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Clusters of Galaxies

• T h e y a r e t h e m o s t m a s s i v e 
gravitationally-bound structures in The 
Universe: 


• Main components are: Dark matter 
(DM, ~80%), Intra-Cluster Medium 
(ICM, ~12%) and  stars (~8%).


• DM cannot be directly observed, 
typically by its interactions of baryons 
or gravitational lensing.


• Stars -> optical band.


• The ICM, hot gas, -> X-ray and 
->Sunyaev-Zeldov ich (SZ) , mm 
wavelengths.

∼ 1015M⊙
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The "bullet cluster",The two pink clumps correspond to the hot gas detected 
in X-rays, and the optical image from the Magellan and the Hubble Space 
Telescope shows the galaxies in orange and white. The blue area 
corresponds to the concentration of mass inferred by gravitational lensing 
effects.



Cluster of Galaxies in Cosmology and Astrophysics
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COSMOLOGY:


• Study of their abundance in 
mass and redshift to test 
cosmological models 


• Powerful tool to estimate 
cosmological parameters

ASTROPHYSICS:


• Isolated system: giant 
astrophysical laboratories 


• Many physical processes 
involving the baryons: 
cooling, galaxy 
formation, stellar 
feedback, AGN 
feedback…
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COSMOLOGY:


• Study of their abundance in 
mass and redshift to test 
cosmological models 


• Powerful tool to estimate 
cosmological parameters.

ASTROPHYSICS:


• Isolated system: giant 
astrophysical laboratories 


• Many physical processes 
involving the baryons of 
the ICM: cooling, star 
and galaxy formation, 
stellar feedback, AGN 
feedback…


IT IS IMPORTANT TO ACCURATELY INFER THEIR MASSES 
FROM OBSERVATIONAL TRACERS (DM is not directly 

observed): X-ray, SZ, optical and lensing. 



• The temperature of the ICM is 
high,  , the dominant 
process of radiative emission is 
X-ray.


• The integrated luminosity Lx at 
radius  is a very important 
quantity and it is  well correlated 
with mass through the scaling 
relation.


• A theoretical model is fitted for 
estimating the electron density 
profile and temperature profiles, 
useful for inferring the mass 
assuming the hydrosta t ic 
equilibrium (HE) hypothesis.

T ∼ 108K

R500

6

A. Liu et al.: eFEDS cluster and group catalog

Fig. 6. Results of imaging and spectral analysis for cluster eFEDS J092121.2+031726 at redshift 0.333 (spectroscopic) as an example. This cluster
is detected with Lext = 478.6 and Ldet = 1729.8 and has one of the highest S/Ns in our sample. The temperature and soft-band luminosity within
500 kpc are 5.2+1.3

�0.8 keV and 2.14+0.08
�0.08 ⇥ 1044 erg s�1. Upper left: soft-band (0.5–2 keV) eROSITA image. The white circle marks the region of

r = 500 kpc. The image is smoothed with a Gaussian with FWHM = 1200. Upper right: Subaru HSC image of the central region in the (z, i, r) bands.
Superimposed in white are the X-ray contours. Lower left: spectrum within the 500 kpc region. The spectra and the corresponding responses of the
seven TMs are merged for clarity. The total model, ICM model, non X-ray background, and cosmic X-ray background are plotted separately. Lower

right: electron density profile obtained from the spectral and imaging analysis. The dashed vertical line shows the R500 of this cluster, 1.1 Mpc,
estimated from the L � M scaling relation. The inset images show the result of 2D image fitting. The original soft-band image is on the left, and
the residual image is on the right.

4.2. Spectral analysis

We extracted spectra and computed ancillary response files
(ARFs) and redistribution matrix files (RMFs) from the seven
TMs using the eSASS algorithm srctool with the latest version
of the calibration database. For the extraction radius that we used

for the spectral analysis, we opted for two fixed physical aper-
tures, 300 and 500 kpc. The first was chosen for a fair comparison
with similar flux-limited surveys, for instance, the XXL survey
(Pacaud et al. 2016). The second is a compromise between the
aim to include more photons and the rapidly decreasing signal-
to-noise ratio (S/N) in the cluster outskirts. In Fig. 8 we verify
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Cluster eFEDS J092121.2+031726 at redshift 0.333 (spectroscopic) soft band luminosity 
(0.5–2 keV) eROSITA image. (Liu et al. (2022))

 


eROSITA satellite

Cluster of Galaxies: mass from X-ray



• The Sunyaev-Zeldovich effect is the 
inverse Compton scatter of the CMB 
photons with the hot electrons within 
the ICM. This effect is observed at mm 
wavelengths.


• The intensity of the SZ effect is 
characterised by the Compton-y 
parameter map, which is the gas 
pressure integrated over the l.o.s.  

• The integrated y-map  is very well 
related to the mass through the Y-M 
scaling relation.  

• From the y-map, the pressure of the gas 
can be estimated, and the mass can be 
computed using the HE hypothesis .

Y
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Figure 1.2: The Cosmic Microwave Background anisotropies measured by
the Planck Collaboration. Credit: ESA/Planck Collaboration https://sci.
esa.int/s/wQdrX4A.

Figure 1.3: CMB power spectrum distorted by the ICM plasma. The SZ effect
is characterised by an increase of the photons frequency. Credits: Carlstrom
et al. (2002).
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Figure 1.2: The Cosmic Microwave Background anisotropies measured by
the Planck Collaboration. Credit: ESA/Planck Collaboration https://sci.
esa.int/s/wQdrX4A.

Figure 1.3: CMB power spectrum distorted by the ICM plasma. The SZ effect
is characterised by an increase of the photons frequency. Credits: Carlstrom
et al. (2002).
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CMB power spectrum is distorted by 
the ICM plasma

 


Planck Satellite

Coma Cluster observed by the Planck 
Satellite

 


Cluster of Galaxies: mass from SZ



• Masses of clusters of galaxies can 
be estimated assuming that the 
gas pressure is in hydrostatic 
equilibrium with the gravitational 
potencial. MHE


• These masses are found to be 
b i a s e d , d e fi n i n g t h e b i a s 

parameter as: .


• This parameter is calibrated 
typically using simulations. The 
median value is found to be 
around 10-20%.

b =
Mtot − MHE

Mtot

8

Hydrostatic mass bias 5

5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.

MNRAS 000, 1–11 (2021)

Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.

MNRAS 000, 1–11 (2021)

Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).

11

Hydrostatic mass bias 5

5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.

MNRAS 000, 1–11 (2021)

Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).

11

HE mass bias as a function of redshift for SZ (left) and X-ray 
(right) for The300 simulation. Gianfagna et al. (2023)

 


Cluster of Galaxies: HE mass bias



• M a s s e s c a n a l s o b e 
estimated by measuring the 
velocity dispersion of the 
galaxies.


• T h e m a s s i s t y p i c a l l y 
estimated by considering the  
σ-M scaling relation.
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(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.
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Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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Cluster of Galaxies: Mass by galaxies

these observables can be directly related to the cluster mass trough scaling relation. Since
GC formation is gravitationaly driven starting from initial density fluctuations, they evolve
self-similarly [3] and this allow us to approximate these scaling relation to power laws. This
property has been shown to be fundamental for the use of clusters in cosmology, as their mass
is not directly measurable. In fact, it is crucial to constrain the scaling relations as accurately
and precisely as possible. For this purpose, cosmological simulations play a fundamental
role being the perfect laboratories in which it is possible to calibrate and to test new scaling
relations understanding possibly biases and physical limitations.

This paper is organised as follows. In section 2 we describe the simulation and the data-
set we used for our analysis. In sec. 3 we present the results of the scaling relation σ − M.
Finally in section 4 we presents our conclusions.

2 The Three Hundred

The dataset of simulated GCs that we used in this study is selected within The ThreeHundred
(The300) [4]. This is a zoomed re-simulation of the 324 most massive Lagrangian region of
a MultiDark Planck 2 simulation (MDPL2) [5]. The MDPL2 consists in a 1h−1Gpc volume
populated with 38403 DM particles of mass 1.5 × 109h−1M#, consistent with the cosmology
of Planck 2015 data release [6] (h = 0.678, n = 0.96, σ8 = 0.823, ΩΛ = 0.693, Ωm = 0.307
and Ωb = 0.048).

The region of a radius of 15h−1Mpc around the center each of the 324 selected Lagrangian
regions are then populated with gas particles with initial mass of 2.36 × 108h−1M# and they
are re-simulated with several codes. In this work we focus our analysis in the results of the
Gadget-X [7, 8] and GIZMO-SIMBA [9] hydrodynamical simulations codes that implement
different feedback mechanisms.

2.1 Dataset

Within each region the bounded structures (halos and sub-halos) are identified by using the
Amiga Halo Finder (AHF) [10]. For our purpose, we consider only halos with total mass
M200 ≥ 1013h−1M# and with at least 5 DM sub-halos or galaxies that are not contaminated
by low resolution particles. The sub-halos are structure of at least 20 DM particles with mass
above 1011h−1M#. Whereas, in analogy with [11] (hereafter M13), we call the galaxy with
more than ∼ 20 stars (M∗ ! 109h−1M#) within the sub-halo. This definition of galaxy assures
the selection of all the sub-halos and many more with mass lower than 1011M#.

Finally, in order to study the possible redshift evolution of the σ − M scaling relation we
selected 16 redshifts between z = 0 and z = 2 within the 128 snapshots stored by The300.

The final selection of GC contains more than 1000 clusters at each redshift both in the
Gadget-X and GIZMO catalogs.

3 Scaling relation results

In analogy with the previous works in literature on the dynamical scaling relation [e.g. 11–
13], we characterised the parameters of a power law relation

σ200

km s−1 = A
(

h(z) M200

1015 M#

)α
, (1)

where h(z) is the Hubble factor as a function of redshift, while σ200 and M200 are the velocity
dispersion and the mass of the cluster within the radius R200, respectively. For all the clusters

Figure 1. Sub-halos velocity dispersion σ200 as a function of total mass h(z)M200, at z = 0, for the
Gadget-X simulation run. The right and left top panels show the cases ngal ≥ 5 and ngal ≥ 10, respec-
tively. The solid black line represents the best-fitting relation. In the bottom panels there are depicted
the corresponding residuals.

Figure 2. Galaxies velocity dispersionσ200 as a function of total mass h(z)M200, at z = 0, for the Gadget-
X simulation run. The right and left top panels show the cases ngal ≥ 5 and ngal ≥ 10, respectively.
The solid black line represents the best-fitting relation. In the bottom panels there are depicted the
corresponding residuals.

described in sec. 2.1 we used the Biweight estimator [14] to estimate the one-dimensional
velocity dispersion σ200 = σ3D

200/
√

3. textbfThe uncertainty on the velocity dispersion in each
main projection are estimated via bootstrap and than propagated to obtain the error an the
one-dimensional dispersion. Subsequently, we performed the fit with a linear function in the
relation in the logarithmic space by using the python routine scipy.optimize.curve_fit.

In order to investigate the impact of the number of galaxy members on the scaling re-
lation, we performed the entire analysis taking into account two different thresholds for the
minimum number of galaxy members: ngal ≥ 5 and ngal ≥ 10. Figures 1 and 2 show the fitted
relations for the Gadget-X run in the two cases at redshift z = 0 for sub-halos and galaxies,
respectively. We see that the slope of the best fit is less steep when the minimum number
of galaxy members is 10. Furthermore, the scatter is higher in the case with ngal ≥ 5. We
can explain these evidence with the combinations of two effects. From one side the scat-
ter increases because lower the number of galaxies higher the uncertainties on the velocity

3
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Hydrostatic mass bias 5

5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.
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Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.
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Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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Figure 6. Best fit SZ mass bias in bins of SZ mass (top) and bins
of redshift (bottom) for 61 clusters, both showing no significant
trend within the uncertainties. Each bin contains roughly equal
numbers of clusters. The red line and area show the best fit results
and 1� uncertainty for the full sample.

changes to fgas = 0.126±0.007 for the remaining 27 clusters.
For the 8 clusters in our sample which Mantz et al. (2015b)
named relaxed, we find a value of 0.139 ± 0.014, consistent
within the errorbars with our other estimates and the value
of Mantz et al. (2016).

7 CONCLUSIONS

Galaxy cluster counts have the potential to put tight con-
straints on cosmological parameters, if large numbers of clus-
ters with accurate mass estimates are observed. The Multi
Epoch Nearby Cluster Survey and Canadian Cluster Com-
parison Project provide high quality optical imaging data in
the g and r filters observed using the Canada-France-Hawaii
Telescope (CFHT) for a sample of ⇠100 galaxy clusters. We
performed a thorough weak-lensing analysis on this sample,
excluding some of the clusters because of their very high
Galactic extinction, which prevented us from establishing a
robust correction for contamination by cluster members for
those clusters. We used updated redshift catalogues of the

COSMOS field to determine a mean lensing e�ciency reli-
able to 9% for the highest redshift clusters and on average
accurate to ⇠2%. The photometric redshift distribution is
one of the largest sources of error in our analysis. For the
low redshift MENeaCS clusters trading o↵ multi-wavelength
information against number of observed clusters has proven
worth-while. However, precision can be increased using red-
shift distributions for individual galaxies (Applegate et al.
2014) and our analysis is limited by the depth and area of
the auxiliary redshift catalogues.

