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We propose a novel approach using neural networks (NNs) to differentiate between cosmological
models, especially in the case where they are nested and the additional model parameters are close to
zero, making it difficult to discriminate them with traditional approaches. Our method complements
Bayesian analyses for cosmological model selection, which heavily depend on the chosen priors and
average the unnormalized posterior over potentially large prior volumes. By analyzing simulated
realistic data sets of the growth rate of the large scale structure (LSS) of the Universe, based on
current galaxy-clustering survey specifications, for the cosmological constant and cold dark matter
(ACDM) model and the Hu-Sawicki f(R) model, we demonstrate the potential of NNs to enhance
the extraction of meaningful information from cosmological LSS data. We find that the NN can
successfully distinguish between ACDM and the f(R) models, by predicting the correct model with
approximately 97% overall accuracy, thus demonstrating that NNs can maximise the potential of
current and next generation surveys to probe for deviations from general relativity.




The ACDM model ‘. . ng?gr

. matter
Assumptions: 27%

* The Universe: radiation, ordinary
matter, cold (non-relativistic) dark
matter (CDM) and A.

Gravity described by GR on
cosmological scales.

The Cosmological Principle: the
Universe is statistically homogeneous :
and isotropic (in large scales). ' . .

Requires only 6 independent 68%
parameters (Q2,,, Q,, h, n,, og, T) ‘ Dark

Primordial phase of cosmic inflation ’ : energy

Source: esa.int
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Beyond ACDM

Is GR the correct theory for the large
cosmological scales?

* MG feature “screening mechanisms” that
cause deviations from GR to “switch off” on
small scales (show different predictions from

GR on LS)

Surveys like Euclid, the Vera C. Rubin
Observatory, DESI, are promising.

Data exponentially increasing: we need new
computational tools

AIM:

Test deviations from GR in a model-agnostic
way (i.e. using Machine Learning techniques)

First Stars and Reionization Era

Time since the
Big Bang (years)

~ 380 Thousand
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The Big Bang/Infiation

lonized gas:
fully opague

Universe bacomes
neutral and transpasent
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Growth of Matter Perturbations f

Study the LSS through perturbation theory:

density: p = p+ dp, pressure P = P 4 §P

We study the eq: 5 4 2HG — dnGug p 6 0 5 0P

(evolution of the matter density perturbations).

With a solution (for LCDM, Geff = 1):

1 11 1
Sm(a) =a-oF [ =,1; —a® (1 — ——
(@) =a-s 1(3, P ( Qmjo))
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The growth =) -9 ()
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for Q;,,=0.32, 63=0.83 and g,=0

In galaxy surveys we observe

the galaxy density fluctuations Q)07

45t fog(z)oc ————— for Qp»=0.27, 63=0.8 and g,=0 i
— 1 4+ z)l04
5y = b o

The growth is measured in a
bias independent way

fos(z) = f(z)os(2)

Y
L (2) for for £ »,=0.32, 65=0.83 and g,=-1
+ 2)0.84

0.64 T
fog(z)ec git;w for Qg ,,=0.27, 063=0.8 and g,=-1

0.5 1.0 15 2.0
Kazantzidis, Perivolaropoulos (2018)




f(R) model — Hu Sawicki f(R) = R~

Extension of GR: R — R+ (R) R =6(H + 2H?).
Can be considered as a small perturbation around the ACDM
model. lim f(R) = R—2A

b—0

Interesting alternative to test GR at very large scales, because:
« Consistent with some CMB, LSS and SNla observations

* Reproduces the ACDM expansion history and formation of
structures




f(R) model — Hu Sawicki

Analytic expresion of Geff for the HS model
G [4 1 M?3%*ad?

3 3k%+ M32ag?

Sm + 2H§m - 4TrGeﬁ'Pm5m =0, —» Geg = F




fog values with their
uncertainty. Cosmological
parameters varied as:

ACDM
og € [0.7, 0.9]
Q. €[0.2,0.4]

Gt = 1

HS - f(R)
0, €[0.7,0.9], Q. € [0.2, 0.4]
b € [0.000001, 0.00005]
1 M?2g?
S~ Sy st




Model independent framework: ML

« Can we use cosmological observables to learn
something from our theory of gravity?

Black Box

5 "’_‘t:\

* Therefore, ML techniques are a good candidate to ‘ Input

test gravity in a model-independent way.

BUT... ML is still considered a “Black Box”

* We need to build trust in such techniques, as their
incorporation in data analysis is speeding up.

