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Overview

1. KM3NeT: neutrino telescopes

2. Need for data in large language models

3. Why transfer learning?

4. Multi-detector configuration and multi-task for KM3NeT/ORCA

5. Summary & The road ahead
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KM3NeT is an international collaboration Two undersea neutrino telescopes
* 22 countries

* 65 partner institutes * KM3NeT/ARCA

e ~250 members > Optimized for 1 TeV - 10 PeV

> Identify high-energy neutrino sources in the Universe.

Cities and Sites of KM3NeT * 36m vertical spacing and 90m horizontal spacing

Australia

« KM3NeT/ORCA
> Optimized for 1 - 100 GeV
> Determine the mass ordering of neutrinos.
' “' > > 9m vertical spacing and 20m horizontal spacing
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KM3NeT: neutrino telescopes Al Gaies MAD: |

Same technology:

* 1(2) building block(s) for ORCA (ARCA)

* 115 vertical detection units (DUs) per block
* 18 digital optical modules (DOMs) per DU
* 31”7 PMTs per DOM

Same detection principle:

Light collection from Cherenkov radiation
emitted by particles traveling faster than the speed
of light in water
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Building the detectors
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KM3NeT telescopes collect, process and analyze data as they are being built.

ORCA115 e ORCA6 .
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Reconstructing neutrino physics Al Goes MAD?

The official KM3NeT pipeline for reconstruction and classification relies on algorithms that are applied separately for
track-like event or shower-like events. Then, simple BDTs are applied on the reconstructed variables for classification tasks.

Track reco | Track reco
JMuon JShower

BDT classification

Neutrino vs Background

BDT classification
Track-like vs Shower-like

Classic approach
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Reconstructing neutrino physics

DL classification

Novel deep learning techniques use low-level
information from the detector, i.e. light pulses to

1. Let the model decide the features to use

2. Generalise over a large input domain dimensions
DL classification 3. Perform different tasks

Track-like vs Shower-like

Neutrino vs Background

Classification and reconstruction are performed
independently, and for any type of event.

Track and shower

Large DL models needs huge amounts of very
reconstruction diverse data to generalize and interpolate, improving
the performances of existing algorithms.

Deep Learning representation

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 7



KM3NeT Deep Learning Outreach UG CE
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Various DL models tested. So far, no one is considered for official analysis.

Convolutional Neural Networks

* Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, KM3NeT)

* Event Classification and Energy Reconstruction for ANTARES using Convolutional Neural Networks (N. Geiflelbrecht, ANTARES)
* Deep learning reconstruction in ANTARES (J. Garcia-Méndez et al., ANTARES)

* Dark mat;ter search towards the Sun using Machine Learning reconstructions of single-line events in ANTARES (J. Garcia-Méndez et al., A
NTARES

Deep Neural Networks
* Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCAG6 (S. Pefia Martinez, KM3NeT)

Graph Neural Networks:

Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the measurement of oscill
ation parameters with KM3NeT/ORCA (D. Guderian, KM3NeT)

* Data reconstruction and classification with graph neural networks in KM3NeT/ARCA®6-8 (F. Filippini et al., KM3NeT)
* Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, KM3NeT)

* Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B. Setter, KM3NeT)

* Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA (L. Hennig, KM3NeT)

More details here: A Comprehensive Insight into Machine Learning Techniques in KM3NeT (J. Prado)

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 8


https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
https://ecap.nat.fau.de/wp-content/uploads/2021/05/Masters_Thesis_Nicole_Geisselbrecht.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/16/09/C09018
https://pos.sissa.it/444/1443/pdf
https://pos.sissa.it/444/1443/pdf
https://pos.sissa.it/444/1035/pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://pos.sissa.it/444/1194/pdf
https://ecap.nat.fau.de/wp-content/uploads/2023/12/2022-07_Stefan_Reck_phd_GNN_ORCA_MuonBundles.pdf
https://ecap.nat.fau.de/wp-content/uploads/2024/03/BastianSetter_ECAP_MSc_2024-03.pdf
https://ecap.nat.fau.de/wp-content/uploads/2023/06/2023-06_LukasHennig_MSc_ORCA_TauID_GNNs.pdf
http://indico.phys.ethz.ch/event/113/contributions/843/

Need for data in large language models Al S?Ai

Al for science, science for A

1T Megatron-Turing NLG (5308B)
Neutrino telescope data is described as a set of %Gopher (2808) 1e25 FLOPs
spatial points with timing & charge information GPT-3 (1708)
. 100B
(point-cloud data), hence, most developed DL 00 Chinchilla (70B) 1e24 FLOPs
architectures are based on GNNss.
" 1e23 FLOPs
3
. L
Language models are starting to overtake but... £ 108 1022 FLOPs
* lot of trainable parameters &
* lot of training data le21 FLOPs
: : 1B 1e20 FLOPs
The data is too complex and requires a lot of
computing resources to be produced and to
encapsulate all the physics — we must be efficient —— Our estimated compute-optimal scaling
100M
10B 100B 1T 10T
Tokens

Scaling law for trainable parameters and
tokens for large language models
arxiv.org/abs/2203.15556

KM3NeT: Small thinks big I. Mozun-Mateo, A. Vacheret - LPC Caen 9
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Prediction

Transformer architecture

The input data is the low-level hit information
that composes the light pattern detected in the
telescope.

