

AI goes MAD²

In Search of Cosmic Topology with AI

Andrius Tamošiūnas

Case Western Reserve University IFT UAM-CSIC

COMPACT Collaboration

COMPACT Collaboration

Glenn Starkman

Deyan Mihaylov

Fernando Cornet-Gomez

Javier Carrón Duque

Mikel Martin Barandiaran

Valeri Vardanyan

Yashar Akrami

Özenç Güngör

Quinn Taylor

Arthur Kosowksv

James Mertens

Thiago Pereira

Craig Copi

Amirhossein Samandar

Andrew Jaffe

Samanta Saha

Cosmic Topology

- A key goal of cosmic topology: to measure the **shape** of the Universe.
- I.e. is the Universe:
 - ✤ Finite or infinite?
 - Open or closed?
 - Simply or multiply-connected?
 - Orientable or not?
- If we model space-time as a **manifold**, what is the topology of that manifold?
- If the Universe is **flat**: 17 allowed non-trivial topologies $(E_1 E_{17})$ (Riazuelo et al. 2004).

Figure 1: examples of manifolds with different topological properties.

Image: Wolfram MathWorld

Observational Signatures

- Non-trivial topology leads to multiple observational effects:
 - Clone images of astronomical sources;
 - Observational signatures in the CMB (*circles in the sky*);
 - Non-diagonal correlations in harmonic space;
 - ✤ Others? E.g. observables in **polarization** data.

Image: Luminet (2015)

Figure 2: the mirror hall effect (image: Rebecca Dale).

Figure 3: Last scattering surface intersecting itself in a 3-torus Universe (top right). The dark circles show the locations of the matched-circle pairs in the CMB (center)

(Planck Collaboration 2013).

Detectability of Cosmic Topology

- Non-diagonal elements in the covariance matrix encode information about topology.
- **KL divergence** measures the detectability of these features:

$$egin{aligned} D_{ ext{KL}}(p\|q) &= \int \mathrm{d}\{a_{\ell m}\}p(\{a_{\ell m}\})\lniggl[rac{p(\{a_{\ell m}\})}{q(\{a_{\ell m}\})}iggr] \ p(\{a_{\ell m}\}) & ext{ - probability of non-trivial topology} \ q(\{a_{\ell m}\}) & ext{ - probability of trivial topology} \end{aligned}$$

Figure 4: temperature covariance matrix (**top**). KL divergence in E_1 topology (**bottom**).

Detecting Topology with AI

- The goal: an algorithm to classify **harmonic space** realizations from different topologies.
- Start with a single topology: 3-torus (*E*₁) of different sizes.
- Two datasets: rotated and non-rotated.
- Algorithms to try:
 - Random forests and XGBoost;
 - ID convolutional neural networks;
 - 2D convolutional neural networks;
 - Complex neural networks.

4 classes: 40,000 - E1 with E1 with E1 with E1 with E1 with E1 with Trivial te

E1 with $L_x = L_y = L_z = 0.05 \times L_{LSS}$ E1 with $L_x = L_y = L_z = 0.1 \times L_{LSS}$ E1 with $L_x = L_y = L_z = 0.5 \times L_{LSS}$ Trivial topology $L_x = L_y = L_z = L_\infty$

$$a_{\ell m}^{E1} = rac{4\pi}{\sqrt{V_{E1}}} i^l \sum_{ec{n}} \delta_{ec{k}_{ec{n}}} e^{-iec{k}_{ec{n}}\cdotec{x}_0} Y_{\ell m}^\star(\hat{k}) \Delta_\ell(k)$$

The Dataset

Al goes MAD²

The Algorithms: Extreme Gradient Boosting

Figure 7: The gradient boosting classification algorithm (Deng et al. 2021).

The Algorithms: NN Architectures

	Activation	Output shape	Parameters
Input map	-	(None, 2652, 32)	128
Conv1D	LReLU	(None, 2652, 64)	10304
Conv1D	LReLU	(None, 2652, 128)	57472
Conv1D	LReLU	(None, 2652, 256)	$295 \mathrm{K}$
Max Pooling 1D	-	(None, 1326, 256)	-
Dropout	-	(None, 1326, 256)	-
Flatten	-	(None, 339456)	-
Dense	LReLU	(None, 512)	173 M
Dense	LReLU	(None, 256)	131 K
Dense	LReLU	(None, 128)	32 K
Output layer	Softmax	4	516
Total trainable	parameters:		$174 \mathrm{M}$

Table 1: The architecture of the 1D CNN used in thiswork.

