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Neyman-Pearson Testing

An Hypothesis  in Statistics is a p.d.f. according to which data 
might be distributed: 

 

The Likelihood is probability seen as function of the hypothesis, 
and not of the data: 

 

A Test of Hypothesis is a comparative statement on the relative 
plausibility of two Hypotheses as distribution of a data instance.

H

H ↔ PH(data)

ℒ(H) = PH(data)
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Neyman-Pearson Testing

For two simple Hypotheses  vs : 

N&P found the best test, the one with highest chance to falsify  
if  is true, and viceversa. The Neyman–Pearson lemma: 

“ The best test employs as test statistics the variable : “  

 

For simple vs composite Hypothesis: 

“Best” test unknown, but good test is Maximum Likelihood: 
“  The ML test  employs as test statistics the variable : “  
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Goodness of Fit

Statisticians formulate an interesting problem: g.o.f.* 
Be  some data, and  one hypothesis for their distribution 

Does  provide the right description of  ?
𝒟 R

R 𝒟

*often question emerges after optimising distribution free parameters on the data, as 
   a way to assess fit quality. But the problem is more general 5

Not a problem of Hypothesis testing, as only one hyp. involved. 
But, it can be addressed by performing an HT, with  . H0 = R
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Example: are these data described by a Standard Gaussian? 
We try to answer by comparing the SG with some Alternative 
Hypothesis . If  works much better,  is in trouble.  H1 H1 R
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Conclusion strongly depends on which  we try: 
• If  is true distribution, very likely we see tension of  (low p-value) 
• If , we are likely to conclude that  is “good” (high p-value)
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Conclusion strongly depends on which  we try: 
• If  is true distribution, very likely we see tension of  (low p-value) 
• If , we are likely to conclude that  is “good” (high p-value)

H1
H1 = HT R
H1 ≠ HT R

 H0 = R
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exp. distH1 =

Example: are these data described by a Standard Gaussian? 
We try to answer by comparing the SG with some Alternative 
Hypothesis . If  works much better,  is in trouble.  H1 H1 R
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Answering is more easy the more restrictive assumptions we 
make on how the true distribution, if not , can look like. 
But, more partial as well.

R
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Answering is more easy the more restrictive assumptions we 
make on how the true distribution, if not , can look like. 
But, more partial as well.

R

• Optimal approach provided by 
Neyman–Pearson Lemma 

• Optimal answer to very specific 
question: test has no or very 
limited power if truth ≠ H1

Simple vs Simple  
hypothesis test RH1

?HT
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Answering is more easy the more restrictive assumptions we 
make on how the true distribution, if not , can look like. 
But, more partial as well.

R

Simple vs Simple  
hypothesis test

Simple vs Composite 
hypothesis test

• Optimal approach provided by 
Neyman–Pearson Lemma 

• Optimal answer to very specific 
question: test has no or very 
limited power if truth ≠ H1

• No Optimal solution. But, Maximum 
Likelihood Ratio is Good solution 

• Answers a more general question.  
It has some power if truth is in Hw. 
But, larger Hw = less power

RH1
?HT

RHw
?HT



Goodness of Fit
Toy example: 2 datasets, not from , tested with 3 different ’s. 
              Red is good: means  in trouble — Green is bad: means that  looks OK

R Hw
R R
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Figure 1: One-dimensional toy problem picturing the strengths and limitations of
Neyman–Pearson testing for GoF. (a): two datasets, D1 (top row) and D2 (bottom row)
are tested to assess their compatibility with the Reference hypothesis (R), represented by the
black dashed line in the left side panels. For each dataset, three Neyman–Pearson GoF tests
are performed using three different alternative families: Ha

w, Hb
w, and Hc

w. The maximum
likelihood fit is showed in solid line in the left, middle and right columns respectively. The
p value of each test is reported on the top right of each panel. (b): illustration of the hier-
archical structure of the family of hypotheses considered in the example. Larger classes of
models are characterised by a higher number of Gaussian distributions in the mixture.

the test dramatically. As a general rule, the test will be sensitive to data departures from the
R distribution only if the true data distribution is part of the Hw set, or if it is approximated
reasonably well by some element of the set. The test will be instead weakly sensitive or blind
to true data distributions that are outside the set.

Fig. 1a provides a practical illustration of this behaviour for one-dimensional data. Under
the reference hypothesis R, data points are distributed according to a Gaussian distribution
with zero mean and unit variance. We then consider three parametrised families of alternative
hypotheses: Ha

w, Hb
w and Hc

w. Each of them defines a different Neyman–Pearson test, and in
turn a different GoF method to assess the compatibility of the data with R. The upper and lower
plots in the figure correspond to two different data sets D1,2 being tested, each consisting of
50 data points. The first data set D1 is drawn from a Gaussian with a mean of 0 and a variance
of 1.2. D2 is sampled from a balanced mixture of two Gaussians, with means 0 and 0.83, and
variances 1.2 and 0.5. The data are visualised as histograms in the plots.1

The first alternative Ha
w is the set of all Gaussian distributions. The best fit in this family,

displayed with a solid line in the top left plot, is quite better than the standard Gaussian
(dashed line) as a description of the first data set. Correspondingly, the GoF p-value that we
obtain in this case is low, pa[D1] = 0.06, signalling a poor agreement of the standard Gaussian
hypothesis with the data. However, the best fit in Ha

w is very similar to the standard Gaussian
in the case of the second data set and the corresponding p-value is high, pa[D2] = 0.68. The
GoF test designed as a Neyman–Pearson test with alternative H1 = Ha

w has failed to identify
the evident discrepancy between D2 and the reference distribution.

The second alternative, Hb
w, is an extension of Ha

w where two Gaussian distributions are
present, with arbitrary mean and variance and arbitrary relative normalisation. The best-fit in

1The interested reader can find on https://github.com/GaiaGrosso/NPLM-GOF the straightforward imple-
mentation of the Neyman-Pearson [9] strategy we used to obtain these results.

4

One Gaussian 
with free μ, σ

2 Gauss.
15 Gauss.

Ha
w Hb

w Hc
w



Goodness of Fit

13

SciPost Physics Submission

(a) (b)

Figure 1: One-dimensional toy problem picturing the strengths and limitations of
Neyman–Pearson testing for GoF. (a): two datasets, D1 (top row) and D2 (bottom row)
are tested to assess their compatibility with the Reference hypothesis (R), represented by the
black dashed line in the left side panels. For each dataset, three Neyman–Pearson GoF tests
are performed using three different alternative families: Ha

w, Hb
w, and Hc

w. The maximum
likelihood fit is showed in solid line in the left, middle and right columns respectively. The
p value of each test is reported on the top right of each panel. (b): illustration of the hier-
archical structure of the family of hypotheses considered in the example. Larger classes of
models are characterised by a higher number of Gaussian distributions in the mixture.

the test dramatically. As a general rule, the test will be sensitive to data departures from the
R distribution only if the true data distribution is part of the Hw set, or if it is approximated
reasonably well by some element of the set. The test will be instead weakly sensitive or blind
to true data distributions that are outside the set.