[Xiﬂclass: Xiﬂ]
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200

The light pulses information 0
Xpulse = [POSx, pOSy, pOS;, diry, diry, dir, t, ToT]

is processed in parallel by the transformer and the high-
level information is extracted in the attention blocks. X = [Xpulse 1,Xpuise 25 -+ 5 Xpulse 300]

MOdel haS ~ 1.6M tl’ainable pal‘ameters. Neutrinos in Deep Ice (Kaggle Competition): arxiv.org/abs/2310.15674 ].0
Particle Transformer for Jet Tagging: arxiv.org/abs/2202.03772


http://arxiv.org/abs/2310.15674
http://arxiv.org/abs/2202.03772
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Transfer learning studies

Multiple tasks with a single model

* C(lassification and reconstruction done together KM3NeT/ORCA®6 preliminary, simulations
* Test the capacity of the model 0.85 —&— From scratch Finetuned
135s
Efficient use of data 0.801 . - 14s 1205
* Run-by-Run: simulates MC runs based on data runs to reduce <l
discrepancies 0.75 1

* Not enough data to train large models for every time the

detector response is updated § 0.70
2
. . . . OIGS T
Missing detector information
*  PMTs do not exist. 0.604
*  PMTs correspond to DUs not deployed yet.
0.55 1

Efficient use of computing resources

* Saves time and increases performance 0.50

v N x v
. . . - — (=] o
* The information is propagated across detectors s = S
0.0 Number of training events
o
GraphNeT N
odo AUROC value for track-shower classification with KM3NeT/ORCAG6 data.
° Deep Learning for Neutrino Telescopes The AUROC curves are shown as function of the training size sample.

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen
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Preliminary results on multi-geometries for KM3NeT/ORCA6
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The model is able to interpolate to non-existing DUs information because it pre-learned the full geometry.

KM3NeT/ORCAG preliminary, simulations: From scratch
0

Track score

0.2

From scratch

0.0

Median and 68% quantiles
—— Track events
Shower events
—=- Maximum size of ORCAG

T T T T
1 2 3 4 5 6
Number of DUs per event

Track-shower classification:

T T T
7 8 9

10

Fine-tuned

Track score

0.4 4

0.2 4

0.0

KM3NeT/ORCAG6 preliminary, simulations: Fine-tuned
o}

Median and 68% quantiles
—— Track events
Shower events
=== Maximum size of ORCAB

T T T T
1 2 3 4 5 6

Number of DUs per event

T T T
7 8 9

e Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
* Performance: fine-tuned model works way better than the scratch one
e High dependence on event geometry: not enough discrimination with few lines

KM3NeT: Small thinks big
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Preliminary results on multi-geometries for KM3NeT/ORCA6
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The model is able to interpolate to non-existing DUs information because it pre-learned the full geometry.

10 KM3NeT/ORCAG6 preliminary, simulations: From scratch 0 KM3NeT/ORCA6 preliminary, simulations: Fine-tuned
. 1.
Median and 68% quantiles Median and 68% quantiles
—— Track events —— Track events
0.8 Shower events 0.8 Shower events
o Y06 L 0.6
w8 T’
5 ¥ g &
8 & 0.4 g F 04
w
= &
.21 .2
=] 0 : 0
= o
0.0 T T T T 0.0 T T T T
10 20 30 40 50 10 20 30 40 50
Number of triggered DOMs Number of triggered DOMs

Track-shower classification:

e Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
* Performance: fine-tuned achieves separation in events with above 10 triggered DOMs

* Peak at ~40 triggered DOMs: fine-tuned model compensates the low statistics

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 13
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Preliminary results on multi-geometries for KM3NeT/ORCA10 A'

&

The model is able to interpolate to non-existing DUs information because it pre-learned the full geometry.

KM3MeT/ORCA10 preliminary, simulations: From scratch Lo KM3NeT/ORCALO0 preliminary, simulations: Fine-tuned
0 . .