We need interpretable tools to understand what is
the machine learning




fog(z2) —

1 fog(z15) —

fog(z16)

Output Layer

5000 realizations:

70% training + 30% testing
50% f(R) + 50% ACDM




Architecture and performance:

Model architecture to test deviations from ACDM Confusion matrix of our model

Dense
BatchNorm

ACDM

True Class

0.05 +=0.04 0.95 +0.04

ACDM
Predicted Class




. Liner Regression
. Decision Trees

Wolf
. K-Nearest Neighbors

2
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. Random Forests ML Interpretability approaches:

. Support Vector Machines

Scope

Accuracy

Source: Decoding the Black Box: An Introduction to Interpretable Machine Learning Models: analyticsvidhya.com/




LIME (Local Interpretable Model
agnostic Explanations)

Original image . Superpixel boundaries

Global Local

I
"4 /o
F ! f A .
Il . 100 150 200
+ : ‘ . Perturbed Image

Complex Non-linear Simple Linear

Ribeiro, Singh (2018)

50 150 200 0 50 100 150 200

Multiple plots demonstrating a) the original input image, b) the boundaries of all

superpixel areas, c) a sample of a perturbed image, and d) the most important super

Source: Explainable Al, https://bigdatarepublic.nl/ pixel areas to predict the ‘toucan’ class (Image by Author)
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Feature Importance using LIME

0.2 0.4 0.6 0.8
Probability of belonging to class HS

fog(z1)
fog(ze) 1
fog(z7)
fog(z16) 1
fog(z15) 1
fog(z;) 1
fog(29) 1
fog(zg) 1
fog(z14) 1
fog(zs) A
fog(za) 1
fog(z10)
fog(z11) 1
fog(z13) -
fog(z3) 1
fog(z12)

True Class: ACDM

Probab|||ty of belonglng to class /\CDM




Features
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Feature Importance and Redshift

fog, as a function of
the redshift z. The
color shading is the |
feature importance
of each z-bin (darker
implies stronger
feature importance),
according to LIME.
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Conclusions

We are building some trust in machine learning techniques with these interpretability tools.

LIME is able to extract the most relevant features that have an influence on the decision made by the NN. These features are:
fs8(z1), fs8(z5), fs8(z6), fs8(z7) and fs8(z15) -> overall, seems that first features are the most relevant.

ML-based model agnostic approaches seem to be good for testing GR at large scales, the differences between
both datasets are of the order of 10> but we need to understand at which point this performance breaks.

ACDM is maybe the most tested model, we still need to find out whether GR is the correct theory for gravity at large scales.










The ACDM model

TT.TE.EE+lowE+lensing
Parameter 68% limits

0.02237 + 0.00015

0.0544 + 0.0073

3.044 £ 0.014
0.9649 + 0.0042

67.36 + 0.54
0.6847 + 0.0073

0.3153 + 0.0073
0.1430 + 0.0011
0.09633 + 0.00030

0.8111 + 0.0060
Sg = 0g(Qn/0.3)°3] 0.832+0.013

Planck collaboration 2018

Visible

matter
Dark » 5%
matter = &

27%

»
68%
Dark
energy

Source: NASA GSFC SVS




HO = 67.27 £ 0.60 km/s/Mpc in ACDM

Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

HO = 74.03 = 1.42 km/s/Mpc
Riess et al. arXiv:1903.07603 [astro-ph.CO]




H, tension

m Distance Ladder (Cepheids)

Tension between the value
of HO from:

CMB (early universe) : SHOES CHP
SNIla (late universe) : | BRIOFS o SHOES

. - SHOES SHOES SHOES
1. Is there something | * *

wrong with the data?

| L 2 _
2. Is there something [ wMApy  SHOES
wrong with the - WMAP3 .\ tbs

theory? : . WMAP7 + ; { +

. P15 .
- Ways of taking data have - P13 BAO

been refined up to an
incredible level o
precision. 2000 2005 2010 2015 2020

- Model? Year

Perivolaropoulos, Skara (2022)




Learning Curves

Model loss HS vs LCDM Model accuracy HS vs LCDM

I ! ! I ! I
400 600 800 1000 1200 400 600 800
Number of epochs Number of epochs




Measuring H,-H(z) with a stand
early time callbrators

calculated

- ta i aq da Depends on p,, p, and p.py
TS—L Cs /ﬁ-—f csmr’/

r.=147.6 Mpc from Planck and BBN inferred

values of p,, p, and pcpp /

measured
Ts

" \

comoving

E(z) = [ng(l + z)3 +(1— ng)] 2
Degeneracy between r, and H, and E(2).

Source: Perivolaropoulos, The Tensions of ACDM
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