Fig. 1a provides a practical illustration of this behaviour for one-dimensional data. Under
the reference hypothesis R, data points are distributed according to a Gaussian distribution
with zero mean and unit variance. We then consider three parametrised families of alternative
hypotheses: Ha

w, Hb
w and Hc

w. Each of them defines a different Neyman–Pearson test, and in
turn a different GoF method to assess the compatibility of the data with R. The upper and lower
plots in the figure correspond to two different data sets D1,2 being tested, each consisting of
50 data points. The first data set D1 is drawn from a Gaussian with a mean of 0 and a variance
of 1.2. D2 is sampled from a balanced mixture of two Gaussians, with means 0 and 0.83, and
variances 1.2 and 0.5. The data are visualised as histograms in the plots.1

The first alternative Ha
w is the set of all Gaussian distributions. The best fit in this family,

displayed with a solid line in the top left plot, is quite better than the standard Gaussian
(dashed line) as a description of the first data set. Correspondingly, the GoF p-value that we
obtain in this case is low, pa[D1] = 0.06, signalling a poor agreement of the standard Gaussian
hypothesis with the data. However, the best fit in Ha

w is very similar to the standard Gaussian
in the case of the second data set and the corresponding p-value is high, pa[D2] = 0.68. The
GoF test designed as a Neyman–Pearson test with alternative H1 = Ha

w has failed to identify
the evident discrepancy between D2 and the reference distribution.

The second alternative, Hb
w, is an extension of Ha

w where two Gaussian distributions are
present, with arbitrary mean and variance and arbitrary relative normalisation. The best-fit in

1The interested reader can find on https://github.com/GaiaGrosso/NPLM-GOF the straightforward imple-
mentation of the Neyman-Pearson [9] strategy we used to obtain these results.

4

One Gaussian 
with free μ, σ

2 Gauss.
15 Gauss.

Ha
w Hb

w Hc
w

We need large  but avoid overfittingHw

Toy example: 2 datasets, not from , tested with 3 different ’s. 
              Red is good: means  in trouble — Green is bad: means that  looks OK

R Hw
R R



New Physics Learning Machine (NPLM)
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Data: i.i.d. measurements of feature vector  (e.g., particle mom.) 
 

           In LHC, number of points is Poisson variable with expected 

x
𝒟 = {xi}𝒩

i=1
N

Hypotheses: number density in  space (in LHC, ) x dσ × lumi .

n(x) = N ⋅ P(x) , N = ∫ dxn(x)
Reference Hypothesis:    
           In LHC, the SM prediction

n(x |R)

Alternative Hypothesis:    
n(x |Hw) = n(x |R) ef(x;w)

H0Hw
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Data: i.i.d. measurements of feature vector  (e.g., particle mom.) 
 

           In LHC, number of points is Poisson variable with expected 

x
𝒟 = {xi}𝒩

i=1
N

Hypotheses: number density in  space (in LHC, ) x dσ × lumi .

n(x) = N ⋅ P(x) , N = ∫ dxn(x)
Reference Hypothesis:    
           In LHC, the SM prediction

n(x |R)

Alternative Hypothesis:    
n(x |Hw) = n(x |R) ef(x;w)

H0Hw
In NPLM, set of functions  that defines the 
Alternatives is Neural Network or other approximant 
good in many dimensions, like kernels

f(x; w)



New Physics Learning Machine (NPLM)
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NPLM computes the Maximum Likelihood test statistic 

 

Using (since  not available) a Reference Sample 
 

 is made of instances of  that follow the  distribution 
           If possible, , but this is not a strict requirement

tML(𝒟) = 2 log
ℒ(Hŵ)
ℒ(R)

= 2 log
e−N(ŵ)

e−N(R) ∏
x∈𝒟

n(x |Hŵ)
n(x |R)

n(x |R)
ℛ = {xi}

NR
i=1

ℛ x R
NR ≫ N(R)
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NPLM computes the Maximum Likelihood test statistic 

 

Using (since  not available) a Reference Sample 
 

 is made of instances of  that follow the  distribution 
           If possible, , but this is not a strict requirement

tML(𝒟) = 2 log
ℒ(Hŵ)
ℒ(R)

= 2 log
e−N(ŵ)

e−N(R) ∏
x∈𝒟

n(x |Hŵ)
n(x |R)

n(x |R)
ℛ = {xi}

NR
i=1

ℛ x R
NR ≫ N(R)

Computation of  by supervised training  vs  
      In NN implementation, using special loss function that gives  
      In kernel implementation, by learning “ ” and plugging in

t 𝒟 ℛ
t = − 2 min[loss]

ŵ
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Reference sample ( ) 
label=0

R

Data sample ( )
label=1

D
NN training                           w ŵ

Many trainings
(with pseudo-data)
Empirical distribution of t
→ p-value for new datasets

Single training

 

     

t(D) = − 2 L [f(x; ŵ)]
f(x; ŵ) = log [ n(x |Hŵ)

n(x |R0) ]

�-�����

����

10 20 30 40 50 60

0.02

0.04

0.06

0.08P(t̄ )

t̄

f (x; ŵ)

x

INPUT BSM network

OUTPUT

Unbinned training samples!



Illustrating Performances
(Simple 1d example with exponential Reference)  
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Distribution of the test statistic “t” in Reference Hypothesis

Distribution of “t” in one New Physics Model Hypothesis 
t → p → Z-score (we use )Z = Φ−1(1 − p)
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Notice agreement with Wilks’ 
Formula: 
Sufficiently regularised networks found to 
behave as if their number of d.o.f. was 
equal to number of parameters. 
Theoretical reason mysterious
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Figure 5: The distributions of the three new physics models used in this work plus the reference
one.

For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Figure 4: Left panel: Test statistic distribution in the NP1 new physics model P (t|NP1), compared
with the reference one P (t|R). The two models are defined in equations (13) and (14), respectively,
and shown in figure 5. The larger values of t in P (t|NP1) compared to P (t|R) signal that our
algorithm is sensitive to this new physics scenario. These two distributions are used to obtain
the Z-score on the y-axis in the right panel. Right panel: Correlation between the significances
(expressed in number of �’s) of our test and of the ideal test defined in section 2, for the NP1

model. The gray shaded area corresponds to the region where the ideal significance can not be
computed with the number of toy data sets generated. We also show the median significance of our
algorithm (Median NN) and the ideal one.

Notice however that we can meaningfully estimate the p-value only if t does not exceed the
maximal value obtained with our toy Monte Carlo samples. If t is larger we can only set a lower
bound on the p-value, which we obtain from the 68% upper limit for 0 successes (binomially dis-
tributed) and N trials, i.e. p < 1 � (0.32)1/N . With the N = 1000 Monte Carlo samples at our
disposal, this corresponds to p < 1.1 10�3 or to a significance Z > 3.05 �.7 However P (t|R) is quite
well approximated by a �

2 distribution with 13 degrees of freedom, which is not surprising because
13 is the number of free parameters of the (1, 4, 1) network that we are employing. We return on
this point in section 4.4, for the moment we just exploit this fact to extend our estimate of the
significance to values of t above the maximum. Namely, for those we report the estimate of the
significance obtained with the �

2 approximation, instead of the lower bound obtained with the toys.
The first new physics model that we discuss (dubbed NP1 in what follows) is the one introduced

in eq.s (14) and (15). It mimics the presence of a resonance in the tail of the SM invariant mass
distribution. We generate 300 toy Monte Carlo samples according to the new physics distribution
in eq. (15), and we train a neural network for each, with the same algorithm used for the reference-
distributed data. The resulting distribution for t, P (t|NP1) is displayed in the right panel of
figure 4. By comparing with P (t|R) we see that our test statistic has a considerable discriminating
power between the two hypotheses. The median t in the NP1 toy samples is 36, which is slightly
above the maximum value that we obtained with the reference data. The median significance for
the NP1 signal hypothesis is thus above 3.05 �, and it can be estimated to be 3.2 � using the �

2

approximation.
7We adopt the standard definition Z = ��1(1� p), where ��1 is the quantile of the Gaussian distribution.
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“Ideal Z-score”:  
A “measure of dataset discrepancy”:  
Z-score of optimal test for NP1 model
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Illustrating Performances
(Simple 1d example with exponential Reference)  
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Figure 6: Top row: Test statistic distribution in the NP2 (left) and NP3 (right) new physics models,
compared with the reference one. The two models are defined in eq. (16) and eq. (17). Bottom

row: Correlation between the significances (expressed in number of �’s) of our test and of the ideal
test defined in section 2, for the NP2 (left column) and NP3 (right column) new physics models.
The gray shaded area corresponds to the region where the ideal significance can not be computed
with the number of toy data sets generated. We also show the median significance of our algorithm
(Median NN) and the ideal one.