Median and 68% quantiles : Median and 68% quantiles :

—— Track events 1 —— Track events :

0.8 Shower events 0.8 4 Shower events :

‘: === Maximum size of ORCAG : ——- Maximum size of ORCAG :
1

I 1

(&} © | | o ) 1

- 5 0.6 : ﬁ 5 0.6 :

1] b | (0] ? ]

= 1 4 1

5 3 ' g 3 |

- i b i 1

4 = 0.4 : = = 0.4 !

g ’ 3 5
1

1

1) 0.2 i g 0.2 :
1

Pt : ol {

o I &9 1

0.0 T T T T } T T T 0.0 T T T T 4 T T T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 g8 9 10
Number of DUs per event Number of DUs per event

Track-shower classification:

e Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
e Performance: fine-tuned model works way better than the scratch one

* High dependence on event geometry: not enough discrimination with few lines

* Major improvement with increasing detector size <> better event containment

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 14
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The model is able to interpolate to non-existing DUs information because it pre-learned the full geometry.

10 KM3NeT/ORCA10 preliminary, simulations: From scratch 1o KM3NeT/ORCALOQ preliminary, simulations: Fine-tuned
" | Median and 68% quantiles /-/‘/— Median and 68% quantiles
—— Track events —— Track events
0.8 | Shower events 0.8 1 Shower events
8 g 0.6 ﬁ g 0.6 -
e & Q =
5 3 g
» 04 = =04
w
g . 0
. A 0.2 -
i 3
0.0 T ; ' ' 0.0 : . : :
10 20 30 40 50 10 20 30 40 50
Number of triggered DOMs Number of triggered DOMs

Track-shower classification:

e Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
e Performance: fine-tuned achieves separation in events with above 10 triggered DOMs

e Multiple peaks: fine-tuned model compensates the low statistics

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 15



Preliminary results on multi-geometries for KM3NeT/ORCA6-10
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Energy reconstruction

Energy resolution (%)

The model is able to interpolate to non-existing DUs information because it pre-learned the full geometry.

s KM3NeT/ORCA6-10 preliminary, simulations

40 A

N
o
L

=
w
L

10

. KM3NeT/ORCA6-10 preliminary, simulations

Maximum size of ORCAG
ORCAG: Scratch

ORCAG: Finetuned RSN
ORCAL0: Scratch 25
—— ORCA10: Finetuned
2090 | s

Opening angle (deq)
=
w

Direction reconstruction

064 ", i~ ~ 2,2
fa, Lo z(rtrua — Hreco) 10reco
04 faee i
9
02 e ok
oy
0.04 41.89
41.73
-0.2 —p
T T T T
0 10 20 30 40
Time (min)

Number of DUs per event

0.06 10 4
0.05 Maximum size of ORCAS
5 ORCAG: Scratch
004 ORCAG6: Finetuned
e N ORCALQ: Scratch
20 40 60 —— ORCALO: Finetuned
Time (min)
T T T T T T T T 0 T T

1 2 3 4 5 6 7 8 9 10 1 2 3

Energy and direction reconstruction:

* Loss curves reveal fine-tuning's performance boost
 Similar resolution in energy reconstruction, but in less time!
* Direction reconstruction improved significantly

KM3NeT: Small thinks big
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Preliminary results on multi-geometries for KM3NeT/ORCA [GY GDES MAD2

Interaction reconstruction vertex:

Better data representation?

* 'The hardest task Build a latent space to effectively
* Dynamic detector coordinates from rbr approach accommodate dynamic coordinates
* Small fiducial volume burdens the reconstruction and detector conditions & geometries
KM3NeT/ORCA6 preliminary, simulations 10 KM3NeT/ORCALO preliminary, simulations
Median and contour levels at 68% Median and contour levels at 68%
— ORCA115 — ORCA®: Scratch — ORCAB: Fine-tuned —— ORCA115 —— ORCALD0: Scratch —— ORCALO: Fine-tuned
8 81
E E
5 §
g 6 g 6
o a
E £
8 8
w ]
Vo4 o 44
] a
> @
c )
i L
= =
24 24
0 T T T T T T T O T T T T T T T
-10.0 =715 -5.0 -2.5 0.0 2.5 5.0 75 10.0 -10.0 -1.5 =5.0 -2.5 0.0 25 5.0 1.5 10.0
Parallel component (m) Parallel component (m)

Interaction vertex reconstruction at KM3NeT/ORCAG6 (left) and KM3NeT/ORCA10 (right) projected over the neutrino direction for 1-100 GeV atmospheric neutrinos.

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 17



Preliminary results on multi-geometries for KM3NeT/ORCA A' GDES MADZ |
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Interaction reconstruction vertex: From big to small...
¢ The hardest task ORCA115 — ORCA®6, ORCA10, etc.
* Dynamic detector coordinates from rbr approach ...and vice versa

* Small fiducial volume burdens the reconstruction ORCA115 — ORCA6 — ORCA10 — etc.