The radial profiles of the corrected tangential shear were
fit with parametric models to estimate cluster masses, as well
as used to determine aperture masses. Both methods are in
agreement on the masses. We calibrate our mass modelling
pipelines using the state-of-the-art HYDRANGEA numeri-
cal simulations of galaxy clusters. Both methods show only
.4% percent level biases with uncertainties of 2-3% at R500

in the cluster simulations and we corrected for these biases.
The overall average systematic uncertainty for our masses is
.5% similar to the statistical uncertainty.

Finally, we calculated the scaling relation between
weak-lensing masses and Planck mass estimates for 61 clus-
ters, resulting in a bias of 1 � b = 0.84 ± 0.04. This value
is somewhat higher than the estimate in H15, mainly due
to the use of the updated photometric redshift catalogue.
The sample shows no significant trend with either mass or
redshift, but simple tests show that our selection of clusters
might result in a slightly higher 1 � b up to a maximum
change of 0.07. This highlights the importance of modelling
the selection function for cosmological analyses. The gas
fraction of clusters relates to the matter density in the Uni-
verse, and for relaxed clusters the uncertainty in this relation
from baryonic processes should be small. A comparison of
lensing mass and gas mass at r500 produced a gas fraction
Mgas/MWL = 0.139±0.014 for 8 relaxed clusters. This value
is consistent with the value found by Mantz et al. (2016).

Weak-lensing calibration of cluster observables is the
limiting factor for cluster cosmology and large weak-lensing
surveys are required for this calibration. The combination
of the MENeaCS and CCCP surveys provides such a large
sample for the some of the most massive clusters in the Uni-
verse, over a large range of redshifts and cluster masses.
Future improvements of the weak-lensing analysis, in par-
ticular the photometric redshift distribution and calibration
of mass modelling with simulations, will further improve our
ability to constrain the scaling relations.
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5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.
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Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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5 RESULTS

In this section we present the results of our work. First, in Section 5.1,
we study the HE mass bias dependencies on the redshift, mass,
and on all other parameters: the concentration, the mass growth,
the relaxation parameter and the triaxiality. We performed all these
analyses at the three overdensities (� = 2500, 500, 200) and at all
considered redshifts. However, most of the figures related to this part
of the work (with the exception of the first) are only presented with
� = 500 and at one specific redshift because we do not find a strong
dependence of the results on either of these two quantities.

Secondly, in Section 5.2, we analyse how the HE mass bias varies
throughout strong merger events. In this case, we only analyse the
behaviour of the bias at R200, since we take as reference the mergers
analysis in Contreras-Santos et al. (2022), which is done considering
the entire cluster volume and thus at overdensity 200.

5.1 Bias correlations

5.1.1 Redshift dependence

The variation of 1�� and 1� along the redshift range is presented
in Fig. 1 at the 3 overdensities and for the different cluster dynam-
ical states defined with the dynamical-state parameter, �DS. For all
overdensities, the un-relaxed clusters (purple shaded region) have the
largest scatter. Interestingly, this large scatter is mostly caused by the
presence of low-value bias. We will present the reason in Section 5.2.
No dependence of the bias on the redshift up to I = 1.25 is detected
in agreement with Le Brun et al. 2017; Henson et al. 2017; Salvati
et al. 2018; Koukoufilippas et al. 2020. Furthermore, we notice that
the median 12500 is very similar to the median 1500 and that both
are close to 0.1 (10% of bias) and as such systematically lower than
1200 (close to ⇠ 0.2). This is in agreement with Gianfagna et al.
(2021), which showed a declining 1 from outer to inner radius. This
is occurring despite the differences both in the code (GADGET2
versus GADGET-X) and in the baryon models. Note, however, that
the SZ and X median 1500 in Gianfagna et al. (2021) is slightly larger
than this work. The biases dispersion at '2500 seems to be slightly
larger with respect to the other overdensities, this is probably due
to the larger deviations in the cluster core properties, which could
marginally affect the profile at '2500. In T�� T���� H������, the
simulation produce a more diverse variety of simulated cores with
respect to the GADGET2 code, and in some situations, the simulated
clusters are extremely peaked at the centre (see Campitiello et al.
2022).

5.1.2 Concentration

The concentration parameter 2500 of a halo is representative of the
halo’s central density. In presence of a disturbed system the con-
centration is typically lower since the X-ray peak might have been
destroyed by a merger event which also could have brought more
mass in the external regions. For this it might be interesting to see
if there is any correlation between the HE mass bias and the NFW
concentration parameter.

The bias as a function of the concentration is represented in Fig.
2 where the relaxed, disturbed and hybrid clusters are introduced
with different symbols and colours. Hybrid clusters are these with
either 5� < 0.1 or �� < 0.1. The two quantities do not show any
dependence, as clear from the trend of the median value shown
with a black line. We notice however that the scatter in the bias
substantially decreases going towards larger concentration values.

Figure 1. The redshift evolution of the biases, �SZ (left panels) and �X (right
panels). The median values of the bias for all clusters, relaxed and un-relaxed
clusters are represented with dark cyan crosses, green diamonds and purple
stars respectively. The shaded regions represent the 16�� and 84�� percentiles.
The bias estimated at R200, R500 and R2500 are represented in the top, middle
and bottom panels respectively. The dashed lines show the 0 and 0.2 bias for
reference.

Table 5. Table of the biases for the 50 clusters with the highest (first row)
and lowest (third row) NFW concentration and the remaining clusters (second
row) for the � = 0.59 0 sample. We report the median value (�), the 16th and
84th percentiles (�16 and �84), and their half difference (�2) at �500.

�500 ��� ��
� �16 �84 �2 m �16 �84 �2

high 0.11 0.07 0.19 0.06 0.12 0.05 0.24 0.10

med 0.11 0.00 0.18 0.09 0.13 0.00 0.24 0.12

low 0.06 -0.03 0.22 0.12 0.11 -0.07 0.24 0.15

This is quantified by the half difference between the 16th and the
84th percentiles, 32 = 0.5⇥ (?84 � ?16) reported in Table 5 together
with the bias percentiles. The value of 32 decreases from low (third
row) to high concentrated clusters (first row) by 70-80%. This trend –
reduced scatter with increasing concentration – is expected because
most of the clusters with higher concentration are relaxed.
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Figure 1.8: HE mass bias as a function of redshift for SZ (left) and X-ray (right).
From top to bottom, the mass bias at different overdensities is shown. The
bias value is approximately constant: between 0.1 and 0.2. Credit: Gianfagna
et al. (2023).
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Figure 6. Best fit SZ mass bias in bins of SZ mass (top) and bins
of redshift (bottom) for 61 clusters, both showing no significant
trend within the uncertainties. Each bin contains roughly equal
numbers of clusters. The red line and area show the best fit results
and 1� uncertainty for the full sample.

changes to fgas = 0.126±0.007 for the remaining 27 clusters.
For the 8 clusters in our sample which Mantz et al. (2015b)
named relaxed, we find a value of 0.139 ± 0.014, consistent
within the errorbars with our other estimates and the value
of Mantz et al. (2016).

7 CONCLUSIONS

Galaxy cluster counts have the potential to put tight con-
straints on cosmological parameters, if large numbers of clus-
ters with accurate mass estimates are observed. The Multi
Epoch Nearby Cluster Survey and Canadian Cluster Com-
parison Project provide high quality optical imaging data in
the g and r filters observed using the Canada-France-Hawaii
Telescope (CFHT) for a sample of ⇠100 galaxy clusters. We
performed a thorough weak-lensing analysis on this sample,
excluding some of the clusters because of their very high
Galactic extinction, which prevented us from establishing a
robust correction for contamination by cluster members for
those clusters. We used updated redshift catalogues of the

COSMOS field to determine a mean lensing e�ciency reli-
able to 9% for the highest redshift clusters and on average
accurate to ⇠2%. The photometric redshift distribution is
one of the largest sources of error in our analysis. For the
low redshift MENeaCS clusters trading o↵ multi-wavelength
information against number of observed clusters has proven
worth-while. However, precision can be increased using red-
shift distributions for individual galaxies (Applegate et al.
2014) and our analysis is limited by the depth and area of
the auxiliary redshift catalogues.

The radial profiles of the corrected tangential shear were
fit with parametric models to estimate cluster masses, as well
as used to determine aperture masses. Both methods are in
agreement on the masses. We calibrate our mass modelling
pipelines using the state-of-the-art HYDRANGEA numeri-
cal simulations of galaxy clusters. Both methods show only
.4% percent level biases with uncertainties of 2-3% at R500

in the cluster simulations and we corrected for these biases.
The overall average systematic uncertainty for our masses is
.5% similar to the statistical uncertainty.

Finally, we calculated the scaling relation between
weak-lensing masses and Planck mass estimates for 61 clus-
ters, resulting in a bias of 1 � b = 0.84 ± 0.04. This value
is somewhat higher than the estimate in H15, mainly due
to the use of the updated photometric redshift catalogue.
The sample shows no significant trend with either mass or
redshift, but simple tests show that our selection of clusters
might result in a slightly higher 1 � b up to a maximum
change of 0.07. This highlights the importance of modelling
the selection function for cosmological analyses. The gas
fraction of clusters relates to the matter density in the Uni-
verse, and for relaxed clusters the uncertainty in this relation
from baryonic processes should be small. A comparison of
lensing mass and gas mass at r500 produced a gas fraction
Mgas/MWL = 0.139±0.014 for 8 relaxed clusters. This value
is consistent with the value found by Mantz et al. (2016).

Weak-lensing calibration of cluster observables is the
limiting factor for cluster cosmology and large weak-lensing
surveys are required for this calibration. The combination
of the MENeaCS and CCCP surveys provides such a large
sample for the some of the most massive clusters in the Uni-
verse, over a large range of redshifts and cluster masses.
Future improvements of the weak-lensing analysis, in par-
ticular the photometric redshift distribution and calibration
of mass modelling with simulations, will further improve our
ability to constrain the scaling relations.
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SZ mass assuming HE divided by the WL mass. 
The results show a biased of 1-b=0.84. 
Herbonnet+2019


Simulations are powerful tools to guide observations, test 
pipelines, calibrate scaling relations, etc.



• Galaxy clusters are important for cosmology and 
astrophysics-> large volumes+small scales


• Big cosmological simulations of  volume 
 include only Dark Matter, e.g., 

Multidark Planck (MDPL2) simulation.


• Hydrodynamical simulations are smaller and 
typically lack statistics of massive galaxy 
clusters ( ).


• The solution is to run zoom-in simulations.  High 
resolution + hydrodynamics only in the region of 
interest.


• The Three Hundred (The300) project is a set of 
324 zoom-in hydrodynamical simulations 
centred at the most massive clusters at z=0 of 
the MDPL2 simulation-> 324 spheres of  

.

(1h−1Gpc)3

∼ 1015M⊙

r = 15h−1Mpc

12

Cosmological simulations: The Three Hundred Project

Figure 1.9: Illustration of zoom-in simulations. In the background, a slice through
the dark matter-only MultiDark Planck simulation. In front, the re-simulated clusters
of The-300 project with full hydrodynamics. Credits: https://www.cosmosim.
org and https://music.ft.uam.es.
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• The simulations were run within ΛCDM  
cosmology and the parameters are 
consistent with the Planck collaboration.


• , 
 . 


• G r a v i t y a n d h y d r o d y n a m i c s  
implemented at the particle level. 


• The rest o f the processes are 
developed as analytical prescriptions 
known as “subgrid physics”, such as 
stellar feedback and AGN feedback.


With the zoom-in technique, the Lagrangian regions of each of the 324 regions are identified back to the initial conditions and all the particles 
inside are split into dark matter and gas. 

mDM = 12.7 × 108h−1M⊙
mgas = 2.23 × 108h−1M⊙

13

Cosmological simulations: The Three Hundred Project
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MUSIC run: SPH, but no black holes


GADGET-X run: SPH with AGN 
feedback


GIZMO-SIMBA run:  MFM solver 
and more efficient AGN feedback.


DM-only 3K (same as hydro), 7K y 
15K particle resolution.


Galaxy SAM: SAG, Galactic and 
SAGE for DM 3K (Knebe, A. +2017) . 
SAG and SAGE for 7k y 15k (Gómez, 
J.+2024).