4.2 (In-)Sensitivity to Cuts

The point is conveniently illustrated in the NP1 example. Since the signal is sharply localized at
x = 0.8, one might expect that restricting the analysis to events in the tail of the distribution, for
instance to those with x > 0.3 or x > 0.5 will give us a better reach. This would have indeed been
the case for the goodness-of-fit test. Our method is instead insensitive to the cut, as figure 7 shows.

The median significance is 3.1 � for both x > 0.3 and x > 0.5. Also the Zid-Z correlation plot
that we do not show here is essentially identical to the one without cut displayed in figure 4. These
results have been obtained using the same procedure outlined in the previous section for the case
without cut on x. We employed the same learning rate, training algorithm, number of training
rounds and network architecture (a single hidden layer with four neurons). The only change is in
the number of expected events. However notice that we were not conceptually obliged to choose
the same hyperparameters as in the no-cut case. In particular the smaller number of events might
have suggested using a smaller network. It is encouraging that a selection cut does not improve the
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For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Illustrating Performances
(Simple 1d example with exponential Reference)  

“Ideal Z-score”:  
A “measure of dataset discrepancy”:  
Z-score of optimal test for NP2 model
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Figure 6: Top row: Test statistic distribution in the NP2 (left) and NP3 (right) new physics models,
compared with the reference one. The two models are defined in eq. (16) and eq. (17). Bottom

row: Correlation between the significances (expressed in number of �’s) of our test and of the ideal
test defined in section 2, for the NP2 (left column) and NP3 (right column) new physics models.
The gray shaded area corresponds to the region where the ideal significance can not be computed
with the number of toy data sets generated. We also show the median significance of our algorithm
(Median NN) and the ideal one.

4.2 (In-)Sensitivity to Cuts

The point is conveniently illustrated in the NP1 example. Since the signal is sharply localized at
x = 0.8, one might expect that restricting the analysis to events in the tail of the distribution, for
instance to those with x > 0.3 or x > 0.5 will give us a better reach. This would have indeed been
the case for the goodness-of-fit test. Our method is instead insensitive to the cut, as figure 7 shows.

The median significance is 3.1 � for both x > 0.3 and x > 0.5. Also the Zid-Z correlation plot
that we do not show here is essentially identical to the one without cut displayed in figure 4. These
results have been obtained using the same procedure outlined in the previous section for the case
without cut on x. We employed the same learning rate, training algorithm, number of training
rounds and network architecture (a single hidden layer with four neurons). The only change is in
the number of expected events. However notice that we were not conceptually obliged to choose
the same hyperparameters as in the no-cut case. In particular the smaller number of events might
have suggested using a smaller network. It is encouraging that a selection cut does not improve the
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Figure 5: The distributions of the three new physics models used in this work plus the reference
one.

For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Illustrating Performances
(Simple 1d example with exponential Reference)  

“Ideal Z-score”:  
A “measure of dataset discrepancy”:  
Z-score of optimal test for NP3 model
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Figure 6: Top row: Test statistic distribution in the NP2 (left) and NP3 (right) new physics models,
compared with the reference one. The two models are defined in eq. (16) and eq. (17). Bottom

row: Correlation between the significances (expressed in number of �’s) of our test and of the ideal
test defined in section 2, for the NP2 (left column) and NP3 (right column) new physics models.
The gray shaded area corresponds to the region where the ideal significance can not be computed
with the number of toy data sets generated. We also show the median significance of our algorithm
(Median NN) and the ideal one.

4.2 (In-)Sensitivity to Cuts

The point is conveniently illustrated in the NP1 example. Since the signal is sharply localized at
x = 0.8, one might expect that restricting the analysis to events in the tail of the distribution, for
instance to those with x > 0.3 or x > 0.5 will give us a better reach. This would have indeed been
the case for the goodness-of-fit test. Our method is instead insensitive to the cut, as figure 7 shows.

The median significance is 3.1 � for both x > 0.3 and x > 0.5. Also the Zid-Z correlation plot
that we do not show here is essentially identical to the one without cut displayed in figure 4. These
results have been obtained using the same procedure outlined in the previous section for the case
without cut on x. We employed the same learning rate, training algorithm, number of training
rounds and network architecture (a single hidden layer with four neurons). The only change is in
the number of expected events. However notice that we were not conceptually obliged to choose
the same hyperparameters as in the no-cut case. In particular the smaller number of events might
have suggested using a smaller network. It is encouraging that a selection cut does not improve the
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Figure 5: The distributions of the three new physics models used in this work plus the reference
one.

For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Illustrating Performances
(Simple 1d example with exponential Reference)  

Correlation between how much tension we see, and how much 
there is to see. Weakly depend on NP nature

“Ideal Z-score”:  
A “measure of dataset discrepancy”:  
Z-score of optimal test for NP3 model
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Comparing Performances

Many classical methods for g.o.f. with one-dimensional data: 
• : Bin data and compare with expected in each bin 
• EDF tests: Compare EDF with CDF. Variants are KS, CvM, AD.  
• Spacing tests: Spacings of CDF(points). Variants are Moran, RPS

χ2

[Grosso, Letizia, Pierini, AW, 2023]

https://arxiv.org/pdf/2305.14137
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Comparing Performances

Many classical methods for g.o.f. with one-dimensional data: 
• : Bin data and compare with expected in each bin 
• EDF tests: Compare EDF with CDF. Variants are KS, CvM, AD.  
• Spacing tests: Spacings of CDF(points). Variants are Moran, RPS

χ2

[Grosso, Letizia, Pierini, AW, 2023]

While  g.o.f. is considered a “solved problem”, and  is 
what we care, interesting that NPLM works better.

d = 1 d > 1

https://arxiv.org/pdf/2305.14137
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Figure 10: Power curves for the traditional GoF tests on the five signal benchmarks of the
Expo setup, compared with NPLM. The tests are performed on the features given as inputs
to NPLM (IN).

the Expo GoF problem is addressed by regular GoF methods—defined in Appendix B—directly
applied to the data and without employing classifiers.

The results are reported in Fig. 10, and compared with the NPLM-NN results. We see that
the NPLM power curves are always well above those of the spacing statistics tests. The �2 tests
can give comparable performances to NPLM for suitable (but selected a posteriori) nbins, but
they are exposed to dramatic failures in particular in the H1 and H4 benchmarks. EDF-based
tests perform better. In particular, the AD test is equivalent to NPLM for H1 and H4, slightly
better than NPLM in the case of H2 and H02, but it fails rather strongly on the H3 benchmark.
Overall, the results confirm the general pattern observed in the rest of the paper: the NPLM
method performs well and it is much less exposed than other methods to strong sensitivity
failures for specific types of anomalous data. It thus qualifies as a “good” approach to GoF.