	Activation	Output shape	Parameters
Input map	-	(207, 207, 1, 32)	-
ComplexConv2D	cart_relu	(None, 205, 205, 32)	640
ComplexConv2D	cart_relu	(None, 203, 203, 32)	18 K
ComplexAvgPooling2D	-	(None, 101, 101, 32)	-
ComplexConv2D	cart_relu	(None, 99, 99, 64)	37 K
ComplexConv2D	cart_relu	(None, 98, 98, 64)	$33 \mathrm{K}$
ComplexAvgPooling2D	-	(None, 49, 49, 64)	-
ComplexConv2D	cart_relu	(None, 47, 47, 128)	148 K
ComplexConv2D	cart_relu	(None, 47, 47, 64)	$17 \mathrm{K}$
ComplexConv2D	cart_relu	(None, 45, 45, 128)	148K
ComplexAvgPooling2D	-	(None, 22, 22, 128)	-
ComplexConv2D	cart_relu	(None, 20, 20, 256)	$590 \mathrm{K}$
ComplexConv2D	cart_relu	(None, 20, 20, 128)	$66 \mathrm{K}$
ComplexConv2D	cart_relu	(None, 18, 18, 256)	590K
ComplexAvgPooling2D	-	(None, 9, 9, 256)	-
ComplexConv2D	cart_relu	(None, 7, 7, 512)	2.4 M
ComplexConv2D	cart_relu	(None, 7, 7, 256)	$263 \mathrm{~K}$
ComplexConv2D	cart_relu	(None, 5, 5, 512)	$2.4 \mathrm{M}$
ComplexConv2D	cart_relu	(None, 5, 5, 256)	$263 \mathrm{K}$
ComplexConv2D	cart_relu	(None, 3, 3, 512)	$2.4 \mathrm{M}$
ComplexAvgPooling2D	-	(None, 1, 1, 512)	-
ComplexFlatten	-	(None, 512)	-
ComplexDense	cart_relu	(None, 64)	$66~{ m K}$
ComplexDense	<pre>softmax_real_with_abs</pre>	4	520
Total trainable para	neters:		590 K

 Table 2: 2D complex CVNN architecture.

Results: Random Forests + XGBoost

- Initial test: RF + XGBoost algorithms trained on the $a_{\ell m}$'s.
- Results depend on the coordinate system **orientation**/rotations.

Algorithm:	Random forests	XGBoost
Training (unrotated):	100	100
Training (rotated):	100	100
Test (unrotated):	99.8	99.8
Test (rotated):	91.4	94.2

Table 3: summary of the decision tree-basedalgorithm classification results.

Results: Feature Importance Analysis

Results: NN Classification

- Neural network results show a similar trend.
- Results depend on the coordinate system orientation/Wigner **rotations**.
- The 2D Results are slightly worse (for the randomly-rotated data).
- Complex NNs do not perform better.

Results: NN Classification

Results: $L \approx L_{LSS}$

- Next challenge: classify realizations with $L > L_{LSS}$.
- We expect this to be more challenging (smaller KL divergence, no circles).
- Our techniques work well on non-rotated data.
- Key challenge: classifying randomly rotated data.

Figure 9: Classification results for realizations with

 $L \approx L_{\rm LSS}$.

Rotation Problem: The Multipole Vector Formalism

Rotation Problem: MVs + E-mode Polarization Data

- The *signal* of non-trivial topology is stronger in **Emode polarization data**.
- In *E*₁ topology, multipole vectors align along the **coordinate axes**.
- This characteristic feature can be used to orient randomly rotated multipole vectors.
- Approach:
 - Find the cross product of *l* = 2 MVs (Frechet vector). Find the rotation that orients it along the z-axis;
 - Use the obtained rotation to orient all the MVs;
 - ✤ Find the rotation that orients the *ℓ* = 2 MVs along the x-axis;
 - Further rotate all the MVs using the obtained rotation.

Figure 12: plotting multiple MV realizations for Emode polarization data ($\ell = 2$). **Top:** randomly rotated realizations. **Bottom:** non-rotated realizations.

Rotation Problem: Current Results

- Cubic E_1 with $L \approx 0.5 \times L_{LSS}$: derotation procedure works well.
- Larger E₁ realizations: the accuracy drops quickly.
- The procedure does not work as effectively for non-cubic realizations.
- Need to test the procedure for other topology classes (E_3 , E_4 , etc.).

Figure 13: Results for XGBoost trained on the *derotated* dataset. **Top**: $L = 0.5 \times L_{LSS}$ vs. covering space. **Bottom**: $L = 0.7 \times L_{LSS}$ vs. covering space.

Figure 14: training a convolutional neural network on spherical data directly using DeepSphere (**Perraudin et al. 2019**).

Figure 15:DeepSphere results (E_1 vs. covering space classification) using E-mode polarization data. Top: results for the non-rotated dataset. Bottom: results for the rotated dataset.

Conclusions and Future Work

- ML approaches are effective for classifying small E₁ realizations;
- For larger realizations, results depend on the orientation of the coordinate system;
- Dealing with rotations: **a key challenge**;
- Possible future approaches:
 - Rotation-equivariant neural networks;
 - Lorentz-equivariant neural networks + MV data;
 - Point cloud neural network approaches.

Figure 16: Different ML approaches that work with multipole vector data (Shi and Rajkumar, 2020).

andrius-tamosiunas.com