T�� T���� H������: G����-S���� 7

Figure 1. The baryon fractions within '500: gas fractions on the left-hand side panel and stellar fractions on the right-hand side panel at I = 0. Observational
and di�erent simulation results can be crossly viewed from legends in both figures. The symbols and/or line styles for the same reference result are the same in
both figures. Therefore, we only show them once in either legend. The statistical results from T�� T���� H������ project: G�����-X and G����-S����, are
presented with both symbols and lines. Note that the error bars for the two runs are marking the 16C⌘ �84C⌘ percentiles. For the statistical/fitting results, we only
include the errorbar (light shaded areas in both figures) for the most recent result – Akino et al. (2021). The vertical dashed lines indicate the mass completeness
for the clusters from T�� T���� H������ project (see Cui 2022, for details) and the horizontal line in the left-hand-side figure is the cosmological baryon
fraction from the Planck cosmology (Planck Collaboration et al. 2016). Note that all the fitting results only cover the region of the observed data points. These
two plots show that G�����-X is very similar to the FABLE and the C-EAGLE simulations in both fractions; there is little di�erence between G�����-X and
G����-S���� in the stellar fraction, but the gas fraction from G����-S���� shows a much steeper slope. Both fractions from the observational data present a
large scatter.

wards lower mass halos, with G����-S���� producing particularly
low gas fractions in groups, and lower stellar fractions compared to
observations of individual 1014

"� systems. The origin of the di�er-
ences between G�����-X and G����-S���� are being investigated
by studying their density profiles in Li et al. (in preparation). Ob-
servationally, deeper and more precise estimation of the gas fraction
from next-generation surveys such as NIKA2 (Adam et al. 2018),
CMB-S4 (Abazajian et al. 2016) using the Sunyaev-Zeldovich ef-
fect8 and ATHENA (Nandra et al. 2013) and Lynx (The Lynx Team
2018) in the X-rays, will be required to test the input galaxy forma-
tion physics. In the meantime, we can look into other properties to
distinguish between these simulations.

4.1.2 The evolution of the baryon fractions at the same halo mass

It has been suggested that cluster baryon fractions (both gas and
stellar) depend weakly on redshift, but strongly on cluster mass (see
Chiu et al. 2018 from observation side, or Planelles et al. 2013;
Truong et al. 2018 from simulations). At first glance this seems
paradoxical within hierarchical structure formation models: how can
the baryonic scaling relations vary steeply with mass and still remain

8 Interested readers are referred to Yang et al. (2022) on how the next-
generation SZ observations can be used to distinguish di�erent baryon mod-
els.

roughly constant in time as structures grow? In ⇤CDM, big halos are
mostly formed later by merging with smaller halos. If we ignore the
baryon processes and halo accretion at low redshift, given that the
smaller (group-sized) halos have low gas fractions and high stellar
fractions, the later-formed massive (cluster) halos should have even
lower gas fractions and higher stellar fractions, opposite to what is
observed. In this and the following section, we will study the redshift
evolution of the galaxy clusters in two ways, by binning at the same
halo mass at all redshifts and by tracking individual halos. The former,
discussed in this section, highlights how baryon fractions change for
a sample selected at a given mass, while the latter, discussed in the
next section explicitly shows the true evolution of baryon fractions
as halos grow hierarchically.

For the gas fraction evolution shown in the left panel of Figure 2,
at all redshifts the clusters show increasing gas fractions with mass,
approaching but not reaching the full expected baryonic budget (hor-
izontal dashed line). There is modest evolution, with the highest gas
fractions at high redshifts. Higher gas fractions are expected at early
epochs when cooling is rapid and feedback processes are dominated
by star formation whose energetics are typically not su�cient to
unbind gas from protoclusters.

Comparing between G�����-X and G����-S����, the latter has
significantly more evolution at lower masses, and overall shows lower
gas fractions. In Li et al. (2022, in prep.) we identify that the gas
fraction di�erence between G�����-X and G����-S���� owes to
G�����-X tending to have a much higher gas density in the halo

MNRAS 000, 1–20 (2022)

The baryon fractions within : gas fractions on the left-hand side panel and stellar 
fractions on the right-hand side panel at 𝑧 = 0.  The AGN feedback mechanism is very 

efficient in the GIZMO-SIMBA simulation blowing gas well outside the virial radius. Cui et al. 
(2022)


R500

Cosmological simulations: The Three Hundred Project
The300 runs
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MUSIC run: SPH, but no black holes


GADGET-X run: SPH with AGN 
feedback 

GIZMO-SIMBA run:  MFM 
solver and more efficient AGN 
feedback. 

DM-only 3K (same as hydro), 7K y 
15K particle resolution.


Galaxy SAM: SAG, Galactic and 
SAGE for DM 3K (Knebe, A. +2017) . 
SAG and SAGE for 7k y 15k (Gómez, 
J.+2024).

T�� T���� H������: G����-S���� 7

Figure 1. The baryon fractions within '500: gas fractions on the left-hand side panel and stellar fractions on the right-hand side panel at I = 0. Observational
and di�erent simulation results can be crossly viewed from legends in both figures. The symbols and/or line styles for the same reference result are the same in
both figures. Therefore, we only show them once in either legend. The statistical results from T�� T���� H������ project: G�����-X and G����-S����, are
presented with both symbols and lines. Note that the error bars for the two runs are marking the 16C⌘ �84C⌘ percentiles. For the statistical/fitting results, we only
include the errorbar (light shaded areas in both figures) for the most recent result – Akino et al. (2021). The vertical dashed lines indicate the mass completeness
for the clusters from T�� T���� H������ project (see Cui 2022, for details) and the horizontal line in the left-hand-side figure is the cosmological baryon
fraction from the Planck cosmology (Planck Collaboration et al. 2016). Note that all the fitting results only cover the region of the observed data points. These
two plots show that G�����-X is very similar to the FABLE and the C-EAGLE simulations in both fractions; there is little di�erence between G�����-X and
G����-S���� in the stellar fraction, but the gas fraction from G����-S���� shows a much steeper slope. Both fractions from the observational data present a
large scatter.

wards lower mass halos, with G����-S���� producing particularly
low gas fractions in groups, and lower stellar fractions compared to
observations of individual 1014

"� systems. The origin of the di�er-
ences between G�����-X and G����-S���� are being investigated
by studying their density profiles in Li et al. (in preparation). Ob-
servationally, deeper and more precise estimation of the gas fraction
from next-generation surveys such as NIKA2 (Adam et al. 2018),
CMB-S4 (Abazajian et al. 2016) using the Sunyaev-Zeldovich ef-
fect8 and ATHENA (Nandra et al. 2013) and Lynx (The Lynx Team
2018) in the X-rays, will be required to test the input galaxy forma-
tion physics. In the meantime, we can look into other properties to
distinguish between these simulations.

4.1.2 The evolution of the baryon fractions at the same halo mass

It has been suggested that cluster baryon fractions (both gas and
stellar) depend weakly on redshift, but strongly on cluster mass (see
Chiu et al. 2018 from observation side, or Planelles et al. 2013;
Truong et al. 2018 from simulations). At first glance this seems
paradoxical within hierarchical structure formation models: how can
the baryonic scaling relations vary steeply with mass and still remain

8 Interested readers are referred to Yang et al. (2022) on how the next-
generation SZ observations can be used to distinguish di�erent baryon mod-
els.

roughly constant in time as structures grow? In ⇤CDM, big halos are
mostly formed later by merging with smaller halos. If we ignore the
baryon processes and halo accretion at low redshift, given that the
smaller (group-sized) halos have low gas fractions and high stellar
fractions, the later-formed massive (cluster) halos should have even
lower gas fractions and higher stellar fractions, opposite to what is
observed. In this and the following section, we will study the redshift
evolution of the galaxy clusters in two ways, by binning at the same
halo mass at all redshifts and by tracking individual halos. The former,
discussed in this section, highlights how baryon fractions change for
a sample selected at a given mass, while the latter, discussed in the
next section explicitly shows the true evolution of baryon fractions
as halos grow hierarchically.

For the gas fraction evolution shown in the left panel of Figure 2,
at all redshifts the clusters show increasing gas fractions with mass,
approaching but not reaching the full expected baryonic budget (hor-
izontal dashed line). There is modest evolution, with the highest gas
fractions at high redshifts. Higher gas fractions are expected at early
epochs when cooling is rapid and feedback processes are dominated
by star formation whose energetics are typically not su�cient to
unbind gas from protoclusters.

Comparing between G�����-X and G����-S����, the latter has
significantly more evolution at lower masses, and overall shows lower
gas fractions. In Li et al. (2022, in prep.) we identify that the gas
fraction di�erence between G�����-X and G����-S���� owes to
G�����-X tending to have a much higher gas density in the halo
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The baryon fractions within : gas fractions on the left-hand side panel and stellar 
fractions on the right-hand side panel at 𝑧 = 0.  The AGN feedback mechanism is very 

efficient in the GIZMO-SIMBA simulation blowing gas well outside the virial radius. Cui et al. 
(2022)
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Importance of ML 
Cosmological simulations: The Three Hundred Project
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“Traditional methods” to infer masses 
use The300 and assume symmetries of 
The ICM that lead to a bias result, 
Gianfagna+2023 ML methods use The300 data to learn 

directly the underlying relation between 
mass and observables.


The main limitation is the physics 
implemented in the simulations.


In general, ML allows to address 
problems in a different way, o problems 
that were intractable. 

Machine learning
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• The Planck collaboration provides the Compton-
y parameter (SZ) map of the full sky, which is a 
map of the thermal SZ effect. See Planck 2015 results


• A “blind search for galaxy clusters” creates the 
PSZ2 catalogue, with 1653 detections, of which 
at least 1203 are confirmed clusters with 
external datasets. For this work, we only 
considered the objects with measured redshift, a 
total of 1094 cluster with redshift z<1. 

• The SZ effect maps are widely studied, mainly 
because from simulations it is known that the 
integrated Compton-y parameter is a very 
valuable mass proxy. Therefore, the masses 

 of all these clusters were estimated from 
scaling relations.
M500

Planck Satellite

Planck Collaboration: Planck 2015 results. XXII.
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Fig. 2. Reconstructed Planck all-sky Compton parameter maps for NILC (top) and MILCA (bottom) in orthographic projections. The apparent
di↵erence in contrast observed between the NILC and MILCA maps comes from di↵erences in the residual foreground contamination and from
the di↵erences in the filtering applied for display purposes to the original Compton parameter maps. For the MILCA method, filtering out low
multipoles significantly reduces the level of foreground emission in the final y-map. The wavelet basis used in the NILC method was tailored for
tSZ extraction. For details see Planck Collaboration XXII (2016).

A22, page 5 of 24

Planck all-sky Compton parameter map for 
MILCA orthographic projection.  See Planck 
2015 results.


De Andres et al. 2022
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Planck Satellite

Supp. Figure 2: Examples of mock y�maps in different data sets. The SZ maps of selected

clusters corresponding to THE THREE HUNDRED and the Planck data for different masses and

redshifts (rows). The first column represents Clean mock data set, the second column Planck mock

data set and the third column Planck real data set. The first two rows show two nearby clusters,

i.e. z < 0.1, while the third row is for a massive (1015 M�), high redshift z = 0.5, cluster. The

size of the maps is 96x96 pixels and one pixel corresponds to 1.7x1.7 arcmin2.
4

Datasets

Supp. Figure 1: Distributions of mock clusters and real PSZ2 clusters. Cluster mass, M500, dis-

tribution along the redshift for the selected clusters from THE THREE HUNDRED Planck mock data

set (blue) and Planck real data set PSZ2 catalogue (red). Note that for THE THREE HUNDRED

data we show the 3D-dynamical total mass Mtrue. Nevertheless, Planck masses are divided by 0.8

to account for their reported mean hydrostatic mass bias. In the marginal plots, the normalised

distributions are shown.

3
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Model

Train with simulated data

Predict with real data
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Planck Satellite

• We perform a simple mass inference using the 
Y-M scaling relation:





• We derive Y from the original dataset (clean and 
high resolution). The mass  is computed with 
two slopes:  (red, The300) and 

 (blue, Planck). The black points 
corresponds to our CNN estimates (previous 
figure). 


• The blue line follows the Planck data while the 
red line is roughly flat. Therefore, a possible 
explanation lies in the assumed Y-M scaling 
relations.

Nature Astronomy

Article https://doi.org/10.1038/s41550-022-01784-y

Supplementary Section D for more discussions). However, the shaded 
region increases from −0.02+0.09

−0.10

 (standard error of ±0.001) to 
−0.03

+0.14

−0.17

 (standard error of ±0.002), which indicates the impact of 
the instrumental Planck noise in the CNN predictions. We note here 
that the scatter is comparable to the results from ref. 17 (see their  
Fig. 7). Furthermore, we also trained our model to estimate the cluster 
mass M200. The results were poor, in the sense of relatively larger scat-
ter in the bias bt, due to the fact that the signal becomes weak at R > R500 
for the Planck mock dataset. However, M200 can be estimated using the 
Clean mock dataset with a similar accuracy.

Predicting the Planck cluster masses
We simply apply the CNNs trained with the Planck mock dataset to the 
Planck real dataset for predicting their masses (see Methods for a 
detailed description of the datasets). The results are shown in Fig. 2 by 
presenting the relative errors between our CNN masses and the cluster 
masses estimated by Planck, MPlanck

SZ

, as a function of the predicted 
mass, MCNN. Similarly to equation (1), we define

err(M

CNN

,M

Planck

SZ

) =

M

CNN

−M

Planck

SZ

M

CNN

= b

P

, (2)

where bP is the bias of Planck masses with respect to the MCNN. It is noted 
that the cluster masses estimation from Planck is based on the HE 
assumption. Reference 23 has predicted an average mass bias of 
1 − b = 0.8. Different to the results in the case of the Planck mock data-
set, the median value of bP is clearly biased towards a positive value, 
b

P

= 0.11

+0.14

−0.15

 (standard error of ±0.005), for massive clusters 
(MCNN/M⊙ ≳ 4 × 1014). At lower cluster mass, b

P

≈ −0.03

+0.24

−0.27

 (standard 
error of ±0.02), which means a consistent cluster mass between our 
CNN and the Planck estimations. We note that the scatter shown by the 
shaded region in Fig. 2 is also in line with the results in the bottom panel 
of Fig. 1. It is clear that there is about 0.1 difference between this bias 
and the Planck estimated bias.