31
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Comparing Performances

For , most established solution are Classifier-Based Tests 
• General idea: Train  vs . Get more decisive classifier if  

           Use some metric evaluated on trained classifier output for Hypothesis Test. 
                                                                                                        [Friedman, 2003] 

• C2ST: Most natural implementation. Uses classification accuracy metric.  
                                                                                          [Lopez-Paz, Oquab, 2016] 
               Employed for generative models validation 

• Variants: We studied different metric and compared in/out evaluation.

d > 1
𝒟 ℛ 𝒟 ≁ R

[Grosso, Letizia, Pierini, AW, 2023]

SciPost Physics Submission

Figure 4: Power curves for C2ST and NPLM in the five signal benchmarks considered for the
1D exponential setup. The sensitivity of the event-counting test (�N/

p
N(R)) is also shown.

always smaller or always larger than 1/2, tBACC is equal to the random classifier accuracy of
0.5. A test based on the tBACC test statistics is thus insensitive to departures of ND from N(R),
because their effect on the trained classifier is precisely to push it above or below 1/2 uniformly
in the x space. We thus consider a modified version of the balanced accuracy

t 0BACC =
2

N(R) +ND

2
4N(R)

NR

X

x2Rte

[c“w(x)< 1/2] +
X

x2Dte

[c“w(x)> 1/2]

3
5 . (12)

In the limiting case ND � N(R), such that c“w is pushed above 1/2 everywhere, the modi-
fied accuracy equals t 0BACC = ND/(ND + N(R)) > 0.5, while if ND ⌧ N(R) and c“w < 1/2,
t 0BACC = N(R)/(ND +N(R)) > 0.5. In both cases the test statistics will thus assume an anoma-
lously large value, above the indecisive classifier threshold of 0.5, offering sensitivity to the
anomalous observed value of ND.

The modified C2ST method based on t 0BACC, and employing the loss function in Eq. (11), has
been found to perform better than the regular C2ST on the benchmark problems we studied,
and in particular as expected on those data sets where ND departures from N(R) are statistically
significant. The modified C2ST results are thus used for a fair comparison with the NPLM
performances.

Among the benchmark GoF problems of Appendix A, we consider those with 1D exponen-
tial reference distribution (Expo) and the 5D ones with di-muon final states with invariant
mass cuts at 60 and at 100 GeV (µµ-60 and µµ-100). For C2ST we employ a 1-20-1 network
and a 5-20-1 network for the 1D and 5D setups, respectively. We use the Adam optimiser, 500
training epochs in 1D and 3000 epochs in the 5D setup. The number of epochs is selected with
the criterion explained at the end of Section 2.2.

The NPLM performances on the benchmark problems are illustrated by the NPLM imple-
mentation based on neural networks. The hyper-parameter selection is performed with the
standard NPLM-NN strategy and the selected hyper-parameters are reported in Appendix A.
Most of the benchmark problems we consider here have been investigated already in previous
works and the performances of NPLM-NN compared and found similar to those of the NPLM-
KM implementation that employs kernel methods [15]. This is confirmed by the NPLM-KM

results on the same benchmarks reported in the following. See for instance Fig.s 11 and 12.
The results are presented—in Fig.s 4 and 5—by plotting the test power as a function of its

significance (or size) Z↵. These power curves are obtained as follows. The p-value returned
by the GoF test on each data sample is converted into a significance Z-score by the definition

p[Z] =
Z 1

Z
dZ 0g(Z 0) = 1� G[Z] , ) Z[p] = G�1[1� p] , (13)

13

NPLM vs C2ST: d = 1

https://arxiv.org/pdf/2305.14137
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Comparing Performances
[Grosso, Letizia, Pierini, AW, 2023]

NPLM vs C2ST: d = 1SciPost Physics Submission

Figure 3: C2ST vs. NPLM. Same as Fig. 2, comparing the C2ST method with balanced
samples (BACC), the one with unbalanced samples (ACC) with NR/ND = 5, and the NPLM
method in its default implementation based on maximum-likelihood-ratio.

The central and right panels of Fig. 2 display the performances of our implementation of
C2ST and their agreement with the original results in [8]. The plots show the type-II error
of the test at 95% confidence level. Namely, we set a threshold p = 0.05 on the p-value,
below which we label the R hypothesis as excluded. Next we compute the probability of
not excluding R when the data are in fact not distributed according to R, but to one of the
alternatives.3 As expected, the probability of type-II error decreases with ND (central panel)
as larger data sets possess more discriminating power. It increases with ⌫ (right panel) as the
Student-t distribution approaches the standard Gaussian.

The C2ST method is easily extended to the case of unbalanced samples NR > ND. Train-
ing/test splitting is performed in equal portions as before. The loss function is the weighted
cross-entropy—specifically, the later Eq. (11) with N(R) replaced by ND. The test statistic is
the balanced classification accuracy

tBACC =
1

NR

X

x2Rte

[c“w(x)< 1/2] +
1

ND

X

x2Dte

[c“w(x)> 1/2] . (10)

We tested this version of the C2ST strategy in the same setup above, but raising NR to
5 times ND. We employ the same neural network model, but we notice that more training
epochs are needed for convergence owing to the larger training set. We employ 500 epochs
apart from the setup with ND = 100, where 100 epochs are used. The number of epochs
has been selected by running training on a few R-distributed toy data sets, and monitoring
the evolution of the balanced accuracy during training. We selected the number of epochs at
which the accuracy on a validation sample stopped improving.

The results are displayed in Fig. 3. As expected, C2ST with unbalanced samples is more
effective than the balanced one because it exploits the larger statistics that is available in the
R sample. Notice that performances do not improve indefinitely increasing NR at fixed ND.
As soon as NR exceeds ND by a factor of few, it offers a description of the R distribution that
is “perfect”, in comparison with the description of the true distribution that is offered by the
data D. Therefore the performances quickly saturate and no significant gain will be observed
if raising NR/ND above 5. The figure also displays that an even more significant performance
gain is attained with the NPLM method, in the same setup with NR/ND = 5. This is discussed
in the following section.

3The results are presented in this form for a direct comparison with Ref. [8]. No hard exclusion threshold on
the p-value will be employed in the rest of the paper.
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Low is 
Good

For , most established solution are Classifier-Based Tests 
• General idea: Train  vs . Get more decisive classifier if  

           Use some metric evaluated on trained classifier output for Hypothesis Test. 
                                                                                                        [Friedman, 2003] 

• C2ST: Most natural implementation. Uses classification accuracy metric.  
                                                                                          [Lopez-Paz, Oquab, 2016] 
               Employed for generative models validation 

• Variants: We studied different metric and compared in/out evaluation.

d > 1
𝒟 ℛ 𝒟 ≁ R

https://arxiv.org/pdf/2305.14137
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Comparing Performances
[Grosso, Letizia, Pierini, AW, 2023]

NPLM vs C2ST: d = 5

SciPost Physics Submission

Figure 5: Power curves for C2ST and NPLM in the five signal benchmarks considered for the
µµ-60 and µµ-100 setups. The sensitivity of the counting test (�N/

p
N(R)) is also shown.

where g is the standard Gaussian pdf and G�1 the inverse of its cumulative. With this defini-
tion, a significance of Z = 2 (or, of 2�) corresponds to a p-value of around 2.3%. The power
curve is the probability of obtaining on data a Z-score that is larger than a given threshold Z↵,
i.e., a p-value that is smaller than the corresponding p[Z↵]. This probability, p(Z > Z↵|HT),
can be evaluated under different hypotheses HT for the true data distribution in order to test
the ability of the GoF test to spot out data departures from the R hypothesis. Notice that if the
true hypothesis is R, p(Z > Z↵|R) = p[Z↵] by definition. This curve is the contour of the grey
region in the plots. It represents the power curve of the test under the R hypothesis. A GoF
method can be claimed to be sensitive to a certain alternative HT 6= R only if the corresponding
power curve is well above the grey region, with higher curves indicating better performances.

