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Quantum sensors leverage matter’'s quantum properties to enable measurements with unprecedented
spatial and spectral resolution. Among these sensors, those utilizing nitrogen-vacancy (NV) centers n
diamond offer the distinct advantage of operating at room temperature. Nevertheless, signals received from
NV centers are often complex, making interpretation challenging. This 1s especially relevant in low
magnetic field scenarios, where standard approximations for modeling the system fail. Additionally, NV
signals feature a prominent noise component. In this Letter, we present a signal-to-image deep learning
model capable of automatically inferring the number of nuclear spins surrounding a NV sensor and the
hyperfine couplings between the sensor and the nuclear spins. Our model 1s trained to operate effectively
across various magnetic field scenarios, requires no prior knowledge of the involved nuclei, and 1s designed
to handle noisy signals, leading to fast characterization of nuclear environments in real experimental
conditions. With detailed numerical simulations, we test the performance of our model in scenarios
ivolving varying numbers of nuclel, achieving an average error of less than 2 kHz in the estimated
hyperfine constants.
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* Main objective: detect the coupling constants between the NV sensor and the surrounding 13C nuclear
spins to characterize the system.



Motivation

* Main objective: detect the coupling constants between the NV sensor and the surrounding 13C nuclear
spins to characterize the system.

* Why a deep learning model?



Motivation

* Main objective: detect the coupling constants between the NV sensor and the surrounding 13C nuclear
spins to characterize the system.

* Why a deep learning model?
* Trained deep learning models offer fast characterization.

* They are known to be robust to small perturbations in the input signals — great for real experimental
conditions.

* Our model, In particular, does not rely on specific characteristics of the input signal (resonance peaks,
etc.) — applicable to both high and low magnetic field conditions.

* |t does not need previous knowledge of the number of nuclel present in the sample.



The system




The system

®* P, calculated at B, = 0.056 T and B, = 0.0056 T.

* Each sequence contains N = 32 pulses, and P, is sampled N, = 1000 times in the range T € |6, 50] us.
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The system

* Simulating real experimental conditions:

1. Decoherence

L. multiplying by factor e ~%/T2 with T, = 200 us.

2. Shot-noise

L. computing each average value of P, after simulating N,,, = 1000 measurements.



The SALI model
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The SALI model: 1D — 2D CNN
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The SALI model: 1D — 2D CNN

* We trained the neural network for both high and low magnetic field scenarios, generating 3.6 M samples

for each of the cases.

* Each sample contains a random number of nuclei ranging from 1 to 20.

* Each nucleus is characterized by random values of the coupling constants A“ and At falling within the

ranges A% € [—100,100] kHz and A+ € [2,102] kHz.

* This results in a set of coupling constants (A-Z, A]l) for each sample.

* Nuclel are represented as ‘points’ in the true output image.
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The SALI model: image post-processing
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The SALI model: image post-processing
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00 02 04 06 08 1.0

13



The SALI model: Image post-processing
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The SALI model: Image post-processing

b) PREDICTED
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The SALI model: image post-processing

Erosion and dilation techniqgues are employed to smooth the image.
A pixel threshold is applied.

Adjacent pixels are grouped In clusters using a connectivity routine.

This results in the prediction of the number of nuclel n and the corresponding coupling constant pairs

(A7, A]l) which are determined by the centroids of these clusters.
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The SALI model: Image post-processing

c) POST-PROCESSED
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The SALI model: Image post-processing

d) EVALUATION
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Quantifying the model performance and results
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Quantifying the model performance and results
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Quantifying the model performance and results

MAE of the input signals
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Reducing experimental time: high magnetic field

* Decrease the number of datapoints by selecting only those that contain relevant information.
Preferably, choose points with smaller T values.
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Reducing experimental time: high magnetic field

* Decrease the number of datapoints by selecting only those that contain relevant information.
Preferably, choose points with smaller T values.

* Strategy:

1. Scan values of T in the range T € [6,50] us with resolution AT = 3 ns and select datapoints
based on the prior probability of finding a minimum in the signal:

2k -1 2k-1

(27)° M 2T 2L

(1) =

2. Select Np datapoints by applying a probability threshold.
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* Selecting N, = 600 datapoints and simulating N;, = 250 measurements for each results in a total

measurement time of 16.80 minutes, compared to approximately 4 hours required by the original
model.

* Despite this reduction in time, the model delivers equal or better performance than the original.
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Outlook and conclusions

* SALI shows potential for use in experimental setups, as it Is trained using simulated data that mimics
real experimental conditions at both high and low magnetic fields.

* With this training, the model automatically infers the coupling constants between the sensor and
nearby 13C nuclear spins.

* The theoretical approach allows for obtaining the same results in a significantly shorter time,
enhancing its practicality for real-world applications.

* Next step: testing the model with actual experimental data. Initially, assess the original model to
confirm its functionality. Then, test the model with data derived from the theoretical approach.
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Thank you for your attention!
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