In the full Planck real dataset, roughly two-thirds of the clusters 
have contamination by point-like sources near their centre, which is not 
present in the simulated maps. To verify whether this is the cause of the 
mass bias difference between our CNN method and the Planck result, 
we select a subsample of the Planck real dataset that does not have any 
relevant radio source or other contaminants in the cluster centre or the 
vicinity (within 10 arcmin). Furthermore, radio emission contamination 
outside of the main halo is substituted with a signal intensity that is 
compatible with instrumental noise. This subsample is named the 
Golden sample and its result is shown in Fig. 2 (bottom). Although this 
Golden sample contains a smaller number of objects, its median bP is in 
good agreement with the result from the full Planck real dataset. For 
the exact values of the biases of the Golden sample and the full Planck 
real dataset, we also refer to Supplementary Section D (see Supplemen-
tary Table 2). Clearly, this bias is not caused by the detected point-like 
contaminants. Therefore, we investigate other possibilities in the fol-
lowing section to explain the difference between MCNN and MPlanck

SZ

.

Understanding the mass bias
Limited to our knowledge on the detailed processes of estimating the 
M

Planck

SZ

, we perform a simple inference of the cluster mass with the 
mock y maps to compare with its CNN mass. It is well known that the 
relation between the integrated Compton-y parameter Y, which is 
proportional to the thermal energy in the ICM24, over an aperture of 
radius R, and the mass inside the same aperture, M, is a power law. 
Accordingly, Y is defined as an integral over an aperture subtended 
by a solid angle Ω:

Y = ∫

Ω

ydΩ ≃

i∈R

∑

i

y

i

Ω
i

, (3)

where Ωi is the area of the pixel i and the sum is performed over the 
image pixels inside R. Here we focus on quantities integrated inside 
R500 to compare our estimation with other masses, for example, MPlanck

SZ

. 
This Y–M scaling law can be written as
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where DA(z) is the angular diameter distance at redshift z and 
E(z) = H(z)/H0 is the redshift evolution of the Hubble H(z) parameter 
where h is its dimensionless value, that is, H = 100 h km s−1 Mpc−1. In 
particular, the fitted parameters slope α and normalization B, for  
ref. 23 are α = 1.79 ± 0.08 and log(B) = −0.19 ± 0.02 at R500. The estimation 
of these parameters is based on the cluster masses from a mass-proxy 
relation from ref. 25. The normalization B parameter is similar between 
The300 clusters and the Planck result. However, the slope of this rela-
tion in The300 is α = 1.63 ± 0.29, which is compatible with a self-similar 
relation with α = 5/3 (ref. 22). It is noted that the large error in the slope 
from The300 is due to a mass-complete fitting process; interested 
readers are referred to ref. 22 for details.

To examine whether the difference in the slope of the Y–M scaling 
relation is the cause of the bias, we derive the Y500 from the original 
mock dataset. It is noted that the R500 estimated in the Amiga Halo 
Finder (AHF) catalogue26 is used here. MSZ is then converted from Y using 
equation (4) with two slopes: α = 1.63 (The300) and α = 1.79 (Planck) 
based on equation (4).

In addition, to meet the Planck results, we applied the same cor-
rection factor 1.2 (from Ysph to Ycyl; ref. 23) to the Y from the original mock 
maps (blue line), whereas for the red line, we simply adopt the fitting 
parameter from ref. 22, which used Ycyl. Here, Ycyl and Ysph are the inte-
grated Compton-y parameter over a cylindrical region and a spherical 
region, respectively.

In Fig. 3, we show the relative errors between MCNN and MSZ as a 
function of MCNN for MSZ masses estimated through the two different 
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Fig. 2 | Comparing CNN predicted cluster mass with the mass estimated by 
Planck. Similar to Fig. 1 but for the full Planck real dataset (top) and the Golden 
sample (bottom). The definition of these considered datasets can be found in 
Methods. The CNN mass is binned such that every mass bin consists of n = 109 
clusters in the case of the Planck real dataset and n = 39 clusters in the case of the 
Golden sample.
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scaling relations. For an easy comparison, the same error for MPlanck

SZ

 in 
Fig. 2 is included as error bars. It is not surprising to see a larger differ-
ence between the two results at higher cluster masses as MSZ is normal-
ized to 6 × 10

14

h

−1

70

M

⊙

. It is clear that the blue dotted-dashed line 
follows the Planck data points very well, and the red dashed line follows 
the distribution whose mean and 1 − σ values are around 0.04+0.05

−0.05

 
(standard error of ±0.0007) at all mass ranges, which is in agreement 
with the result from Fig. 1. Although we use the original high-resolution 
y maps to calculate Y, a similar result is obtained using the Planck mock 
dataset for resolved clusters. In practice, we do not find any noticeable 
difference for clusters whose R500 is greater than 5 pixels. Therefore, a 
possible explanation for the fact that bP is different from 0 lies in the 
intrinsic difference in the assumed Y–M relations between The300 
simulated clusters and the Planck clusters.

As the Y–M relation imposes the difference between Planck and 
The300 simulation and suggests that the root of the bias shown in Fig. 
2 lies in this, we discuss the possible reasons for the differences here. 
From an observational point of view, the uncertainties may come from 
a couple of sources. (1) The calibration of the Y−M relation23 where the 
cluster mass M500 is estimated from X-ray data under the HE assumption. 
Therefore, an HE mass bias bHE with a value of about 0.1–0.2 (see ref. 27 
for discussions on this value difference) will be inherited. Furthermore, 
as shown in ref. 23, the Planck Y−M slope is steeper than several simula-
tions (see Fig. A2 in ref. 23), which have slopes closer to a self-similar 
relation. (2) The Y500 values derived from the y map are integrated out 
to 5 × R500 owing to the large angular resolution of Planck. The angular 
resolution impact on the Y−M relation can be found in ref. 28. Further-
more, the uncertainty in estimating the R500 in observations may also 
play a role29; the mis-centre problems30 may bias the Y500 values as well 
as M500. On the simulation side, the uncertainties in the simulated Y−M 
relation mainly come from the implemented baryon models. However, 

as indicated in refs. 22,31, the same clusters run with three different 
baryon models, such as GADGET-MUSIC, without active galactic nuclei 
(AGN) feedback, GADGET-X, with AGN feedback, and GIZMO-SIMBA, 
with strong AGN feedback, show consistent fitting results on the Y−M 
relation, especially at the massive halo mass end. However, it is worth 
noting that ref. 32 showed that including the low-mass halo will increase 
the slope (see references therein for more discussions); meanwhile, 
ref. 28 also suggested that the angular resolution plays a critical role 
in this relation. Lastly, although this scaling relation from The300 
seems almost independent of the implemented gas physics (see also 
ref. 33), refs. 34[,35 suggested that different baryon models can violate 
this self-similarity. Nevertheless, the weak or no redshift evolution of 
the Y−M relation up to z = 1 is generally in agreement with other works 
(for example, refs. 32,36).

In addition, it is also worth noting that MPlanck

SZ

 and MCNN are intrinsi-
cally different: CNN predictions target the true three-dimensional M500 
based on the physical identified halos in simulation, whereas MPlanck

SZ

 is 
a mass estimated through a calibrated Y−M scaling relation with the 
integrated Y from observed clusters within R500 from two-dimensional 
images. However, as indicated in Fig. A3 in ref. 23, the bias depends on 
the cluster mass—smaller (0.1) at low cluster mass and larger (0.2) at 
the massive end. This trend is in agreement with the bias shown in  
Fig. 2, albeit about 0.1% lower (it is noted that MPlanck

SZ

 used in this work 
is not bias corrected). Furthermore, the Y−M relation from The300 
simulation is in a better agreement with the Planck data at 
1014 M⊙ ≲ M500 ≲ 4 × 1014 M⊙ (see Fig. 10 in ref. 22). Larger deviation is 
found at the more massive cluster end. Lastly, we also tried cross-model 
checks with our CNN, that is, we trained the model with only mock y 
maps of GADGET-X and applied it to GIZMO-SIMBA or GADGET-MUSIC 
mock images (Supplementary Section G). Our results are qualitatively 
in agreement with ref. 37 for a similar approach but to infer cosmological 
parameters. It suggests that different baryon physics models have a 
weak impact on our predictions of M500 at the cluster-mass scale. In 
conclusion, we think that the differences between MPlanck

SZ

 and MCNN may 
mainly result from the Y−M relation. If we trust the MCNN as the true 
three-dimensional mass of the clusters, the bias in ref. 23 may be just 
slightly overestimated.

Conclusions
CNN is a powerful tool that allows us to directly apply theoretical mod-
els or simulation predictions to raw observational data to derive quan-
tities that we are interested in. By training four CNNs with mock 
Planck-like SZ maps and then applying them to real Planck y maps, we 
evaluate their relevance and provide CNN-estimated masses of the 
PSZ2 clusters. We use synthetic clusters selected from The300 simula-
tion to match the PSZ2 clusters in both redshift and mass ranges. The 
mock SZ y maps constitute the Clean mock dataset sharing the same 
beam size smoothing as in the real Planck cluster maps, whereas the 
Planck mock dataset further takes the Planck instrumental noise into 
account. Four CNNs are trained independently by separating the full 
sample (~200,000 images) into 4 different redshift ranges: z ≤ 0.1, 
0.1 < z ≤ 0.2, 0.2 < z ≤ 0.4 and z > 0.4. We show that there are very small 
biases between the CNN masses and the real three-dimensional cluster 
masses M500 for both the Clean mock dataset and the Planck mock 
dataset, and the scatter in the CNN masses is also very low (an intrinsic 
scatter—16th–84th percentiles—of 10% and of 17%, respectively; a stand-
ard error ±σ/√N of 0.1% and of 0.2%, respectively). By applying these 
CNNs trained with the Planck mock dataset to the Planck real dataset 
cluster maps, we provide newly independent CNN-estimated cluster 
masses with the posterior uncertainties from the simulation-based 
inference method. Comparing with the cluster mass estimated by 
Planck mainly with the HE assumption, we find a relevant non-null bias 
bP at higher cluster masses, while MPlanck

SZ

 and MCNN are in agreement for 
low-mass clusters. After performing an experiment, the fact that  
the bias between MCNN and MPlanck

SZ

 is not zero might be caused by the 
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Fig. 3 | Verifying the bias causes with Y–M relation. The relative error 
(MCNN − MSZ)/MCNN as a function of the predicted mass MCNN for different values of 
the parameter α in equation (4). Values from The300 self-scaling relation, where 
α = 1.63, are shown in red dashed line and the parameter used by Planck α = 1.79 in 
blue dotted-dashed line. The shaded red and blue regions correspond to the 
16th–84th percentiles, respectively. The black points represent the median 
values of (M

CNN

−M

Planck

SZ

)/M

CNN

 using Planck real data with an error bar equal to 
the 16th–84th percentiles and x-axis errors show the bin range. The CNN mass is 
binned such that every mass bin consists of n = 109 clusters in the case of Planck 
real dataset and n = 142 y maps in the case of simulated data.

Main result: Understanding the mass 
bias
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A B S T R A C T 
A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which 
unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions 
that introduce an un-preferred bias. In this work, we, for the first time , propose a deep learning method based on the U-Net 
architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at 
multiwavelengths. The model is trained with a large data set of simulated images from clusters of THE THREE HUNDRED PROJECT . 
Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the 
method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass 
distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo 
mass is almost unbiased, around 1 per cent for the best result from multi vie w, and the scatter is also very small, basically within 
3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the 
o v erall matter distribution in galaxy clusters, which can complement the lensing method. 
Key words: methods: numerical – galaxies: clusters: general – cosmology: theory – galaxies: haloes – dark matter – large-scale 
structure of Universe. 

1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
! E-mail: daniel.deandres@uam.es 
† Talento-CM fellow 

Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
1 https://www.sdss.org 
2 https:// science.nasa.gov/ mission/ hubble 
3 https://www.darkenergysurv e y.org 
4 https:// www.j-pas.org/ surv e y 
5 https://www.jwst.nasa.gov 
6 https:// www.esa.int/ Science Exploration/ Space Science/ Euclid 

© The Author(s) 2024. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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• Observations of galaxy clusters are numerous in X-ray, SZ and optical. For instance, New X-ray 
mission  eROSITA recently presented a catalog of 12,247 clusters observed in X-ray.