The NPLM power curves are always above those obtained with C2ST, signalling univer-
sally better performances. Particularly striking are the results obtained in those configura-
tions where the anomalous data behaviour is due to the presence of a few signal events that
emerge in a weakly-populated region of the reference distribution. For instance, in the H1
benchmark—see Appendix A and in particular Fig. 8—the signal consists of an average of
S = 10 events on top of B = 2000 background events that follow the reference distribution.
This small S/B ratio can be sufficient to spot out the anomalous nature of the data, because
the signal events are untypical (specifically, x is large) in the R hypothesis distribution. In
fact, the NPLM method displays good sensitivity. C2ST is instead completely blind to the 1D
H1 signal, with a power curve that is right on top of the reference hypothesis curve. The same
behaviour is observed in those 5D problems that similarly display a small S/B.

The C2ST insensitivity to this type of configurations can be understood as follows. The
trained classifier has a chance to feature a good discriminating power between the two samples
only in those regions of x where there is a discrepancy between the true and the reference data
distribution. However, in the non-discrepant regions the trained classifier function oscillates
around 1/2 and classifies D and R data points randomly. The number of accurately classified
points in the latter region will be around a half of the number of points in that region, with
fluctuations of the order of the square root of the number of points. If this number is overly
large in comparison with the number of points that fall instead in the discrepant region, the
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For , most established solution are Classifier-Based Tests 
• General idea: Train  vs . Get more decisive classifier if  

           Use some metric evaluated on trained classifier output for Hypothesis Test. 
                                                                                                        [Friedman, 2003] 

• C2ST: Most natural implementation. Uses classification accuracy metric.  
                                                                                          [Lopez-Paz, Oquab, 2016] 
               Employed for generative models validation 

• Variants: We studied different metric and compared in/out evaluation.

d > 1
𝒟 ℛ 𝒟 ≁ R

https://arxiv.org/pdf/2305.14137
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Comparing Performances
[Grosso, Letizia, Pierini, AW, 2023]

NPLM is a Classifier-Based Test. Why so much better?

After comparison of many CBT variants, we conclude that the key 
is using Maximum Likelihood Ratio as metric, and in-sample eval.

Distinctive feature of NPLM is implementing N&P Testing!

For , most established solution are Classifier-Based Tests 
• General idea: Train  vs . Get more decisive classifier if  

           Use some metric evaluated on trained classifier output for Hypothesis Test. 
                                                                                                        [Friedman, 2003] 

• C2ST: Most natural implementation. Uses classification accuracy metric.  
                                                                                          [Lopez-Paz, Oquab, 2016] 
               Employed for generative models validation 

• Variants: We studied different metric and compared in/out evaluation.

d > 1
𝒟 ℛ 𝒟 ≁ R

https://arxiv.org/pdf/2305.14137
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Applications

Some of the many applications of g.o.f. are: 
• Model-Agnostic BSM Searches 

• Data Quality Monitoring: Tell if apparatus operates “normally” 

• Generative Models: GM validation and selection



The LHC g.o.f. challenge

By analysing the LHC data, we would like to find evidence of 
failure of the SM theory, suggesting need of BSM. 

This is a tremendously hard gof problem! 
BSM is tiny departure from SM, or large in tiny prob. region 
Affecting few (unknown) observables over ∞ many we can measure

33

• Optimal approach provided by 
Neyman–Pearson Lemma 

• Optimal answer to very specific 
question: test has no or very 
limited power if truth ≠ H1

• No Optimal solution. But, Maximum 
Likelihood Ratio is Good solution 

• Answers a more general question.  
It has some power if truth is in Hw. 
But, larger Hw = less power

RH1
?HT

RHw
?HTSimple vs Simple  

hypothesis test
Simple vs Composite 
hypothesis test

Our generic discussion …



The LHC g.o.f. challenge
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RH1
?HT

RHw
?HTModel-dependent 

BSM searches
Model-independent 
searches

• Optimise sensitivity to one 
specific BSM model 

• Fail to discover other models. 
What if the right theoretical 
model is not yet formulated?

• Could reveal truly unexpected new 
physical laws. 

• No hopes to find Optimal strategy. 
But we must aim at a Good strategy 

By analysing the LHC data, we would like to find evidence of 
failure of the SM theory, suggesting need of BSM. 

This is a tremendously hard gof problem! 
BSM is tiny departure from SM, or large in tiny prob. region 
Affecting few (unknown) observables over ∞ many we can measure

Our generic discussion … perfectly matches LHC practice:
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Reference Sample is an imperfect representation of SM  
e.g., PDF/Lumi/Detector Modeling … 

Imperfections are Nuisance Parameters 
Constrained by Auxiliary Measurements 
Define a composite Reference hypothesis 

where L(Hw,⌫ |D) is the extended likelihood

L(Hw,⌫ |D) =
e
�N(Hw,⌫)
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Y

xi2D
n(xi|Hw,⌫) , (7)

with n(x|Hw,⌫) as in eq. (4). The total number of expected events N(Hw,⌫) is the integral of
n(x|Hw,⌫) over the features space. A discussion of the implications of postulating the absence of
new physics in the auxiliary data as in eq. (5), and of related aspects, is postponed to Section 2.6.

The test statistic variable we aim at computing and employing for the hypothesis test is the
Maximum Likelihood log ratio [3, 4, 12]

t(D,A) = 2 log
max
w,⌫

[L(Hw,⌫ |D \A)]

max
⌫

[L(R⌫ |D \A)]
. (8)

Notice that this definition of the test statistic, and in turn its properties [5,6], assumes that the
composite hypothesis in the denominator (H0) is contained in the numerator hypothesis (H1).
This holds in our case since the neural network function in eq. (4) is equal to zero when all its
weights and biases w vanish. Therefore (Hw,⌫)|w=0 = R⌫ . Also notice that the test statistic
variable t depends on all the data that are employed in the analysis. In particular it depends
on the auxiliary data A as well as on the data of interest D. We now address the problem of
evaluating t, once the data are made available either from the actual experiment or artificially
by generating Toy datasets.

2.2 The central-value Reference hypothesis

In order to proceed, we consider the special point in the nuisance parameter space that corre-
sponds to their central-value determination as obtained from the auxiliary data alone. If we call
A0 the observed auxiliary dataset, namely the one that is observed in the actual experiment, the
central values of the nuisance parameters are the ones that maximize the auxiliary likelihood
function L(⌫|A0). It is always possible to choose the coordinates in the nuisance parameters
space such that the central values of all the parameters sit at ⌫ = 0. So we have, by definition

max
⌫

[L(⌫|A0)] = L(0|A0) . (9)

We stress again that A0 represents one single outcome of the auxiliary measurements (the one
observed in the actual experiment), unlike A (and D) that describe all the possible experimental
outcomes. Therefore A0, and in turn the central value of the nuisance parameters that we have
set to ⌫ = 0, is not a statistical variable and therefore it will not fluctuate when we will generate
Toy experiments, unlike A and D.

The central-value Reference hypothesis R0 predicts a distribution for the variable x, n(x|R0),
that can be regarded as the “best guess” for the actual SM distribution of x that we can make
before analyzing the dataset of interest D. Correspondingly, ⌫ = 0 is the best prior guess for
the value of the nuisance. The likelihood of R0, given by

L(R0|D \A) = L(R0|D) · L(0|A) =
e
�N(R0)

ND!

