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Cosmic Topology

• A key goal of cosmic topology: to measure the 
shape of the Universe. 

• I.e. is the Universe:
 Finite or infinite?

 Open or closed?

 Simply or multiply-connected?

 Orientable or not?

• If we model space-time as a manifold, what is 
the topology of that manifold?

• If the Universe is flat: 17 allowed non-trivial 
topologies (E1-E17)(Riazuelo et al. 2004).

Figure 1: examples of manifolds with 
different topological properties.
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Image: Wolfram MathWorld

https://arxiv.org/pdf/astro-ph/0311314.pdf
https://mathworld.wolfram.com/CompactManifold.html


• Non-trivial topology leads to multiple 
observational effects:
 Clone images of astronomical sources;

 Observational signatures in the CMB (circles in 
the sky);

 Non-diagonal correlations in harmonic space;

 Others? E.g. observables in polarization data.

Figure 2: the mirror hall effect 
(image: Rebecca Dale).

Observational Signatures
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Fundamental domain

Flat torus (2D)

Image: Luminet (2015)

https://www.boredpanda.com/infinity-room-mirrors-yayoi-kusama/?utm_source=google&utm_medium=organic&utm_campaign=organic
http://www.scholarpedia.org/article/Cosmic_Topology


Figure 3: Last scattering surface intersecting itself in a 3-torus Universe (top right). The dark circles 
show the locations of the matched-circle pairs in the CMB (center)

(Planck Collaboration 2013).

Intersection of the last 
scattering surface and the 

fundamental domain

Locations of circle pairs with 
matched CMB patterns

Other features 
encoded in the 

𝑎ℓ𝑚’s: 

Circles in The Sky
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https://arxiv.org/abs/1303.5086


• Non-diagonal elements in the 
covariance matrix encode information 
about topology. 

• KL divergence measures the 
detectability of these features:

Figure 4: temperature covariance matrix (top). 
KL divergence in E1 topology (bottom).

- probability of non-trivial topology

- probability of trivial topology

No circles

Matched-circle pairs
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Detectability of Cosmic Topology



• The goal: an algorithm to classify 
harmonic space realizations from 
different topologies.

• Start with a single topology: 3-torus (E1) 
of different sizes.

• Two datasets: rotated and non-rotated. 

• Algorithms to try:
 Random forests and XGBoost;

 1D convolutional neural networks;

 2D convolutional neural networks;

 Complex neural networks. 

Algorithm

Class 1
or

Class 2
…

Class N

4 classes:
40,000 

realizations

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.05 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.1 × 𝐿𝐿𝑆𝑆

E1 with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 0.5 × 𝐿𝐿𝑆𝑆

Trivial topology 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿∞

Algorithm

Class 1
or

Class 2
…

Class N

Detecting Topology with AI
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Rotating the coordinate 
system (multiplying by 

Wigner D-matrix)

Fundamental domain 
for a given topology



Figure 5: Real vs imaginary components of 
the 𝑎ℓ𝑚 realizations.

Figure 6: Harmonic space covariance 
matrices in E1 topology.

Realizations of 
E1 topology of 2 

different sizes

Complex harmonic 
coefficients

Correlations between 
different angular scales

The Dataset
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Figure 7: The gradient boosting classification algorithm (Deng et al. 2021).

A particularly useful 
implementation:
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The Algorithms: Extreme Gradient Boosting

https://www.researchgate.net/publication/356698772_Ensemble_learning_for_the_early_prediction_of_neonatal_jaundice_with_genetic_features


Table 1: The architecture of the 1D CNN used in this 
work.

Table 2: 2D complex CVNN architecture.

Figure 8: ResNet-50 architecture.

The Algorithms: NN Architectures
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• Initial test: RF + XGBoost algorithms 
trained on the 𝑎ℓ𝑚’s.

• Results depend on the coordinate 
system orientation/rotations.

Table 3: summary of the decision tree-based 
algorithm classification results.

Results: Random Forests + XGBoost
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Random forests:

XGBoost classifier:

Results: Feature Importance Analysis
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• Neural network results show a similar 
trend.

