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Motivation

• Main objective: detect the coupling constants between the NV sensor and the surrounding 13C nuclear 

spins to characterize the system.
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Motivation

• Main objective: detect the coupling constants between the NV sensor and the surrounding 13C nuclear 

spins to characterize the system.

• Why a deep learning model?

• Trained deep learning models offer fast characterization.

• They are known to be robust to small perturbations in the input signals        great for real experimental 

conditions. 

• Our model, in particular, does not rely on specific characteristics of the input signal (resonance peaks, 

etc.)        applicable to both high and low magnetic field conditions.

• It does not need previous knowledge of the number of nuclei present in the sample.
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The system
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The system
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• 𝑃𝑥 calculated at 𝐵𝑧 = 0.056 T and 𝐵𝑧 = 0.0056 T.

• Each sequence contains N = 32 pulses, and 𝑃𝑥 is sampled Np = 1000 times in the range 𝜏 ∈ 6, 50 𝜇𝑠. 



The system

8

• Simulating real experimental conditions:

1. Decoherence 

multiplying by factor 𝑒−𝜏/𝑇2 with  𝑇2 = 200 𝜇𝑠.

2. Shot-noise

computing each average value of 𝑃𝑥 after simulating Nm = 1000 measurements.



The SALI model
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The SALI model: 1D      2D CNN
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The SALI model: 1D      2D CNN
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• We trained the neural network for both high and low magnetic field scenarios, generating 3.6 M samples 

for each of the cases.

• Each sample contains a random number of nuclei ranging from 1 to 20.

• Each nucleus is characterized by random values of the coupling constants 𝐴𝑧 and 𝐴⊥ , falling within the 

ranges 𝐴𝑧 ∈ −100, 100 kHz and  𝐴⊥ ∈ 2, 102 kHz.

• This results in a set of coupling constants (𝐴𝑗
𝑧, 𝐴𝑗

⊥) for each sample.

• Nuclei are represented as ‘points’ in the true output image.



The SALI model: image post-processing
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The SALI model: image post-processing
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The SALI model: image post-processing
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The SALI model: image post-processing
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The SALI model: image post-processing
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• Erosion and dilation techniques are employed to smooth the image.

• A pixel threshold is applied.

• Adjacent pixels are grouped in clusters using a connectivity routine.

• This results in the prediction of the number of nuclei 𝑛 and the corresponding coupling constant pairs 

(𝐴𝑗
𝑧, 𝐴𝑗

⊥), which are determined by the centroids of these clusters.



The SALI model: image post-processing
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The SALI model: image post-processing
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Quantifying the model performance and results
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Quantifying the model performance and results
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MAE of the coupling constants

M
A
E
o
f
th
e
co
u
p
li
n
g
co
n
st
an
ts
(k
H
z)

1.50

number of nuclei

5 10 15 20

𝐴⊥
𝐴𝑧

1.25

1.00

0.75

0.50

0.25



Quantifying the model performance and results
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MAE of the input signals MAE = 0.0989
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Reducing experimental time: high magnetic field
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• Decrease the number of datapoints by selecting only those that contain relevant information. 

Preferably, choose points with smaller 𝜏 values.



Reducing experimental time: high magnetic field
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• Decrease the number of datapoints by selecting only those that contain relevant information. 

Preferably, choose points with smaller 𝜏 values.

• Strategy: 

1.  Scan values of 𝜏 in the range 𝜏 ∈ 6, 50 μs with resolution Δ𝜏 = 3 ns and select datapoints 

based on the prior probability of finding a minimum in the signal:

2. Select Np datapoints by applying a probability threshold.



Reducing experimental time: high magnetic field
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• Selecting Np = 600 datapoints and simulating Nm = 250 measurements for each results in a total 

measurement time of 16.80 minutes, compared to approximately 4 hours required by the original 

model.

• Despite this reduction in time, the model delivers equal or better performance than the original.



Outlook and conclusions
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• SALI shows potential for use in experimental setups, as it is trained using simulated data that mimics 

real experimental conditions at both high and low magnetic fields.

• With this training, the model automatically infers the coupling constants between the sensor and 

nearby 13C nuclear spins. 

• The theoretical approach allows for obtaining the same results in a significantly shorter time, 

enhancing its practicality for real-world applications.

• Next step: testing the model with actual experimental data. Initially, assess the original model to 

confirm its functionality. Then, test the model with data derived from the theoretical approach.
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Thank you for your attention!
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