Y

xi2D
n(xi|R0) · L(0|A) , (10)

is thus conveniently used to “normalize” the numerator and denominator likelihoods in eq. (8).
Namely we multiply and divide the argument of the log by L(R0|D \A) and we obtain

t(D,A) = ⌧(D,A)��(D,A) , (11)
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Central-Value Reference: 
Nuisance set to their C-V

Strategy conceptually unchanged.
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t(D,A) = 2 log

max
w,⌫

[L(Hw,⌫ |D) · L(⌫|A)]

max
⌫

[L(R⌫ |D) · L(⌫|A)]

reconstructed momenta of these particles. The region of interest might be further restricted by
selection cuts that define the region X of the phase space (x 2 X) to which the the particle
momenta belong. Each instance of x in D is thrown with a probability distribution that we
denote as P (x |R⌫) in the Reference hypothesis. The total number of instances of x, ND, is
Poisson-distributed with a mean N(R⌫) that equals the total cross section in the region X times
the integrated luminosity. The likelihood of the R⌫ hypothesis, given the observation of the
dataset D, is thus provided by the extended likelihood

L(R⌫ |D) =
N(R⌫)ND

ND!
e
�N(R⌫)

Y

xi2D
P (xi|R⌫) =

e
�N(R⌫)

ND!

Y

xi2D
n(xi|R⌫) . (1)

In the previous equation we defined for shortness

n(xi|R⌫) = N(R⌫)P (xi|R⌫) . (2)

We will denote n(x|H), in di↵erent hypotheses H, the “distribution” of the variable x.
The Reference hypothesis distribution for x depends on a set of nuisance parameters ⌫. They

model all the imperfections in the knowledge of the Reference Model, ranging from theoretical
uncertainties like those in the determination of the parton distribution functions, to the cali-
bration of the detector response. The nuisance parameters are (often, see below) statistically
constrained by “auxiliary” measurements performed using data sets independent of D, that we
collectively denote as A. The R⌫ hypothesis provides a ⌫-dependent prediction also for the
statistical distribution of the auxiliary measurements. The total likelihood of R⌫ , given the
observation of both the data of interest and of the auxiliary data, thus reads

L(R⌫ |D \A) = L(R⌫ |D) · L(⌫|A) , (3)

where we denoted, for brevity, L(R⌫ |A) as L(⌫|A). It should be noted that this simple picture
of the nuisance constraint term in the likelihood emerging from auxiliary measurements only
holds for uncertainties of purely statistical origin. Genuinely systematic uncertainties such as
theoretical errors associated to missing higher-orders in calculations are heuristically treated
in the same manner, even if a rigorous statistical interpretation of this type of uncertainties is
currently not available to our knowledge.

We now turn to the alternative hypothesis H1 = Hw,⌫ . This hypothesis should include po-
tential departures in the distribution of the variable x from the Reference (i.e., SM) expectation.
As anticipated in the Introduction, and like in Ref.s [1,2], we parametrize these departures as a
local rescaling of the Reference distribution by the exponential of a single-output neural network.
Namely we postulate

n(x|Hw,⌫) = e
f(x;w)

n(x|R⌫) , (4)

where f is the neural network and w denotes its trainable parameters. The neural network
architecture and hyper-parameters are problem-dependent. The general criteria for their opti-
mization are discussed in Section 2.5 and illustrated in Sections 3.1 and 4.1 in greater detail.

We further postulate that new physics is absent in the auxiliary data. Namely that the
distribution of the auxiliary data in the Hw,⌫ hypothesis is the same one as in hypothesis R⌫

L(Hw,⌫ |A) = L(R⌫ |A) = L(⌫|A) . (5)

Therefore the total likelihood of Hw,⌫ is

L(Hw,⌫ |D \A) = L(Hw,⌫ |D) · L(⌫|A) , (6)

6

Implementation slightly more complex
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[D'Agnolo, Grosso, Pierini, AW, Zanetti, 2021]

https://arxiv.org/pdf/2111.13633.pdf


An Imperfect Machine at Work

Figure 5: The empirical distribution of ⌧ (in green) and of t (in blue) computed by 100 Toy experiments
performed in the R⌫ hypothesis at di↵erent points in the nuisance parameters space. The �2

13 distribution
is reported in blue in all the plots. The �

2
15 distribution is shown in green on the left plot.A che serve

il label “NN Correction”?

controlled by the departure of the true values of the nuisances from the central values. The
correction term � has a big impact on the distribution of t, bringing it back to the expected
�
2

13
. The e↵ect is due to a strong correlation between the ⌧ and � distribution over the Toys,

which engineers a cancellation in t = ⌧ ��.
A more quantitative and systematic validation of the compatibility of t with the �

2

13
can be

obtained by computing the Kolmogorov–Smirnov test p-value as in Section 3.1. The results are
reported in Table 2. The “w/o correction” columns report the p-value obtained by comparing
the distribution of ⌧ (i.e., without the � correction term) with the �

2

13
. The “w/ correction”

columns report the p-value for the distribution of t, including the correction. The table contains
the results obtained for �n,s = 0.15, as well as those for lower values of the nuisance standard
deviations �n,s = 0.10, 0.05.

The above results establish the validity of the Asymptotic formulae when the standard
deviation of the nuisance parameters is of order 15% or less. Notice that it is increasingly
simple to deal with smaller standard deviations (i.e., with more precisely measured nuisances),
merely because when ⌫ is small the ratio br(x;⌫) approaches 1 becoming independent of ⌫,
regardless of the accuracy with which it is reconstructed by the b�a(x) networks. Consequently
the maximization over w in ⌧ (24) tends to decouple from the maximization over ⌫ and the
cancellation between ⌧ and � in the determination of t becomes automatic. On the contrary,
larger standard deviations are more di�cult to handle. Indeed, as explained in Section 2.5,
larger values of ⌫ push the ⌧ distribution away from the target �2, forcing the correction term to
engineer an increasingly delicate cancellation. This enhances the impact of all the imperfections
that are present in the implementation of the algorithm, and in particular of the ones related
with the quality of the reconstruction of br that is achieved by the b�a(x) networks. The results
presented up to now (namely, Figure 5 and Table 2) are obtained by employing the linear-order
reconstruction for log br. The good observed level of compatibility with the Asymptotic formula
thus shows that the linear-order reconstruction is su�ciently accurate in order to deal with
�n,s  15%. However the accuracy is expected to become insu�cient for larger �n,s, owing to
the considerable departures of the exact log r from linearity described in Section 3.2.