• With our method, the overall matter distribution is directly inferred from the ICM observations and 
stars, corresponding to a more accesible approach, complementing the lensing methods.
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Figure 3. U-Net architecture for input dimensions = (80 pix els, 80 pix els, 1 channel) and F = 32. The input image (star, SZ, or X-ray) is down-sampled 
4 times, once per layer through a set of convolution of kernel size K × K. At the very bottom, the down-sampled representation is up-sampled using a similar 
convolutional block to generate the output mass map. Skip connections are used to ensure that the information is not totally lost during the down-sampling 
operations. We remind that dropout is applied to all convolutional layers only in the decoder. 
batch normalization operation (BatchNorm; Ioffe & Szegedy 2015 ) 
is applied after each of the convolutions to impro v e the stability and 
performance of the network. Later, a 2 × 2 max-pooling (e.g. Scherer, 
M ̈uller & Behnke 2010 ) operation down-samples the tensor shape so 
that this is reduced by a factor of 1/2. The subsequent convolutional 
blocks are built with the same architecture, maintaining the kernel 
size of the conv olutions b ut increasing the number of filters by a factor 
of 2, i.e. for the n layer, the filters are F × 2 n − 1 , where n = 1,..., 
N is the layer and N is the maximum number of layers. After down- 
sampling N times, a final convolution C F×2 N−1 

K ×K is applied. Therefore, 
the down-sampling path can be written as a series of convolutions as 
follows: 
Encoder = C F K ×K C F K ×K down −−−−→ 

sampling C F×2 
K ×K C F×2 

K ×K down −−−−→ 
sampling ... 

... down −−−−→ 
sampling C F×2 N−1 

K ×K C F×2 N−1 
K ×K down −−−−→ 

sampling C F×2 N−1 
K ×K (5) 

(ii) The up-sampling path consists of a succession of similar 
convolutional blocks to infer the output mass density map from the 
latent (central layer) representation given by the down-sampling path. 
From this encoded reduced representation, which is a tensor whose 
shape has been decreased by a factor of 1/2 N times and has F × 2 N − 1 
channels, up-sampling operations are applied until the shape of the 
output mass density map is reco v ered. This up-sampling operation 
consists of repeating the nearest points to increase the shape of the 
data by a factor of 2. Then, skip connections are used for the same 
row layers, and thus, information is not bottlenecked in the latent 
representation. At the final decoder step, 1 × 1 convolutions are 
applied to reco v er the filter dimensions of the output mass density 
F = 1. For preventing overfitting, random ‘dropout’ (Hinton et al. 
2012 ) is considered only in the convolutional blocks of the decoder. 
Decoder = up −−−−→ 

sampling C F×2 N−2 
K ×K C F×2 N−2 

K ×K up −−−−→ 
sampling C F×2 N−3 

K ×K C F×2 N−3 
K ×K 

up −−−−→ 
sampling ... up −−−−→ 

sampling C F K ×K C F K ×K C F/ 2 
1 ×1 C 1 1 ×1 (6) 
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Figure 4. Multi vie w 3 approach. Three dif ferent encoders are considered, 
with one down-sampling path per each input view. Then this information is 
concatenated in the internal layer. From this concatenated latent vector, one 
decoder is in charge of the inference of the output mass density map. 
3.1.1 Multivie w approac hes 
This model has the advantage that it can be easily generalized to 
extract information simultaneously from multiple input views. To do 
that two approaches are studied: 

(i) The three different views are combined in a single input tensor 
whose shape is increased as if it were an RGB image. This approach 
is labelled as ‘multi-1’; and 

(ii) Three different encoders are used, one encoder for each input 
view . Subsequently , the three latent vectors are concatenated in 
the internal latent space. One decoder , the generator , is devoted to 
creating mass density maps from the information of this concatenated 
latent space. This approach is labelled as ‘multi-3’ (see Fig. 4 ). 

A summary of all the models used in this work can be found in 
Table 2 . 
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A B S T R A C T 
A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which 
unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions 
that introduce an un-preferred bias. In this work, we, for the first time , propose a deep learning method based on the U-Net 
architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at 
multiwavelengths. The model is trained with a large data set of simulated images from clusters of THE THREE HUNDRED PROJECT . 
Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the 
method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass 
distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo 
mass is almost unbiased, around 1 per cent for the best result from multi vie w, and the scatter is also very small, basically within 
3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the 
o v erall matter distribution in galaxy clusters, which can complement the lensing method. 
Key words: methods: numerical – galaxies: clusters: general – cosmology: theory – galaxies: haloes – dark matter – large-scale 
structure of Universe. 

1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
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Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
1 https://www.sdss.org 
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(10,10,128)

(5,5,256)

• The U-Net model is 
c o n s i d e r e d t h e 
standard for image-to-
image translation. It 
was introduced in 
biomedical imaging.


• We test the MAE loss 
f u n c t i o n a n d t h e 
condi t iona l WGAN 
model. The MAE loss 
function was as good 
as the condit ional 
GAN, so for simplicity 
we considered MAE as 
the best lost function.
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A B S T R A C T 
A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which 
unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions 
that introduce an un-preferred bias. In this work, we, for the first time , propose a deep learning method based on the U-Net 
architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at 
multiwavelengths. The model is trained with a large data set of simulated images from clusters of THE THREE HUNDRED PROJECT . 
Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the 
method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass 
distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo 
mass is almost unbiased, around 1 per cent for the best result from multi vie w, and the scatter is also very small, basically within 
3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the 
o v erall matter distribution in galaxy clusters, which can complement the lensing method. 
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1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
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Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
1 https://www.sdss.org 
2 https:// science.nasa.gov/ mission/ hubble 
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Figure 3. U-Net architecture for input dimensions = (80 pixels, 80 pixels, 1 channel) and F = 32. The input image (star, SZ or X-ray) is down-sampled 4
times, once per layer through a set of convolution of kernel size K ⇥ K. At the very bottom, the down-sampled representation is up-sampled using a similar
convolutional block to generate the output mass map. Skip connections are used to ensure that the information is not totally lost during the down-sampling
operations. We remind that dropout is applied to all convolutional layers only in the decoder.
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Figure 4. Multiview 3 approach. 3 different encoders are considered, with one
down-sampling path per each input view. Then this information is concate-
nated in the internal layer. From this concatenated latent vector, one decoder
is in charge of the inference of the output mass density map.

the predictions. Firstly, we show one example of our predicted maps
in Figure 5 for our different U-Nets accounting for different input
views. The first column on the left shows the three input views cor-
responding to the same galaxy cluster and the ground-truth density
map is located at the top left. The second column shows the predic-
tions for several input bands: SZ, X-ray, star and multiview. The last
column corresponds to the residuals, i.e., the difference between the
prediction and the ground truth.

As a general result, we observe that the predicted mass density
maps from SZ and X-ray inputs are smoother and do not contain
most of the substructures that can be appreciated in the ground-truth

map. This is clear in the last column where the residuals mostly
contain all the missing substructures and they are underestimated as
shown in the figure in blue colour. Conversely, predictions from stars
and from the multiview models contain most of the substructures.
Their residuals are generally closer to zero than the others. We only
show here the multi-3 approach, given the similarity among multi-1
and multi-3 predictions in a human eye test.

This visualisation of density-map residuals in Figure 5 apparently
is not sufficient to numerical quantify the similarity between pre-
dict and true maps. Therefore, we are compelled to utilise a set of
additional metrics to measure the discrepancies between the two.
The considered metrics are the pixel-wise statistics, cylindrical ra-
dial mass profiles, power spectrum and maximum mean discrepancy
which are studied in the following subsections.

4.1 Pixel-wise statistics

One interesting metric is considering the pixel-value differences be-
tween ground truth and predicted maps. We calculate the relative
difference ⇡8 9 between predicted maps �̂8 9 and true maps �8 9 as

⇡
8 9 ,:

=
�̂
8 9 ,:

� �
8 9 ,:

�
8 9 ,:

. (7)

Therefore, the tensor ⇡
8 9 ,:

computes the pixel-wise similarity
between true images and predicted images. The index : here runs
over maps, i.e., all the maps in the test set. Subsequently, the tensor
⇡
8 9 ,:

is flattening to a vector of dimensions 8⇥ 9⇥: and its histogram
as a probability density is represented in Figure 6. We drop the values
of the tensor⇡

8 9 ,:
where the ground-truth signal �

8 9 ,:
equals 0 unless

�̂
8 9 ,:

� �
8 9 ,:

= 0.
The particular values of the median, 16th and 84th percentiles of

the distributions are also displayed in the legend of Figure 6 as:

value+error
�error = median+|84th�median |

� |median�16th | . (8)
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Map Short name Units

Compton-y parameter SZ
Bolometric X-ray surface brightness X-ray erg s�1kpc�2

Star density maps star ⌘
�1M� kpc�2

Mass density maps mass ⌘
�1M� kpc�2

Table 1. Dataset of simulated maps from T�� T���� H������ simulations.

should be not much difference in practice with either luminosity or
stellar mass maps. This is because the galaxies’ luminosity-to-mass
ratio is approximately constant for The300 simulation, see figure 8
of Cui et al. (2018). (c) to apply our ML models to real observa-
tion images, there are still multiple steps to take care of, such as
instruments, and background noise. Therefore, we adopt the stellar
mass maps for simplicity in this concept-proofing paper and leave
the proper reproduction of mock observation images in the following
work.

Mass density maps are generated by projecting the sum of the
masses of all particles, i.e. gas, star, dark matter and black hole
particles in the observer’s line of sight. Similarly, this value is divided
by the surface area of a pixel.

In Figure 2, examples of our simulated maps are displayed for dif-
ferent cluster masses. With Compton-y maps, X-ray surface bright-
ness maps and star density maps, we aim to infer total mass density
maps shown at the bottom by using a deep learning model that is able
to capture the non-linear relations between input (SZ, X-ray, star) and
output (total mass) maps. This model can end-to-end translate one
input map into mass density. The choice of the particular model used
and the training of that model are described in the next section.

3 METHODS

3.1 The Deep Learning Model

The chosen model and its architecture used for the generator of mass
density maps is based on convolutional neural networks following a
U-Net architecture. This model was originally developed for image
segmentation in the field of biological imaging (Ronneberger et al.
2015). In astronomy, some applications followed the original purpose
of segmentation such as removing radio frequency interference (Ak-
eret et al. 2017), but also the U-Net has been successfully considered
for various and different tasks (Milletari et al. 2016; Aragon-Calvo
2019; Berger & Stein 2019; Hausen & Robertson 2020; Lauritsen
et al. 2021; Hong et al. 2021a). The U-Net is characterised by a set of
two paths: the down-sampling path (or encoder) and the up-sampling
path (or decoder). For our application, the considered U-Net is de-
scribed below and represented in Figure 3.

• The down-sampling path consists of a succession of convolu-
tional blocks, each of these applies two K ⇥K convolutions with �

filters (⇠�

K⇥K ), being K the size of the receptive field or the ker-
nel size. After the convolutions, a rectified linear unit operation is
applied (ReLU; Nair & Hinton 2010) to ensure nonlinearity, and a
batch normalisation operation (BatchNorm; Ioffe & Szegedy 2015)
is applied after each of the convolutions to improve the stability and
performance of the network. Later, a 2x2 max-pooling (e.g., Scherer
et al. 2010) operation down-samples the tensor shape so that this is
reduced by a factor of 1/2. The subsequent convolutional blocks are
built with the same architecture, maintaining the kernel size of the
convolutions but increasing the number of filters by a factor of 2, i.e.,
for the = layer, the filters are � ⇥2=�1, where = = 1, ..., # is the layer
and # is the maximum number of layers. After down-sampling #

Model name input maps number of encoders

star star 1
SZ SZ 1

X-ray X-ray 1
multi-1 star, SZ and X-ray 1
multi-3 star, SZ and X-ray 3

Table 2. Models considered in this work. Each is a variation of the U-Net
architecture presented in Figure 3 to account for different inputs.

times, a final convolution ⇠
�⇥2#�1

K⇥K is applied. Therefore, the down-
sampling path can be written as a series of convolutions as follows.

Encoder = ⇠
�

K⇥K⇠
�

K⇥K
down�������!

sampling
⇠
�⇥2
K⇥K⇠

�⇥2
K⇥K

down�������!
sampling

...

... down�������!
sampling

⇠
�⇥2#�1

K⇥K ⇠
�⇥2#�1

K⇥K
down�������!

sampling
⇠
�⇥2#�1

K⇥K (5)

• The up-sampling path consists of a succession of similar con-
volutional blocks to infer the output mass density map from the latent
(central layer) representation given by the down-sampling path. From
this encoded reduced representation, which is a tensor whose shape
has been decreased by a factor of 1/2# times and has � ⇥ 2#�1

channels, up-sampling operations are applied until the shape of the
output mass density map is recovered. This up-sampling operation
consists of repeating the nearest points to increase the shape of the
data by a factor of 2. Then, skip connections are used for the same
row layers, and thus, information is not bottlenecked in the latent rep-
resentation. At the final decoder step, 1 ⇥ 1 convolutions are applied
to recover the filter dimensions of the output mass density F = 1.
For preventing overfitting, random “dropout” (Hinton et al. 2012) is
considered only in the convolutional blocks of the decoder.

Decoder =
up�������!

sampling
⇠
�⇥2#�2

K⇥K ⇠
�⇥2#�2

K⇥K
up�������!

sampling
⇠
�⇥2#�3

K⇥K ⇠
�⇥2#�3

K⇥K

up�������!
sampling

...
up�������!

sampling
⇠
�

K⇥K⇠
�

K⇥K⇠
�/2
1⇥1⇠

1
1⇥1 (6)

3.1.1 Multiview approaches

This model has the advantage that it can be easily generalised to
extract information simultaneously from multiple input views. To do
that two approaches are studied:

(i) The three different views are combined in a single input tensor
whose shape is increased as if it were an RGB image. This approach
is labelled as “multi-1”; and

(ii) Three different encoders are used, one encoder for each input
view. Subsequently, the three latent vectors are concatenated in the
internal latent space. One decoder, the generator, is devoted to cre-
ating mass density maps from the information of this concatenated
latent space. This approach is labelled as “multi-3” (see Figure 4).

