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Motivation
Problems in Cosmology with the Standard 
Model ΛCDM 

Model-independent (agnostic) framework for 
analyzing data

Machine learning techniques for discriminating 
models

Performs well, BUT: ML = Black Box

Towards Feature Importance and Interpretability
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The ΛCDM model
Assumptions:

• The Universe: radiation, ordinary 
matter, cold (non-relativistic) dark 
matter (CDM) and Λ.

• Gravity described by GR on 
cosmological scales.

• The Cosmological Principle: the 
Universe is statistically homogeneous 
and isotropic (in large scales).

• Requires only 6 independent 
parameters (Ωm, Ωb, h, ns, σ8, τ)

• Primordial phase of cosmic inflation

4

Source: esa.int



ΛCDM challenges

Challenges:

• DM & DE lack of detection

• Some violations of the 
Cosmological Principle 
(homogeneity & isotropy)

• H0 & S8 tension

• Other problems…

Is there something wrong with the data? 

Is there something wrong with the theory?
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Beyond ΛCDM
Is GR the correct theory for the large 
cosmological scales?

• MG feature “screening mechanisms” that 
cause deviations from GR to “switch off” on 
small scales (show different predictions from 
GR on LS)

• Surveys like Euclid, the Vera C. Rubin 
Observatory, DESI, are promising.

• Data exponentially increasing: we need new 
computational tools

AIM:

Test deviations from GR in a model-agnostic 
way (i.e. using Machine Learning techniques)
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Growth of Matter Perturbations f

▪
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The growth
 fσ8
In galaxy surveys we observe 
the galaxy density fluctuations

The growth is measured in a 
bias independent way

Kazantzidis, Perivolaropoulos (2018)

For ΛCDM, μ =1
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f(R) model – Hu Sawicki

Extension of GR: R → R+ f (R) 

Can be considered as a small perturbation around the ΛCDM 
model.

Interesting alternative to test GR at very large scales, because:

• Consistent with some CMB, LSS and SNIa observations

• Reproduces the ΛCDM expansion history and formation of 
structures
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f(R) model – Hu Sawicki

Analytic expresion of Geff for the HS model
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Dataset simulation strategy 

fσ8 values with their 
uncertainty. Cosmological 
parameters varied as: 

ΛCDM

σ8 ∈ [0.7, 0.9]

Ωm ∈ [0.2, 0.4]

HS - f(R)

σ8 ∈ [0.7, 0.9], Ωm ∈ [0.2, 0.4]

b ∈ [0.000001, 0.00005]
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(DESI-like Cij)



Model independent framework: ML

• Can we use cosmological observables to learn 
something from our theory of gravity? 

Data                    Theory 

• Therefore, ML techniques are a good candidate to 
test gravity in a model-independent way.

BUT… ML is still considered a “Black Box”

• We need to build trust in such techniques, as their 
incorporation in data analysis is speeding up.

• We need interpretable tools to understand what is 
the machine learning

Source: investopedia.com
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Machine Learning strategy

5000 realizations: 
70% training + 30% testing
50% f(R) + 50% ΛCDM
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Architecture and performance:

Model architecture to test deviations from ΛCDM   Confusion matrix of our model
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Interpretable Machine Learning

Source: Decoding the Black Box: An Introduction to Interpretable Machine Learning Models: analyticsvidhya.com/

ML Interpretability approaches:
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LIME (Local Interpretable Model 
agnostic Explanations)

Ribeiro, Singh (2018)

Source: Explainable AI, https://bigdatarepublic.nl/
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Feature Importance using LIME

Probability of belonging to class HS Probability of belonging to class ΛCDM
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Distribution of LIME feature impact
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Feature Importance and Redshift
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One realization of 
fσ8, as a function of 
the redshift z. The 
color shading is the 
feature importance 
of each z-bin (darker 
implies stronger 
feature importance), 
according to LIME.



Conclusions

LIME is able to extract the most relevant features that have an influence on the decision made by the NN. These features are: 
fs8(z1), fs8(z5), fs8(z6), fs8(z7) and fs8(z15) -> overall, seems that first features are the most relevant.

ML-based model agnostic approaches seem to be good for testing GR at large scales, the differences between 
both datasets are of the order of 10-5  but we need to understand at which point this performance breaks.
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We are building some trust in machine learning techniques with these interpretability tools. 

ΛCDM is maybe the most tested model, we still need to find out whether GR is the correct theory for gravity at large scales. 



Thank you!
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Backup
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The ΛCDM model

Source: NASA GSFC SVS
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Planck collaboration 2018



H0 tension
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Tension between the value 
of H0 from: 

CMB (early universe)

SNIa (late universe)

1. Is there something 
wrong with the data?

2. Is there something 
wrong with the 
theory?

- Ways of taking data have 
been refined up to an 
incredible level 
precision.

- Model?

Perivolaropoulos, Skara (2022)

H0 tension
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Learning Curves
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Source: Perivolaropoulos, The Tensions of ΛCDM
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