We illustrate this aspect by computing the empirical t distribution for �n,s = 0.6 and setting

23

Tau distribution distorted by non-central value nuisance 
if not corrected, produces false positives

36

t = Tau-Delta independent of true nuisance value 
this is essential for a feasible test  

[D'Agnolo, Grosso, Pierini, AW, Zanetti, 2021]

https://arxiv.org/pdf/2111.13633.pdf


Towards LHC
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Our proposed strategy is fully defined, including: 
• Hyperparameters and regularisation selection 
• Systematic approach to Reference mis-modelling 

Validated on problems of realistic scale of complexity: 
• 2-body final state with uncertainties ( ) 
• ll+MET “SUSY” ( ) 
• Heavy Higgs to WWbb ( ) 

Results in summary: 
• model-selection strategy converges 
• sensitivity to resonant or non-resonant NP 
• “uniform” response to NP of different nature 
• trained network reconstruct NP

d = 5
d = 8

d = 21

Figure 1: Empirical distributions of t after 300 000 training epochs for di↵erent values of the weight
clipping parameter, compared with the �2

13 distribution expected in the Asymptotic limit for the (1, 4, 1)
network. The evolution during training of the t distribution percentiles, compared with the �

2
13 expec-

tation, is also shown. Only 100 Toy datasets are employed to produce the results shown in the figure,
except for the ones for weight clipping equal to 9 where all the 400 Toys are used.

eq. (26) for ⌫n,s = 0. The sample is unweighted, therefore the weights in the sample are all equal
and we = N(R0)/NR = 0.01. We also generate 400 Toy instances of the dataset D in the same
hypothesis. The number of instances of x in D, ND, is thrown from a Poisson distribution with
mean N(R0) = 2 000 in accordance with the R0 expectation. For di↵erent values of the weight
clipping parameter, ranging from 1 to 100, we train the neural network with the loss in eq. (29)
and we compute t(D) on the Toy datasets using eq. (28). The empirical P (t|R0) distributions
obtained in this way after 300 000 training epochs, and some of its percentiles as a function of
the number of epochs, are reported in Figure 1.

We see that for large values of the weight clipping parameter the distribution sits slightly to
the right of the target �2 with 13 degrees of freedom. Furthermore the training is not stable and
significant changes in the t percentiles (especially the 95% one) occur even after 150 000 epochs.
Very small values of the weight clipping make the distribution stable with training, but push
it lower than the �

2

13
expectation. A good compatibility is instead obtained for intermediate

values of the weight clipping parameter. We see that a weight clipping equal to 9 reproduces
the �

2

13
formula quite accurately.

17

Summary of the results:
• Comparable performances in the resonant and non-resonant scenarios:

- NPLM is simultaneously sensitive to any source of New Physics;

• Comparable performances at different systematic uncertainties regimes: 

- NPLM is robust against the presence of systematic uncertainties;

- the presence of systematic uncertainties affects NPLM in the same 
measure as any other hypothesis test;

• No information about the New Physics signal has been provided to the 
algorithm at any step of its implementation:

- The performances of NPLM are lower than any model-dependent 
strategy by construction ( );Z/Zref = 0.37

29

Two-body final state at the LHC

Gaia Grosso

Sensitivity to New Physics scenarios 

Z-score:  

-  : Z-score from NPLM

-  : Z-score from a model-dependent (optimized) test statistics

Z = Φ−1 [1 − p]
Z
Zref

Gaia Grosso29August 23, 2022

NOTE:
  is not given as an input to the algorithm!M12 reconstruction: 

 reconstruction: 
τ n(x |Hŵ, ̂ν) = n(x |R0)

n(x |R ̂ν)
n(x |R0)

ef(x; ŵ)

Δ n(x |R ̂ν)

28 Gaia Grosso28

Harder task: nD analysis
Two bodies final state (5D)

Architecture: [5-5-5-5–1] (96 dof), weigh clipping 2.15, L = 240 fb−1

Signal reconstruction with the NN:

 “Learning Multivariate New Physics” Eur. Phys. J. C

August 23, 2022



Data Quality Monitoring
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Setup (Legnaro INFN national laboratory):

• 2 scintillators as signal trigger
• 1 drift tube chamber: 4 layers 16 wires each (16x4=64 wires)
• Source of signals: cosmic muons (triggered rate ~3 MHz)
• Event: muon track reconstructed interpolating 3/4 hits (one per 

layer)
Observables (6D problem):

• 4 drift times [ ]: time for the ionised 
electrons to reach the wire from the interaction point 
( ) .

• : reconstructed track angle

• : average number of hits per time window (“orbit”)

tdrift, 1, tdrift, 2, tdrift, 3, tdrift, 4

vdrift = cm/s
θ
Nhits

Layer 1
Layer 2
Layer 3
Layer 4

Sketch of a single 
chamber

nD DQM
Online monitoring of a DT chamber:

Gaia Grosso11August 23, 2022

No Reference uncertainties:  is data in good operation conditionℛ
[Grosso, Letizia, AW, Zanetti, et. al., 2023]

https://arxiv.org/pdf/2303.05413
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Distribution of the observables at different values of the threshold tension

• Reference sample: long run in optimal conditions

• Anomalous samples: short runs acquired in presence 
of a controlled anomaly in the value of the threshold 
tension of the DT chamber

• Result of the test statistics
Complete separation of the distributions!  

NPLM with Falkon

Execution time:  

M = 50, σ = 4.84, λ = 10−7

N(D) = 5000
Nref = 200 000

∼ 1.5 s   more about this in Marco’s talk tomorrow!→

Gaia Grosso12August 23, 2022

nD DQM
Online monitoring of a DT chamber:

Much better than standard methods, and fast enough

Data Quality Monitoring
[Grosso, Letizia, AW, Zanetti, et. al., 2023]

https://arxiv.org/pdf/2303.05413
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A mixture of Gaussians in  dimension, vs a Normalising Flowd

Generative Models Validation

Tested with NPLM using 10K points,  NF training sample size≪

Very high Z-scores. Consistently go down as  increasesNtr

[To Appear: Cappelli, Grosso, Letizia, Reyes-González, Zanetti]
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Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684]. 
With realistic-looking 2d marginals:

Generative Models Validation

End-to-end simulation of particle physics events . . . 16

Figure 10: The correlations between di↵erent target variables are in agreement between

Target and Flow. On the diagonal, we show the 1-d histograms for each variable. The

o↵-diagonal elements compare the contour lines for 2-d distributions for each pair of

variables.

[To Appear: Cappelli, Grosso, Letizia, Reyes-González, Zanetti]
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Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684]. 
With realistic-looking 2d marginals:

Generative Models Validation

Tested with NPLM using less data than training size 500K

[To Appear: Cappelli, Grosso, Letizia, Reyes-González, Zanetti]
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Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684]. 
With realistic-looking 2d marginals:

Generative Models Validation

Tested with NPLM using less data than training size 500K

Personal Conclusions: 
• Data augmentation with Generative Models is a mirage. 
Because NPLM distinguishes small generated sample from true 

• Maybe we can augment some marginal. Maybe we need finite 
accuracy because of systematics mis-modeling.  
But please explain/demonstrate why and how

[To Appear: Cappelli, Grosso, Letizia, Reyes-González, Zanetti]
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Surrogate detector simulator [Vaselli, Cattafesta, Asenov, Rizzi; 2402.13684]. 
With realistic-looking 2d marginals:

Generative Models Validation

Tested with NPLM using less data than training size 500K

Personal Conclusions: 
• Data augmentation with Generative Models is a mirage. 
Because NPLM distinguishes small generated sample from true 

• Maybe we can augment some marginal. Maybe we need finite 
accuracy because of systematics mis-modeling.  
But please explain/demonstrate why and how

Objective Conclusion: 
• NPLM is very sensitive to mis-modelling 
• Could be the best metric for generative models selection

[To Appear: Cappelli, Grosso, Letizia, Reyes-González, Zanetti]



Take-home messages
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Goodness-of-fit 
• A truly profound problem of Science! 
• Could serve for model-agnostic BSM searches. 
• But also for Data Validation, for DQM, validation of  

generators including Generative Models 
• NPLM in our studies is found better than other methods



Thank You
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HwModel Selection
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Which hypotheses (distributions) our (statistical) model contains?
•Not “all of them”, otherwise it would fail (overfitting) 
•It should contain approximations of all the reasonable ones 
•No Statistical Learning notion of model capacity seems 
reasonable physics measure of volume or boundaries of Hw 

•Minimal allowed variation scale would sound reasonable, 
but no theory developed