• Results depend on the coordinate system 
orientation/Wigner rotations.

• The 2D Results are slightly worse (for the 
randomly-rotated data). 

• Complex NNs do not perform better.

Table 4: summary of the neural network algorithm 
classification results.

Results: NN Classification
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High accuracies 
for all non-rotated 
topology classes

Significant reduction in 
accuracy when trained 

on rotated data



Results: NN Classification
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• Next challenge: classify realizations with 𝑳 >
𝑳𝐋𝐒𝐒.

• We expect this to be more challenging 
(smaller KL divergence, no circles).

• Our techniques work well on non-rotated 
data.

• Key challenge: classifying randomly rotated 
data. Figure 9: Classification results for realizations with 

𝐿 ≈ 𝐿LSS.

Results: 𝑳 ≈ 𝑳𝑳𝑺𝑺
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CMB in spherical and harmonic space CMB in multipole vector formalism

Harmonic space rotations: 

Features in the MV data 
characteristic to non-trivial 

topology realizations

MV rotations: rigid rotations (by 3 Euler angles) 

Figure 10: CMB temperature anisotropies as a field 
on a sphere (Planck data).

Figure 11: CMB temperature data represented as ℓ
unit vectors on a sphere (i.e., multipole vectors).

Rotation Problem: The Multipole Vector Formalism
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https://pla.esac.esa.int/


• The signal of non-trivial topology is stronger in E-
mode polarization data.

• In E1 topology, multipole vectors align along the 
coordinate axes. 

• This characteristic feature can be used to orient 
randomly rotated multipole vectors.

• Approach:
 Find the cross product of ℓ = 2 MVs (Frechet

vector). Find the rotation that orients it along the z-
axis;

 Use the obtained rotation to orient all the MVs;
 Find the rotation that orients the ℓ = 2 MVs along 

the x-axis;
 Further rotate all the MVs using the obtained 

rotation. 
Figure 12: plotting multiple MV realizations for E-

mode polarization data (ℓ = 2). Top: randomly rotated 
realizations. Bottom: non-rotated realizations.

Rotation Problem: MVs + E-mode Polarization Data
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3 Euler angles Derotation



Rotation Problem: Current Results 
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• Cubic E1 with 𝐿 ≈ 0.5 × 𝐿𝐿𝑆𝑆: derotation
procedure works well.

• Larger E1 realizations: the accuracy drops 
quickly.

• The procedure does not work as effectively 
for non-cubic realizations.

• Need to test the procedure for other 
topology classes (E3, E4, etc.).

Figure 13: Results for XGBoost trained on the 
derotated dataset. Top: 𝐿 = 0.5 × 𝐿LSS vs. covering 
space. Bottom: 𝐿 = 0.7 × 𝐿LSS vs. covering space.



First conv. 
layer

Second 
conv. layer

Further 
conv. layers

Fully-connected 
layer

Using Map Data Directly

Current Work: DeepSphere Slide 18AI goes MAD2

Classification
Healpix

pixelization

CMB 
temperature data

Figure 14: training a convolutional neural 
network on spherical data directly using 

DeepSphere (Perraudin et al. 2019).

Figure 15:DeepSphere results (E1 vs. covering space 
classification) using E-mode polarization data. Top:
results for the non-rotated dataset. Bottom: results 

for the rotated dataset. 

https://www.sciencedirect.com/science/article/abs/pii/S2213133718301392


• ML approaches are effective for classifying 
small E1 realizations;

• For larger realizations, results depend on the 
orientation of the coordinate system;

• Dealing with rotations: a key challenge;
• Possible future approaches:

 Rotation-equivariant neural networks;
 Lorentz-equivariant neural networks + MV data;
 Point cloud neural network approaches. 

Conclusions and Future Work

andrius-tamosiunas.com
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Paper: arXiv:2404.01236

Figure 16: Different ML approaches that work with 
multipole vector data (Shi and Rajkumar, 2020).

Pixelization Point clouds Graph NN approaches

andrius-tamosiunas.com
https://arxiv.org/abs/2210.11426
https://arxiv.org/abs/2003.01251