A summary of all the models used in this work can be found in
Table 2.

3.2 Training and validation

According to the description given in the previous section, we con-
sider the following hyperparameters for our model: the number of
channels or filters (�), the size of the kernel in the convolutions (K),
the number of layers in both the encoder and decoder architectures
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• We trained 5 models in our work depending on the 
input, each a variation of the U-Net architecture.


• We have three single-input models star, SZ, and 
X-ray. For instance, the mass inferred from only 
star maps.


• Two multi-input models: one encoder or three 
encoders. These efficiently combine star, SZ and 
X-ray. 


• At the end we have 5 different inferred mass 
maps to compare with regarding of the input 
values or model. This is discussed in the results 
section.
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Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
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1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
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Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
1 https://www.sdss.org 
2 https:// science.nasa.gov/ mission/ hubble 
3 https://www.darkenergysurv e y.org 
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Figure 5. The first column on the left corresponds to the input maps (SZ, X-ray and stars) and the ground-truth mass density map. In the second column from top
to bottom, we show the mass map predictions of our U-Net when training with SZ, X-ray, star or multiview (multi-3). The residuals are defined as the difference
between the prediction and the ground-truth maps. The size of all maps is 2 ⇥ '200.

In this part, we also study the performance of each input map to
infer the predicted mass map at different apertures around the cluster.
In the left panel, pixel values inside the whole map are considered,
in the middle only the values ⇡

8 9 ,:
inside '500 are displayed and

in the right panel only values inside '500/2. Firstly, for the three
panels in Figure 6, the same trend is observed: the multiview-3 is

the most accurate, followed very closely by the multiview-1, using
star density maps as input corresponds to the third most accurate
model while considering X-ray and SZ as inputs results in a higher
relative error, which is consistent to the expectation from Figure 5.
Furthermore, this can be appreciated in the legend of Figure 6 that all
the models are slightly biased mostly towards negative values, besides
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We inferred the matter distribution from the single-input SZ model. The predicted mass 
distribution lacks high spatial frequency (sub)structures. This fact can be appreciated more in 
the residual map (difference between “ground-truth” and “prediction”)
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between the prediction and the ground-truth maps. The size of all maps is 2 ⇥ '200.

In this part, we also study the performance of each input map to
infer the predicted mass map at different apertures around the cluster.
In the left panel, pixel values inside the whole map are considered,
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in the right panel only values inside '500/2. Firstly, for the three
panels in Figure 6, the same trend is observed: the multiview-3 is

the most accurate, followed very closely by the multiview-1, using
star density maps as input corresponds to the third most accurate
model while considering X-ray and SZ as inputs results in a higher
relative error, which is consistent to the expectation from Figure 5.
Furthermore, this can be appreciated in the legend of Figure 6 that all
the models are slightly biased mostly towards negative values, besides
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A B S T R A C T 
A galaxy cluster as the most massive gravitationally bound object in the Universe, is dominated by dark matter, which 
unfortunately can only be investigated through its interaction with the luminous baryons with some simplified assumptions 
that introduce an un-preferred bias. In this work, we, for the first time , propose a deep learning method based on the U-Net 
architecture, to directly infer the projected total mass density map from idealized observations of simulated galaxy clusters at 
multiwavelengths. The model is trained with a large data set of simulated images from clusters of THE THREE HUNDRED PROJECT . 
Although machine learning (ML) models do not depend on the assumptions of the dynamics of the intracluster medium, our 
whole method relies on the choice of the physics implemented in the hydrodynamic simulations, which is a limitation of the 
method. Through different metrics to assess the fidelity of the inferred density map, we show that the predicted total mass 
distribution is in very good agreement with the true simulated cluster. Therefore, it is not surprising to see the integrated halo 
mass is almost unbiased, around 1 per cent for the best result from multi vie w, and the scatter is also very small, basically within 
3 per cent. This result suggests that this ML method provides an alternative and more accessible approach to reconstructing the 
o v erall matter distribution in galaxy clusters, which can complement the lensing method. 
Key words: methods: numerical – galaxies: clusters: general – cosmology: theory – galaxies: haloes – dark matter – large-scale 
structure of Universe. 

1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
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Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
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We inferred the matter distribution from the single-input X-ray model. The predicted mass 
distribution lacks (again) high spatial frequency (sub)structures. This fact can be appreciated 
more in the residual map (difference between “ground-truth” and “prediction”)
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Figure 5. The first column on the left corresponds to the input maps (SZ, X-ray and stars) and the ground-truth mass density map. In the second column from top
to bottom, we show the mass map predictions of our U-Net when training with SZ, X-ray, star or multiview (multi-3). The residuals are defined as the difference
between the prediction and the ground-truth maps. The size of all maps is 2 ⇥ '200.

In this part, we also study the performance of each input map to
infer the predicted mass map at different apertures around the cluster.
In the left panel, pixel values inside the whole map are considered,
in the middle only the values ⇡

8 9 ,:
inside '500 are displayed and

in the right panel only values inside '500/2. Firstly, for the three
panels in Figure 6, the same trend is observed: the multiview-3 is

the most accurate, followed very closely by the multiview-1, using
star density maps as input corresponds to the third most accurate
model while considering X-ray and SZ as inputs results in a higher
relative error, which is consistent to the expectation from Figure 5.
Furthermore, this can be appreciated in the legend of Figure 6 that all
the models are slightly biased mostly towards negative values, besides
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We inferred the matter distribution from the single-input star model. The predicted mass 
distribution contains some high spatial frequency (sub)structures. The residual map is a density 
field based on low spatial frequency structures.

AI-assisted cluster mass distribution 7

SZ

X-ray

star

ground-truth
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1  I N T RO D U C T I O N  
Estimating the matter content in galaxy clusters (see Kravtsov 
& Borgani 2012 , for a re vie w) is crucial for cosmological 
studies due to the fact that they are the biggest gravitation- 
ally bound objects originating from small density fluctuations 
in the early universe. Thus cosmological parameters can be 
constrained by studying the abundance of galaxy clusters as a 
function of the mass and redshift (e.g. Allen, Evrard & Mantz 
2011 ; Planck Collaboration XXIV 2016b ; Pratt et al. 2019 ; 
Salvati et al. 2022 ). Galaxy clusters are mainly composed of 
dark matter (DM), which is about 80 per cent of their to- 
tal mass, diffused hot gas (about 12 per cent), i.e. intracluster 
medium (ICM), and stars, mainly in galaxies (the remaining 8 
per cent). 
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Galaxies within clusters are normally observed at different optical 
bands. Both ground-based and space-based instruments have been 
used to measure these galaxy properties through their spectrum 
energy distributions. F or e xample, the Sloan Digital Sk y telescope 
(SDSS 1 ) and the Hubble Space Telescope (HST 2 ) have been crucial 
for the studies of galaxy clusters as well as cosmology. The recent 
photometric surv e ys, e.g. the Dark Energy Surv e y (DES 3 ) using the 
Dark Energy Camera and the Javalambre Physics of the Acceler- 
ating Universe Astrophysical Survey J-PAS 4 from the Javalambre 
Surv e y Telescope, pro vide an unprecedented amount of data for 
understanding our Universe. Not to mention the recently launched 
space telescopes James Webb Space Telescope ( JWST 5 ) and Euclid. 6 
1 https://www.sdss.org 
2 https:// science.nasa.gov/ mission/ hubble 
3 https://www.darkenergysurv e y.org 
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frequency structures. The overall scatter is reduced by a factor of 1/2.
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Figure 5. The first column on the left corresponds to the input maps (SZ, X-ray and stars) and the ground-truth mass density map. In the second column from top
to bottom, we show the mass map predictions of our U-Net when training with SZ, X-ray, star or multiview (multi-3). The residuals are defined as the difference
between the prediction and the ground-truth maps. The size of all maps is 2 ⇥ '200.

In this part, we also study the performance of each input map to
infer the predicted mass map at different apertures around the cluster.
In the left panel, pixel values inside the whole map are considered,
in the middle only the values ⇡

8 9 ,:
inside '500 are displayed and

in the right panel only values inside '500/2. Firstly, for the three
panels in Figure 6, the same trend is observed: the multiview-3 is

the most accurate, followed very closely by the multiview-1, using
star density maps as input corresponds to the third most accurate
model while considering X-ray and SZ as inputs results in a higher
relative error, which is consistent to the expectation from Figure 5.
Furthermore, this can be appreciated in the legend of Figure 6 that all
the models are slightly biased mostly towards negative values, besides
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ABSTRACT
Hydrodynamical simulations play a fundamental role in modern cosmological research, serving as a crucial bridge between
theoretical predictions and observational data. However, due to their computational intensity, these simulations are currently
constrained to relatively small volumes. Therefore, this study investigates the feasibility of utilising dark matter-only simulations
to generate observable maps of galaxy clusters using a deep learning approach based on the U-Net architecture. We focus on
reconstructing Compton-y parameter maps (SZ maps) and bolometric X-ray surface brightness maps (X-ray maps) from total
mass density maps. We leverage data from T�� T���� H������ simulations, selecting galaxy clusters ranging in mass from
1013.5

⌘
�1
"�  "200  1015.5

⌘
�1
"� . Despite the machine learning models being independent of baryonic matter assumptions,

a notable limitation is their dependency on the underlying physics of hydrodynamical simulations. To evaluate the reliability of
our generated observable maps, we employ various metrics and compare the observable-mass scaling relations. For clusters with
masses greater than 2 ⇥ 1014

⌘
�1
"� , the predictions show excellent agreement with the ground-truth datasets, with percentage

errors averaging (0.5±0.1)% for the parameters of the scaling laws.

Key words:
methods: data analysis – galaxies: clusters: general - techniques: image processing - galaxies: haloes - dark matter – machine
learning.

1 INTRODUCTION

Galaxy clusters are the largest gravitationally bound structures in
the universe. The formation of these clusters involves the collapse
of the most significant overdensities within the initial density field,
driven by intricate gravitational dynamics and baryonic matter in-
teractions associated with galaxy formation (see, e.g., Allen et al.
2011; Kravtsov & Borgani 2012). Galaxy clusters provide valuable
insights into several key aspects, including the growth of cosmic
structure (Walker et al. 2019), the determination of cosmological pa-
rameters (Planck Collaboration et al. 2016c; Salvati et al. 2022; Chiu
et al. 2023), and the evolution of the hot intracluster medium (ICM
Jones & Forman 1990; Böhringer & Werner 2010). They also pro-
vide insights into the oldest stellar populations (Soares & Rembold
2019) and the impact of supermassive black holes on both galaxies
and surrounding gas (Ferrarese & Merritt 2000). Thus, extensive re-
search into galaxy clusters has greatly enhanced our understanding
of cosmology and dark matter (Battistelli et al. 2016).

¢ andresf.caro@estudiante.uam.es
† daniel.deandres@uam.es
‡ Talento-CM fellow

Observationally, galaxy clusters can be probed using various multi-
wavelength observations. For instance, The Sloan Digital Sky Sur-
vey (SDSS1), the Hubble Space Telescope (HST2) and James Webb
Space Telescope (JWST3) significantly contribute to our understand-
ing of the optical spectrum. Instruments such as XMM-Newton
(CHEX-MATE Collaboration et al. 2021) and eROSITA (Liu et al.
2022) explore the ICM through X-ray observations. The Planck
spacecraft (Planck Collaboration et al. 2016a), the South Pole Tele-
scope (Bleem et al. 2020) and the Atacama Cosmology Telescope
(ACT, Coulton et al. 2024) offer insights into microwave frequencies
via the Sunyaev-Zel’dovich (SZ, Sunyaev & Zeldovich 1972) effect.

In cosmological research, bridging the gap between theoretical
predictions and empirical data by populating dark matter-only simu-
lations with observational baryonic properties has become a funda-
mental endeavour. Various computational techniques, such as Halo
Occupation Distribution models (HOD, Peacock & Smith 2000;
Kravtsov et al. 2004), Semi-Analytic Models (SAMs, Croton et al.

1 https://www.sdss.org
2 https://science.nasa.gov/mission/hubble
3 https://www.jwst.nasa.gov
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Figure 4. Visualization of the input, model predictions, and ground-truth maps for the same halo (HID: 128000000000001) in the same region (45) at redshift
0, using data from two simulations: G����� (red box) and G���� (blue box). The first column displays the total mass maps used as input. The second column
shows the U-Net model predictions in both SZ and X-ray formats. The third column depicts the corresponding ground-truth maps. The model predictions are
generated using the U-Net G����+G����� model with a map never seen during training.

on, we will refer to the ground-truth maps as - and the predicted
maps as . .

4.1 Results on the test dataset

We present the results obtained using the test dataset, which com-
prises 503 clusters from the G����� simulation and 504 clusters from
the G���� simulation, each subjected to 29 rotations. For the U-Net
G����+G����� model, we calculate performance metrics separately
for each dataset. When using the G���� simulation for prediction and
metric calculation, we denote this as (w-G����). Similarly, when us-
ing the G����� simulation, we denote it as (w-G�����). Moreover,

to simplify the discussion of scaling relations, we present only the
results of the predictions from the U-Net G����+G����� model.