Waiting for principled approach, solution is χ2-compatibility:
•Naive Wilks Theorem application:  

P(t|R) is χ2, with as many d.o.f. as fit parameters (for us, num. of NN par.s) 
Provided statistics is large relative to fitted model “complexity” 

… or, which is the same … 
Provided model is “simple enough”, for given data statistics 

•Asy. For. violation = sensitivity to low-statistics portion of dataset = overfitting 
•Regularisation by Weight Clipping, that forbids sharp variations 
•NN with too many parameters cannot be made χ2-compatible. Take largest allowed



Weight Clipping Selection
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Figure 1: Empirical distributions of t after 300 000 training epochs for di↵erent values of the weight
clipping parameter, compared with the �2

13 distribution expected in the Asymptotic limit for the (1, 4, 1)
network. The evolution during training of the t distribution percentiles, compared with the �

2
13 expec-

tation, is also shown. Only 100 Toy datasets are employed to produce the results shown in the figure,
except for the ones for weight clipping equal to 9 where all the 400 Toys are used.

eq. (26) for ⌫n,s = 0. The sample is unweighted, therefore the weights in the sample are all equal
and we = N(R0)/NR = 0.01. We also generate 400 Toy instances of the dataset D in the same
hypothesis. The number of instances of x in D, ND, is thrown from a Poisson distribution with
mean N(R0) = 2 000 in accordance with the R0 expectation. For di↵erent values of the weight
clipping parameter, ranging from 1 to 100, we train the neural network with the loss in eq. (29)
and we compute t(D) on the Toy datasets using eq. (28). The empirical P (t|R0) distributions
obtained in this way after 300 000 training epochs, and some of its percentiles as a function of
the number of epochs, are reported in Figure 1.

We see that for large values of the weight clipping parameter the distribution sits slightly to
the right of the target �2 with 13 degrees of freedom. Furthermore the training is not stable and
significant changes in the t percentiles (especially the 95% one) occur even after 150 000 epochs.
Very small values of the weight clipping make the distribution stable with training, but push
it lower than the �

2

13
expectation. A good compatibility is instead obtained for intermediate

values of the weight clipping parameter. We see that a weight clipping equal to 9 reproduces
the �

2

13
formula quite accurately.

17

Asy. For. violation by sensitivity 
to sparse data points

Asy. For. violation by fit 
parameters boundary
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Illustrating Performances
(Simple 1d example with exponential Reference)  
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Figure 5: The distributions of the three new physics models used in this work plus the reference
one.

For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.

12

R-Distributed R-Distributed R-Distributed

NP-Distributed NP-Distributed NP-Distributed

��� ��� ��� ��� ��� �����-�

�

���

���

���

�

��
��
��

�(�)=�� �������
��
����

Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Bins: Non-discrepant data 
fluctuations wash out reach

NN: Smooth curve. Can 
handle non-discrepant data
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Illustrating Performances
(Simple 1d example with exponential Reference)  
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Figure 5: The distributions of the three new physics models used in this work plus the reference
one.

For a better assessment of the performances of our method we compare them to those of the ideal
test presented in section 2 (see the discussion below eq. (6)). We estimate the ideal test statistic
p.d.f. by means of a very large set of 10 000 000 reference model toy data samples, and we compare
it with the values of tid on the 300 new physics data samples with which we trained the network.
The result is shown in the left panel of figure 3. The sensitivity of the ideal test is as expected
much higher than ours. The median tid on new physics samples is 23 and it corresponds to an
ideal significance Zid = 4.7 �. We can thus conclude that the difference in sensitivity amounts to
roughly 1.5 �. This is confirmed if we look at the correlation between Zid and Z on each individual
data sample, reported in the right panel of figure 4. Notice that the vertical band of points that
seemingly breaks the correlation is an artifact due to new physics samples with a tid that is larger
than the maximum tid obtained in the 10 000 000 reference toys. For these samples, a lower bound
on Zid of 5.2 � (corresponding to zero observed over 10 000 000 trials at 68% CL) is reported in the
plot.

The second example (NP2) is non-resonant new physics, showing up as a quadratic growth with
energy in the tail of the reference model distribution. In this case the signal is distributed as

P (x|S2) / x
2
e
�8x

, (16)

and the total expected number of signal event is taken to be S = 90. Signal and background are
combined to define the NP2 distribution as in eq. (15). The median ideal significance for the chosen
value of S equals 4.4 �, very much comparable with the one of the NP1 signal. This ensures a
fair comparison between the two. The performances of our algorithm, shown in the left column of
figure 6, are essentially identical to those we obtained for NP1. The median significance is 3.1 � and
the correlation between Zid and Z again reveals a significance loss of around 1.5 �.

Finally, we discuss another resonant signal, emerging this time in the bulk of the reference model
distribution. The signal distribution is

P (x|S2) / e
� (x�x̄)2

2�2 , with x̄ = 0.2 , � = 0.02 , (17)

and S = 35. The median ideal significance is 4.1 �. We see in the right column of figure 6 that
accordingly the median significance of our algorithm (2.6 �) is slightly reduced compared to NP1

and NP2. The correlation between Zid and Z is equally sharp.
The comparative study of three new physics models carried out in this section provides a clear

confirmation of the model-independent nature of our approach.
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Figure 2: The distribution learned by a neural network with a single 4-neurons hidden layer (solid
line), compared with the distribution used to generate the data (dashed line) and the binned his-
togram of the training data set. The value of the test statistic t(D) obtained by the network is
reported in the upper right corner of each plot. The higher values of t(D) in blue signal that the
network is discriminating between data sets containing new physics (top row) and data sets following
the reference hypothesis (bottom row).

The number of data events is selected at random taking into account Poisson fluctuations around the
expected numbers N(R) = 2000 and N(NP) = 2010. We train a 4-neurons (1, 4, 1) neural network6

on each data set and we obtain the corresponding t(D) and f(x; bw) as previously described. Since
n(x|R) is fully known, in our toy example we can also compute the best-fit distribution n(x|bw) using
the log-ratio learned by the neural network in eq. (2). An initial learning rate of 10�3 is chosen, and
training is stopped after 150 000 rounds. The results are displayed in fig. 2 for six representative
data samples. The ones on the first and on the second row have been obtained from the NP and
from the R distributions, respectively.

The figure illustrates a number of interesting points. First of all, we see that in all cases the
distribution learned by the neural network is very much correlated with the data sample that was
used for training. Still it doesn’t follow the data too closely, producing smooth curves that are
quite “credible” hypotheses on the true underlying distribution. This should be contrasted with the
discontinuous piece-wise constant distribution, i.e. the envelope of the histogram, that one would
effectively rely on if the same data sets where studied with the binned histogram method. We also
see that in the bulk region, i.e. at small x, the neural network is able to reproduce very accurately
the true distribution, thanks to the large statistic. This is important because mismodeling the
bulk would produce a large spurious contribution to t, that would obscure the genuine signal in
the tail. The NP-generated data samples produce an excess in the tail of the distribution, which is

6The notation for the neural network architecture is explained in more detail in appendix A. The (1, 4, 1) network
has one-dimensional input and output and a hidden layer with 4 neurons.
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Bins: Non-discrepant data 
fluctuations wash out reach

NN: Smooth curve. Can 
handle non-discrepant data

Probability to find evidence of      being wrong at some level of confidence. 
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R

We are better than binned χ2 because our 
model has less parameters but same 
effective expressive power. 
Same reason why bins are outdated as 
statistical models. 
Gap to bins grows (exponentially) with 
(the curse of) dimensionality.


