. region
Affecting few (unknown) observables over co many we can measure

Our generic discussion ... perfectly matches LHC practice:

Model-dependent ?HT Model-independent ?HT
BSM searches Hl R searches HW R
o o
* Optimise sensitivity to one * Could reveal truly unexpected new
specific BSM model physical laws.
* Fail to discover other models. * No hopes to find Optimal strategy.
What if the right theoretical But we must aim at a Good strategy

model is not yet formulated?

34



Key Challenge: Uncertainties

[D'Agnolo, Grosso, Pierini, AW, Zanetti, 2021 |

Reference Sample 1s an imperfect representation of SM
¢.g., PDF/Lumi/Detector Modeling ...

Imperfections are Nuisance Parameters

Constrained by Auxiliary Measurements
Define a composite Reference hypothesis

R Central-Value Reference:
O Nuisance set to their C-V

n(z|Hwo) = e/ @Vn(z|R,)

max [L(Hw |D) - L(v]A)]

Strategy conceptually unchanged. t(D,A) =2 log ‘;’;X L(R,|D) - L(v]A)]

B L(Hwo,|D) L(v]A) L(R,|D) Lw]A] B
= 2 maxlog | =R D) 'L(O|A)]QmBXIOglﬁ(Rom)'c(mA) =7(D,A4) - AD,A)

Implementation slightly more complex
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An Imperfect Machine at Work

[D'Agnolo, Grosso, Pierini, AW, Zanetti, 2021 |

Tau distribution distorted by non-central value nuisance
if not corrected, produces false positives

0-10] NN CORRECTION
BE os=0.15, o =0.15
0.08| AT BN 0,0
X13 RA ?¢¢ T
— 0.06| T | TLh bee ¢
: +
E:0.04- -ﬁ+
X 15
0.02| _+_ _+_
0007 5 10 15 20 25 30 35 40 45 000

I [/S [/_\' .
* rray — 0y 1

WY

| Vs Ux
ﬂ sy — 0 — 1

20 40 60 80 100 0 20 40 60 80 100
t t

t = Tau-Delta independent of true nuisance value

this is essential for a feasible test
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Towards LHC

Our proposed strategy 1s fully defined, including:

* Hyperparameters and regularisation selection
« Systematic approach to Reference mis-modelling

Validated on problems of realistic scale of complexity:
» 2-body final state with uncertainties (d = )

e |I+M!

ST “SUSY” (d = 8)

« Heavy Higgs to WWbb (d = 21)

Results in summary:

* model-selection strategy converges

* sensitivity to resonant or non-resonant NP
 “uniform” response to NP of different nature
e trained network reconstruct NP

redi 7' scenario
o1 EFT scenario

tau-like

0,=0.03 | F——- o
L=11fb""1 !
negligible |
0, =0.0001 | © —
L=11fb"1

lectron-like |
0, =0.003 | oo
L=0.35f""! !

muon-like !
s =0.0005 | F—e—++-
L=035fb"!

| avg. = 0.37

0.34 0.36 0.38 0.40 0.42

7/ Zref

- 7(D, A)=463.7, A(D, A)=247.15, t(D, A)=216.55, Z=6.56 |
sl [l —

[

DATA ooo 7RECO
REFERENCE eoo A RECO

| 7 RECO/REF.
-= A RECO/REF.
- ¢ ¢ DATA/REF.

PR T LT X :

st } )

S
;!_i_-_-_-_-_-.-.:}-.ﬁ-_*_k_ffffé—_l-}-ﬂ-_%:{;&

181

263 345 426 508

M
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Data Quality Monitoring

[Grosso, Letizia, AW, Zanetti, et. al., 2023]

No Reference uncertainties: &£ 1s data in good operation condition

nD DOQM

Online monitoring of a DT chamber:

Setup (Legnaro INFN national laboratory):

® 2 scintillators as signal trigger

® 1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
® Source of signals: cosmic muons (triggered rate ~3 MHz)

e Event: muon track reconstructed interpolating 3/4 hits (one per
layer)

Observables (6D problem):

e 4 drift times [tdl'ift, 1» tdl'ift, 79 tdl'ift, 3 tdl'ift, 4]: time for the ionised
electrons to reach the wire from the interaction point
(vdrift - CIIl/S) .

e (: reconstructed track angle

/node wire  Electrode strips
\ 7.
y — ‘ "6’[
= - 7’

Sketch of a single
e N,..: average number of hits per time window (“orbit”) chamber T e -
Diartmento 5 = —
casioreria UniGe | MagGa e P

UNIVERSITA DEGLI STUDI DI PADOVA

August 23, 2022 11

Gaia Grosso
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Data Quality Monitoring

[Grosso, Letizia, AW, Zanetti, et. al., 2023]

Much better than standard methods, and fast enough

nD DOM

Online monitoring of a DT chamber:

THRESHOLDS ANOMALIES
" _><1o-3 x10-3 x1072
® Reference sample: long run in optimal conditions 3 EEE 3 :gfh : ] it
i H 2.0
. . 2 2
® Anomalous samples: short runs acquired in presence % .| 2 2 ‘15
of a controlled anomaly in the value of the threshold ~ T ; i
tension of the DT chamber 1 ]
770 100 200 300 400 770 100 200 300 400 %077 30 o0 20 40
layer 1 : tgsz (ns) layer 2 : tgsz (nS) 6 (deg)
® Result of the test statistics a0 I _
] o ) 3 e il | =1 ref: 100mV
Complete separation of the distributions! T s (i 1074 = 75mv
NPLM TEST STATISTIC 22 I =y 2 10-2 3 50mV
=3 ref: 100 mV g g 2 Z [ 25mV
o © (L .
= ! | -
D 25 mV 10—4_
7% 100 200 300 400 "0 100 200 300 400 10 20 30
layer 3 : tgqz (nS) layer4 : tgqz (ns) Dhits
o 1 NPLM b Falk Distribution of the observables at different values of the threshold tension
& with Falkon
M=50,6 =484,1 = 1077
10~ N(D) = 5000
N..; = 200000
Execution time: ~ 1.5