4.1.1 Metrics

Maximum Mean Discrepancy (MMD), also known as the two-
sample test, is a statistical measure used to determine whether two
distributions, %- and %. , are identical based on samples - and . .
This metric compares statistics, and a value close to zero indicates
that the samples are likely drawn from the same distribution (Gretton
et al. 2008, 2012). Typically employed as a loss function, MMD
finds utility in training generative adversarial neural networks (Li
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Figure 3. Illustration of the U-Net architecture for observable data prediction. The diagram depicts the network’s components and connectivity. Yellow boxes
represent convolutional networks, responsible for extracting features from input volumes. Red boxes indicate network blocks after max-pooling operations,
reducing spatial dimensions while preserving feature channels. Blue boxes represent network blocks after deconvolution (or transposed convolution) operations,
which upsample the feature maps. The numbers within each box denote the number of filters/neurons, while the number on the right-hand side of each box
corresponds to the 2D dimension of the layer. Made with PlotNeuralNet TeX code (Iqbal 2018).

(ii) Standardizing the logarithmically transformed data as G
0 =

(Glog10 � `(-log10))/f(-log10).

Here, - represents the dataset, -log10 is the dataset after logarith-
mic transformation, Glog10 is an individual map from -log10. Note
that the standardisation involves the mean ` and standard deviation
f of the whole dataset.

The models were trained on three distinct hydrodynamical
datasets: G����+G�����, G����, and G�����. Each dataset rep-
resents the use of a specific simulation as training data, resulting in
two separate networks: SZ and X-ray. Consequently, a total of six
individual U-Net models (Table 3) were trained to predict observ-
able maps in galaxy clusters. For data splitting, the training dataset
comprises 80% of the samples, while 20% is allocated to the test-
ing. The training process utilizes the ADAM optimizer (Kingma &
Ba 2014), with the mean absolute error (MAE) serving as the loss
function !, measuring the discrepancy between the predicted and
ground-truth pixel values. The learning rate is adjusted dynamically,
decreasing by a factor of 0.5 if the loss function does not improve
after 5 epochs. When the model completes 100 epochs, the training
is stopped. The training process for each model took approximately
2-3 hours, leveraging the computational power of an NVIDIA A100-
SXM4-40GB GPU. This high-performance GPU facilitated efficient
training, enabling the models to process these large datasets rapidly.

4 RESULTS

In this section, we evaluate the quality of the observable maps that
our model predicts. To achieve a preliminary assessment, we com-
pare the ground-truth maps with their corresponding predicted maps
in the test set through simple visualizations. This initial analysis

Model Notation G���� dataset G����� dataset Observable

U-Net G����+G����� ÿ ÿ SZ & X-ray
U-Net G���� ÿ - SZ & X-ray
U-Net G����� - ÿ SZ & X-ray

Table 3. U-Nets models with their respective training dataset and predicted
observable.

is performed using the G���� and G����� datasets with the U-Net
G����+G����� model. Figure 4 presents this comparison. In the first
column, we show the total mass maps of the same halo for both the
G���� and G����� runs. To the right, we display the predicted ob-
servable maps for the SZ and X-ray from the U-Net G����+G�����
model. The final column contains the corresponding ground-truth
maps. In general, compared to the ground-truth maps, the predicted
SZ maps appear smoother, and the predicted X-ray maps exhibit
larger numerical differences.

While this visualization in Figure 4 provides an initial insight, it
is insufficient for quantitatively assessing the similarity between the
predicted and true maps. Thus, we employ a set of additional metrics
to measure discrepancies and also compare their scaling relations.
To mitigate the risk of numerical errors during metric computations,
each observable map is normalized before applying each metric. This
normalization is done by dividing each observable map by the mean
of the corresponding ground-truth map. The metrics considered are
the Maximum Mean Discrepancy (MMD), the Mean Relative Dif-
ference (MRD), and Structural Similarity Index Measure (S,S,I,M).
These analyses are conducted using the test datasets from the hydro-
dynamical simulations as well as the dataset from dark matter-only
simulations, which are discussed in the following sections. From now
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ABSTRACT
Hydrodynamical simulations play a fundamental role in modern cosmological research, serving as a crucial bridge between
theoretical predictions and observational data. However, due to their computational intensity, these simulations are currently
constrained to relatively small volumes. Therefore, this study investigates the feasibility of utilising dark matter-only simulations
to generate observable maps of galaxy clusters using a deep learning approach based on the U-Net architecture. We focus on
reconstructing Compton-y parameter maps (SZ maps) and bolometric X-ray surface brightness maps (X-ray maps) from total
mass density maps. We leverage data from T�� T���� H������ simulations, selecting galaxy clusters ranging in mass from
1013.5

⌘
�1
"�  "200  1015.5

⌘
�1
"� . Despite the machine learning models being independent of baryonic matter assumptions,

a notable limitation is their dependency on the underlying physics of hydrodynamical simulations. To evaluate the reliability of
our generated observable maps, we employ various metrics and compare the observable-mass scaling relations. For clusters with
masses greater than 2 ⇥ 1014

⌘
�1
"� , the predictions show excellent agreement with the ground-truth datasets, with percentage

errors averaging (0.5±0.1)% for the parameters of the scaling laws.
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1 INTRODUCTION

Galaxy clusters are the largest gravitationally bound structures in
the universe. The formation of these clusters involves the collapse
of the most significant overdensities within the initial density field,
driven by intricate gravitational dynamics and baryonic matter in-
teractions associated with galaxy formation (see, e.g., Allen et al.
2011; Kravtsov & Borgani 2012). Galaxy clusters provide valuable
insights into several key aspects, including the growth of cosmic
structure (Walker et al. 2019), the determination of cosmological pa-
rameters (Planck Collaboration et al. 2016c; Salvati et al. 2022; Chiu
et al. 2023), and the evolution of the hot intracluster medium (ICM
Jones & Forman 1990; Böhringer & Werner 2010). They also pro-
vide insights into the oldest stellar populations (Soares & Rembold
2019) and the impact of supermassive black holes on both galaxies
and surrounding gas (Ferrarese & Merritt 2000). Thus, extensive re-
search into galaxy clusters has greatly enhanced our understanding
of cosmology and dark matter (Battistelli et al. 2016).
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Observationally, galaxy clusters can be probed using various multi-
wavelength observations. For instance, The Sloan Digital Sky Sur-
vey (SDSS1), the Hubble Space Telescope (HST2) and James Webb
Space Telescope (JWST3) significantly contribute to our understand-
ing of the optical spectrum. Instruments such as XMM-Newton
(CHEX-MATE Collaboration et al. 2021) and eROSITA (Liu et al.
2022) explore the ICM through X-ray observations. The Planck
spacecraft (Planck Collaboration et al. 2016a), the South Pole Tele-
scope (Bleem et al. 2020) and the Atacama Cosmology Telescope
(ACT, Coulton et al. 2024) offer insights into microwave frequencies
via the Sunyaev-Zel’dovich (SZ, Sunyaev & Zeldovich 1972) effect.

In cosmological research, bridging the gap between theoretical
predictions and empirical data by populating dark matter-only simu-
lations with observational baryonic properties has become a funda-
mental endeavour. Various computational techniques, such as Halo
Occupation Distribution models (HOD, Peacock & Smith 2000;
Kravtsov et al. 2004), Semi-Analytic Models (SAMs, Croton et al.

1 https://www.sdss.org
2 https://science.nasa.gov/mission/hubble
3 https://www.jwst.nasa.gov
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Figure 3. Illustration of the U-Net architecture for observable data prediction. The diagram depicts the network’s components and connectivity. Yellow boxes
represent convolutional networks, responsible for extracting features from input volumes. Red boxes indicate network blocks after max-pooling operations,
reducing spatial dimensions while preserving feature channels. Blue boxes represent network blocks after deconvolution (or transposed convolution) operations,
which upsample the feature maps. The numbers within each box denote the number of filters/neurons, while the number on the right-hand side of each box
corresponds to the 2D dimension of the layer. Made with PlotNeuralNet TeX code (Iqbal 2018).

(ii) Standardizing the logarithmically transformed data as G
0 =

(Glog10 � `(-log10))/f(-log10).

Here, - represents the dataset, -log10 is the dataset after logarith-
mic transformation, Glog10 is an individual map from -log10. Note
that the standardisation involves the mean ` and standard deviation
f of the whole dataset.

The models were trained on three distinct hydrodynamical
datasets: G����+G�����, G����, and G�����. Each dataset rep-
resents the use of a specific simulation as training data, resulting in
two separate networks: SZ and X-ray. Consequently, a total of six
individual U-Net models (Table 3) were trained to predict observ-
able maps in galaxy clusters. For data splitting, the training dataset
comprises 80% of the samples, while 20% is allocated to the test-
ing. The training process utilizes the ADAM optimizer (Kingma &
Ba 2014), with the mean absolute error (MAE) serving as the loss
function !, measuring the discrepancy between the predicted and
ground-truth pixel values. The learning rate is adjusted dynamically,
decreasing by a factor of 0.5 if the loss function does not improve
after 5 epochs. When the model completes 100 epochs, the training
is stopped. The training process for each model took approximately
2-3 hours, leveraging the computational power of an NVIDIA A100-
SXM4-40GB GPU. This high-performance GPU facilitated efficient
training, enabling the models to process these large datasets rapidly.

4 RESULTS

In this section, we evaluate the quality of the observable maps that
our model predicts. To achieve a preliminary assessment, we com-
pare the ground-truth maps with their corresponding predicted maps
in the test set through simple visualizations. This initial analysis

Model Notation G���� dataset G����� dataset Observable

U-Net G����+G����� ÿ ÿ SZ & X-ray
U-Net G���� ÿ - SZ & X-ray
U-Net G����� - ÿ SZ & X-ray

Table 3. U-Nets models with their respective training dataset and predicted
observable.

is performed using the G���� and G����� datasets with the U-Net
G����+G����� model. Figure 4 presents this comparison. In the first
column, we show the total mass maps of the same halo for both the
G���� and G����� runs. To the right, we display the predicted ob-
servable maps for the SZ and X-ray from the U-Net G����+G�����
model. The final column contains the corresponding ground-truth
maps. In general, compared to the ground-truth maps, the predicted
SZ maps appear smoother, and the predicted X-ray maps exhibit
larger numerical differences.

While this visualization in Figure 4 provides an initial insight, it
is insufficient for quantitatively assessing the similarity between the
predicted and true maps. Thus, we employ a set of additional metrics
to measure discrepancies and also compare their scaling relations.
To mitigate the risk of numerical errors during metric computations,
each observable map is normalized before applying each metric. This
normalization is done by dividing each observable map by the mean
of the corresponding ground-truth map. The metrics considered are
the Maximum Mean Discrepancy (MMD), the Mean Relative Dif-
ference (MRD), and Structural Similarity Index Measure (S,S,I,M).
These analyses are conducted using the test datasets from the hydro-
dynamical simulations as well as the dataset from dark matter-only
simulations, which are discussed in the following sections. From now
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Hydrodynamical simulations play a fundamental role in modern cosmological research, serving as a crucial bridge between
theoretical predictions and observational data. However, due to their computational intensity, these simulations are currently
constrained to relatively small volumes. Therefore, this study investigates the feasibility of utilising dark matter-only simulations
to generate observable maps of galaxy clusters using a deep learning approach based on the U-Net architecture. We focus on
reconstructing Compton-y parameter maps (SZ maps) and bolometric X-ray surface brightness maps (X-ray maps) from total
mass density maps. We leverage data from T�� T���� H������ simulations, selecting galaxy clusters ranging in mass from
1013.5

⌘
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"�  "200  1015.5

⌘
�1
"� . Despite the machine learning models being independent of baryonic matter assumptions,

a notable limitation is their dependency on the underlying physics of hydrodynamical simulations. To evaluate the reliability of
our generated observable maps, we employ various metrics and compare the observable-mass scaling relations. For clusters with
masses greater than 2 ⇥ 1014

⌘
�1
"� , the predictions show excellent agreement with the ground-truth datasets, with percentage

errors averaging (0.5±0.1)% for the parameters of the scaling laws.
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1 INTRODUCTION

Galaxy clusters are the largest gravitationally bound structures in
the universe. The formation of these clusters involves the collapse
of the most significant overdensities within the initial density field,
driven by intricate gravitational dynamics and baryonic matter in-
teractions associated with galaxy formation (see, e.g., Allen et al.
2011; Kravtsov & Borgani 2012). Galaxy clusters provide valuable
insights into several key aspects, including the growth of cosmic
structure (Walker et al. 2019), the determination of cosmological pa-
rameters (Planck Collaboration et al. 2016c; Salvati et al. 2022; Chiu
et al. 2023), and the evolution of the hot intracluster medium (ICM
Jones & Forman 1990; Böhringer & Werner 2010). They also pro-
vide insights into the oldest stellar populations (Soares & Rembold
2019) and the impact of supermassive black holes on both galaxies
and surrounding gas (Ferrarese & Merritt 2000). Thus, extensive re-
search into galaxy clusters has greatly enhanced our understanding
of cosmology and dark matter (Battistelli et al. 2016).
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Observationally, galaxy clusters can be probed using various multi-
wavelength observations. For instance, The Sloan Digital Sky Sur-
vey (SDSS1), the Hubble Space Telescope (HST2) and James Webb
Space Telescope (JWST3) significantly contribute to our understand-
ing of the optical spectrum. Instruments such as XMM-Newton
(CHEX-MATE Collaboration et al. 2021) and eROSITA (Liu et al.
2022) explore the ICM through X-ray observations. The Planck
spacecraft (Planck Collaboration et al. 2016a), the South Pole Tele-
scope (Bleem et al. 2020) and the Atacama Cosmology Telescope
(ACT, Coulton et al. 2024) offer insights into microwave frequencies
via the Sunyaev-Zel’dovich (SZ, Sunyaev & Zeldovich 1972) effect.

In cosmological research, bridging the gap between theoretical
predictions and empirical data by populating dark matter-only simu-
lations with observational baryonic properties has become a funda-
mental endeavour. Various computational techniques, such as Halo
Occupation Distribution models (HOD, Peacock & Smith 2000;
Kravtsov et al. 2004), Semi-Analytic Models (SAMs, Croton et al.

1 https://www.sdss.org
2 https://science.nasa.gov/mission/hubble
3 https://www.jwst.nasa.gov
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Figure 13. Bi-dimensional visualizations that showcase the final convolutional layer of the SZ U-NET G����+G����� model. These visualizations stem
from four distinct input simulations: two hydrodynamical simulations, denoted as G����_�� and G�����_��, and two N-body dark matter-only simulations,
labelled as G�����_�� and M����_��. The top row illustrates the dimensionality reduction achieved through the application of the probabilistic technique of
t-distributed Stochastic Neighbor Embedding (t-SNE), while the bottom row showcases the dimensionality reduction using the Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) method. An explanation of the contour generation process is detailed in Section 4.3. Each graph, from left to
right, corresponds to the three intervals specified in the plot titles.

computational technique designed by McInnes et al. (2018). Similar
to t-SNE, UMAP forms probability distributions over the data points
of high-dimensional data. This is first achieved with the following
conditional probability:

E
9 |8 = exp

✓
�
3 (G8 , G 9 ) � d8

f8

◆
, (18)

where 3 (G8 , G 9 ) is the distance between G8 and G 9 in a pre-chosen
metric space (e.g., Euclidean, Chebyshev, or Minkowski), d8 is the
distance to the nearest neighbour of G8 , and f8 is a normalizing factor
determined by binary searching for a value that satisfies:

log2 (=) =
’
9

exp
✓
�

knn-dists(G8 , G 9 ) � dfnn
f8

◆
. (19)

Here, = is the number of neighbors to consider, knn-dists(G8 , G 9 )
represents the distance to the :-nearest-neighbor (a method used
to identify the : closest data points based on a specified distance
metric), approximated using the Nearest-Neighbor-Descent (NND)
algorithm (Dong et al. 2011), and dfnn is the distance to the first
nearest neighbor of the NND algorithm.

The symmetrization of the probabilities is achieved through trian-
gular conormalization of the fuzzy logic, expressed as:

E8 9 = E
9 |8 + E

8 | 9 � E
9 |8 · E8 | 9 (20)

Subsequently, a similarity probability distribution over the low-
dimensional data points is defined as:

F8 9 =
⇣
1 + 0 | |H8 � H 9 | |1

⌘�1
(21)

where H are the low-dimensional data points, and 0 and 1 are
positive constants chosen by non-linear least squares fitting 5 (I) =
(1 + 0I

21)�1 against the curve:

6(I) =
(

1 if I  min_dist
exp[�(I � min_dist)] otherwise

(22)

Here, min_dist is the minimal distance ensuring that low-
dimensional points are packed together, I ranges from 0 to 1, and
can be adjusted based on the desired clustering tightness. To find
the low-dimensional data representation minimizing the differences
between E8 9 and F8 9 , the following cost function is defined:

⇠ =
’
8< 9


E8 9 log

✓
E8 9

F8 9

◆
+ (1 � E8 9 ) log

✓ 1 � E8 9

1 � F8 9

◆�
(23)

where E 98 is calculated only for the = approximate nearest neigh-
bors and E 98 = 0 for all other 9 . The gradient of this cost function
is:

X⇠

XH8

=
’
9

�201 | |H8 � H 9 | |2(1�1)

1 + ||H8 � H 9 | |2
E8 9 (H8 � H 9 )+

’
9

21 E8 9 (H8 � H 9 )
(0.001 + ||H8 � H 9 | |2) (1 + 0 | |H8 � H 9 | |21)

(24)

The first term represents an attractive force between vertices 8

RASTI 000, 1–23 (2024)
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Figure 13. Bi-dimensional visualizations that showcase the final convolutional layer of the SZ U-NET G����+G����� model. These visualizations stem
from four distinct input simulations: two hydrodynamical simulations, denoted as G����_�� and G�����_��, and two N-body dark matter-only simulations,
labelled as G�����_�� and M����_��. The top row illustrates the dimensionality reduction achieved through the application of the probabilistic technique of
t-distributed Stochastic Neighbor Embedding (t-SNE), while the bottom row showcases the dimensionality reduction using the Uniform Manifold Approximation
and Projection for Dimension Reduction (UMAP) method. An explanation of the contour generation process is detailed in Section 4.3. Each graph, from left to
right, corresponds to the three intervals specified in the plot titles.

computational technique designed by McInnes et al. (2018). Similar
to t-SNE, UMAP forms probability distributions over the data points
of high-dimensional data. This is first achieved with the following
conditional probability:

E
9 |8 = exp

✓
�
3 (G8 , G 9 ) � d8

f8

◆
, (18)

where 3 (G8 , G 9 ) is the distance between G8 and G 9 in a pre-chosen
metric space (e.g., Euclidean, Chebyshev, or Minkowski), d8 is the
distance to the nearest neighbour of G8 , and f8 is a normalizing factor
determined by binary searching for a value that satisfies:

log2 (=) =
’
9

exp
✓
�

knn-dists(G8 , G 9 ) � dfnn
f8

◆
. (19)

Here, = is the number of neighbors to consider, knn-dists(G8 , G 9 )
represents the distance to the :-nearest-neighbor (a method used
to identify the : closest data points based on a specified distance
metric), approximated using the Nearest-Neighbor-Descent (NND)
algorithm (Dong et al. 2011), and dfnn is the distance to the first
nearest neighbor of the NND algorithm.

The symmetrization of the probabilities is achieved through trian-
gular conormalization of the fuzzy logic, expressed as:

E8 9 = E
9 |8 + E

8 | 9 � E
9 |8 · E8 | 9 (20)

Subsequently, a similarity probability distribution over the low-
dimensional data points is defined as:

F8 9 =
⇣
1 + 0 | |H8 � H 9 | |1

⌘�1
(21)

where H are the low-dimensional data points, and 0 and 1 are
positive constants chosen by non-linear least squares fitting 5 (I) =
(1 + 0I

21)�1 against the curve:

6(I) =
(

1 if I  min_dist
exp[�(I � min_dist)] otherwise

(22)

Here, min_dist is the minimal distance ensuring that low-
dimensional points are packed together, I ranges from 0 to 1, and
can be adjusted based on the desired clustering tightness. To find
the low-dimensional data representation minimizing the differences
between E8 9 and F8 9 , the following cost function is defined:

⇠ =
’
8< 9


E8 9 log
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E8 9
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+ (1 � E8 9 ) log
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where E 98 is calculated only for the = approximate nearest neigh-
bors and E 98 = 0 for all other 9 . The gradient of this cost function
is:

X⇠

XH8

=
’
9

�201 | |H8 � H 9 | |2(1�1)

1 + ||H8 � H 9 | |2
E8 9 (H8 � H 9 )+

’
9

21 E8 9 (H8 � H 9 )
(0.001 + ||H8 � H 9 | |2) (1 + 0 | |H8 � H 9 | |21)

(24)

The first term represents an attractive force between vertices 8
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When fed with a new simulation, these 
models might first classify the simulation into 

GADGET or GIZMO.



Work in progress: Domain adaptation methods

Expected results 
for the bias 
distribution• De Andres et al 2022 masses of galaxy clusters are 

inferred form SZ maps

Supp. Figure 6: Relative error PDFs as defined in Equations (1) and (2) of the main article. The
lines represent the relative error for different redshift bins and the gray shaded region corresponds
to all the redshifts. In the first row we show the PDFs for all masses while in the second row the
data is sampled such that MCNN/ M� > 5⇥ 1014. The statistics for these PDFs is shown in table 2

27

Bias distribution 
is destroyed

Supp. Figure 3: CNN architecture. A sequence of convolutional and pooling layers is used for
feature extraction. Then, fully connected dense layers are in charge of the regression task in order
to obtain M500.

8. 10% dropout

9. 200 neurons, dense fully connected

10. 10% dropout

11. 100 neurons, dense fully connected

12. 20 neurons, dense fully connected

13. output neuron

This architecture uses first three pairs of convolutional and pooling layers for feature extraction
[50] . Then, it makes use of dense fully connected layers to find a regression between the extracted
features and the total mass of the cluster as illustrated in figure 3. The activation function of these
layers is the rectified linear unit (ReLU, [51]) and dropout is used to avoid overfitting [52]. We
have checked that increasing the number of neurons in the regression part only yields to overfitting
or similar results. Modifying the parameters in the feature extraction (convolutional) part and
adding more layers does not improve the performance on the validation set either. Therefore, a
VGGNet-based architecture will difficultly improve the performance and more complex models
might be needed to be taken into consideration such as ResNet [53], Inception [54], and Xception
[55] networks. Another possible reason behind this is that our problem is not highly complex and
the architecture used in this work might be sufficient for analysing our data set.

In order to fit the model, we used the Adam Optimizer [56] with learning rate 10�4 and the

22

After adding a 
little of Gaussian 

White noise

Train with Test with



Work in progress: Domain adaptation methods
Ganin, Ustinova, Ajakan, Germain, Larochelle, Laviolette, Marchand and Lempitsky

Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream

12

• Find common features in the latent space:

• Simulation=signal

• Real universe= signal+instrumental effects

• Ignore instrumental 
effects.

First tests very 
promising. Bias in 

agreement with previous 
results, in which 

instrumental effects are 
known.

Supp. Figure 6: Relative error PDFs as defined in Equations (1) and (2) of the main article. The
lines represent the relative error for different redshift bins and the gray shaded region corresponds
to all the redshifts. In the first row we show the PDFs for all masses while in the second row the
data is sampled such that MCNN/ M� > 5⇥ 1014. The statistics for these PDFs is shown in table 2
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Simulation

Reality

No need to make realistic simulations 
any more

• Summary:


• New method. Zero knowledge of the 
instrumental effects. 

• Theoretically is learning to use common 
properties, therefore taking the signal only.


• It could be used for learning invariant 
representations across multiple simulations. 

• DANN model



Summary

• The Three Hundred Project: Cosmological hydrodynamical 
zoom-in simulations with good statistics of massive galaxy 
clusters  and different baryonic physics models.


• Perfect database for training deep learning models that go 
beyond classical methods.


• The challenge and our objective is to apply models which are 
trained with simulations to real data. Domain Adaptation 
techniques address this problem.

∼ 1015M⊙
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Figure 1: The proposed architecture includes a deep feature extractor (green) and a deep
label predictor (blue), which together form a standard feed-forward architecture.
Unsupervised domain adaptation is achieved by adding a domain classifier (red)
connected to the feature extractor via a gradient reversal layer that multiplies
the gradient by a certain negative constant during the backpropagation-based
training. Otherwise, the training proceeds standardly and minimizes the label
prediction loss (for source examples) and the domain classification loss (for all
samples). Gradient reversal ensures that the feature distributions over the two
domains are made similar (as indistinguishable as possible for the domain classi-
fier), thus resulting in the domain-invariant features.

predictor and into the domain classifier (with loss weighted by �). The only di↵erence is
that in (13), the gradients from the class and domain predictors are subtracted, instead of
being summed (the di↵erence is important, as otherwise SGD would try to make features
dissimilar across domains in order to minimize the domain classification loss). Since SGD—
and its many variants, such as ADAGRAD (Duchi et al., 2010) or ADADELTA (Zeiler,
2012)—is the main learning algorithm implemented in most libraries for deep learning, it
would be convenient to frame an implementation of our stochastic saddle point procedure
as SGD.

Fortunately, such a reduction can be accomplished by introducing a special gradient
reversal layer (GRL), defined as follows. The gradient reversal layer has no parameters
associated with it. During the forward propagation, the GRL acts as an identity trans-
formation. During the backpropagation however, the GRL takes the gradient from the
subsequent level and changes its sign, i.e., multiplies it by �1, before passing it to the
preceding layer. Implementing such a layer using existing object-oriented packages for deep
learning is simple, requiring only to define procedures for the forward propagation (identity
transformation), and backpropagation (multiplying by �1). The layer requires no parame-
ter update.

The GRL as defined above is inserted between the feature extractor Gf and the domain
classifier Gd, resulting in the architecture depicted in Figure 1. As the backpropagation
process passes through the GRL, the partial derivatives of the loss that is downstream
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