RN (I | | A — more about this in Marco’s talk tomorrow!
R00 1000 1500 2000 2500 3000 3500 4000

Dipartimento ! ¢
di Fisica . R}

e Astronomia UniGe ng&a
Galileo Galilei o0

UNIVERSITA DEGLI STUDI DI PADOVA

August 23, 2022 12
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A mixture of Gaussians in d dimension, vs a Normalising Flow
Tested with NPLM using 10K points, << NF training sample size

Generative Models Validation

[To Appear: Cappelli, Grosso, Letizia, Reyes-Gonzalez, Zanetti]

4 8 12 16 20 30

Nir
100k | 9.887135 | 8881115 | 14.73 1535 | 16.81 T10¢ | 14.46 T597 | 14.97 53
200k | 4.79 Tyo7 | 9-90 Tigs | 956 Tigy | 8347950 | 645747 | 732705
500k | 1.93 7392 | 3.01 F072 | 3.16 T30 | 5.05 7392 | 2.07381 | 3.06 342

Table 1: Table of median Z-scores obtained with the NPLM method for various NFs models,
characterised by training samples of different size (N,) and different number of dimensions (d). We

report errors estimated as the 68% confidence interval, defined symmetrically around the median
value.

Very high Z-scores. Consistently go down as N, increases
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Generative Models Validation

[To Appear: Cappelli, Grosso, Letizia, Reyes-Gonzalez, Zanetti]

Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684].
With realistic-looking 2d marginals:

N S | ] Target
oA Flow

c-tagging

qgd
"

N constituents

MreCO/Mgen
%o

reco/n9€n
pr°lp7

b-tagging c-tagging qgd N constituents Mrecom9en prece/pden 41



Generative Models Validation

[To Appear: Cappelli, Grosso, Letizia, Reyes-Gonzalez, Zanetti]

Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684].
With realistic-looking 2d marginals:

Tested with NPLM using less data than training size S00K

Np Z-score
5k | 0.34+193
10k | 1.017%0
20k | 1.6279:6¢
50k | 3.82+1:9%
100 k | 7.087139
200 k | 11.827+141

Z-score

14
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10

___________________________________________ 27
//{ 30
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0 50 100 150 200
10°
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Generative Models Validation

[To Appear: Cappelli, Grosso, Letizia, Reyes-Gonzalez, Zanetti]

Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684].
With realistic-looking 2d marginals:

Tested with NPLM using less data than training size S00K

Personal Conclusions:
» Data augmentation with Generative Models 1s a mirage.
Because NPLM distinguishes small generated sample from true
* Maybe we can augment some marginal. Maybe we need finite
accuracy because of systematics mis-modeling.
But please explain/demonstrate why and how
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Generative Models Validation

[To Appear: Cappelli, Grosso, Letizia, Reyes-Gonzalez, Zanetti]

Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684].
With realistic-looking 2d marginals:

Tested with NPLM using less data than training size S00K

Personal Conclusions:
» Data augmentation with Generative Models 1s a mirage.
Because NPLM distinguishes small generated sample from true
* Maybe we can augment some marginal. Maybe we need finite
accuracy because of systematics mis-modeling.
But please explain/demonstrate why and how

Objective Conclusion:
* NPLM i1s very sensitive to mis-modelling
* Could be the best metric for generative models selection
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Take-home messages

Goodness-of-fit

* A truly profound problem of Science!

* Could serve for model-agnostic BSM searches.

* But also for Data Validation, for DQM, validation of
generators including Generative Models

* NPLM 1n our studies 1s found better than other methods
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Thank You
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Model Selection Hﬁi’*

Which hypotheses (distributions) our (statistical) model contains?
*Not “all of them”, otherwise it would fail (overfitting) v 4

It should contain approximations of all the reasonable ones
*No Statistical Learning notion of model capacity seems g
reasonable physics measure of volume or boundaries of Hw | ¥ »

*Minimal allowed variation scale would sound reasonable,
—_—

but no theory developed | X
Overfitting

Waiting for principled approach, solution 1s y2-compatibility:

*Naive Wilks Theorem application:

P(t|R) is ¥2, with as many d.o.f. as fit parameters (for us, num. of NN par.s)

Provided statistics 1s large relative to fitted model “complexity”
... or, which 1s the same ...
Provided model 1s “simple enough”, for given data statistics

*Asy. For. violation = sensitivity to low-statistics portion of dataset = overfitting
*Regularisation by Weight Clipping, that forbids sharp variations

NN with too many parameters cannot be made y2-compatible. Take largest allowed 4



Weight Clipping Selection
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Asy. For. violation by fit
parameters boundary

Asy. For. violation by sensitivity

to sparse data points
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[llustrating Performances

(Simple 1d example with exponential Reference)

Probability to find evidence of R being wrong at some level of confidence.

1.0}

H;, N(S) =10, N(B) = 2000

We are better than binned ¥2 because our
model has less parameters but same
effective expressive power.

Same reason why bins are outdated as
statistical models.

Gap to bins grows (exponentially) with
(the curse of) dimensionality.
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