8 KM3NeT/ORCAB6, ORCALO0 preliminary, simulations

KM3NeT/ORCA6-10 preliminary, simulations Median and contour levels at 68%
0 Fine tuning strategy — ORCA115 —— ORCA115 - ORCA10
—— ORCA115 - ORCAG 7 —— ORCAI15 - ORCA6 —— ORCA115 —» ORCA& — ORCAILO
354 —— ORCAL15 — ORCALO
—— ORCA115 - ORCA6 — ORCA10 .
E6
304 —
-
. @
E .
& 25 g >
i £
5
% 20 o4
‘ 20 S
% 105.35 min 8
15 | 112.98 min T 31
>
\,W\’/\’M’\"\/\’M/\/\— 2
©
10 105.35 + 201.76 min = 21 :t:
L ORCA115 rss_o\_u_tlgg _________ e o +
T ‘ : : : : : ‘ : 14 +
0 5000 10000 15000 20000 25000 30000 35000 40000
Training step
0 T T T T T T T
=100 =75 =5.0 =25 0.0 2.5 5.0 7.5 10.0
We need to propagate the knowledge between detectors! Parallel component (m)

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 18



Preliminary results on multi-task for KM3NeT/ORCA

Classification to energy recon§truction Multi-task study

* A model that can handle multiple tasks ORCA115 dataset 1: track-shower

* A dataset 1 unrelated to dataset 2 (different detectors or water ORCA115 dataset 2: energy
properties or atmospheric muons), helps a model into performing 850k tracks & 850k showers each

another task and makes it more robust
. KM3NeT/ORCA115 preliminary, simulations

I . 5 10
1o KM3NeT/ORCA115 preliminary, simulations :g: Median and 68% quantiles
— Track events 70 1 —— From scratch  —— Fine-tuned ~ —— Fine-tuned (backbone frozen)  --- Classical
—— Shower events
60 -
0.81
50 4
401
¢ 0.6 .
2 %0
x 5
© k=1
— B =)
o4 2 20
z
8
0.21 g
w
\\/ 10 A
0.0 :
10° 10! 102
True energy (GeV)
Track-score in function of neutrino energy in
KM3NeT/ORCA115 for dataset 1 i
10° 10! 10?

True energy (GeV)

Energy resolution in function of neutrino energy in
KM3NeT/ORCAL115 for tracks from dataset 2
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Preliminary results on multi-task for KM3NeT/ORCA

Classification to energy reconstruction Multi-task study
* A model that can handle multiple tasks ORCA115 dataset 1: track-shower
* A dataset 1 unrelated to dataset 2 (different detectors or water ORCA115 dataset 2: energy

properties or atmospheric muons), helps a model into performing 850k tracks & 850k showers each
another task and makes it more robust

KM3NeT/ORCAL15 preliminary, simulations

_ . . 100
1o KM3NeT/ORCA115 preliminary, simulations :g: Median and 68% quantiles

70 —— From scratch  —— Fine-tuned —— Fine-tuned (backbone frozen)  --- Classical

—— Track events
—— Shower events

0.84

Track score
o
o

o
IS

204

0.2 4
\“\\\W\/ 10 4

0.0 T
10° 10t 102
True energy (GeV)

Energy resolution (%)

Track-score in function of neutrino energy in
KM3NeT/ORCA115 for dataset 1

T
10° 10! 10°
True energy (GeV)

Energy resolution in function of neutrino energy in
KM3NeT/ORCA115 for showers from dataset 2

KM3NeT: Small thinks big . Mozun-Mateo - LPC Caen 20



Preliminary results on multi-task for KM3NeT/ORCA
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Classification to energy reconstruction Multi-task study

* A model that can handle multiple tasks ORCA115 dataset 1: track-shower

* A dataset 1 unrelated to dataset 2 (different detectors or water properties), ORCA115 dataset 2: energy
helps a model into performing another task and makes it more robust 850k tracks & 850k showers each

KM3NeT/ORCA115 preliminary, simulations

0.12 Transfer learning: track-shower to energy
Fine-tuned
— Scratch  —— Fine-tuned  —— (backbone frozen)
0.10 4
Fine-tuned model shows faster convergence and efficiency.
é 0.08 4
= Freezing the backbone has a trade-off between training speed-
% 054 up and accuracy — suboptimal feature representation
2o
i 32.66 min
i}
L - . . .
= w Overall, the three cases achieve show improvements with respect
' " 7 a6min to classical reconstruction methods.
0.02 4
0.00 = T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500 20000

Training step

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 21
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Transfer Learning in multiple-detectors
* Transformers are particularly effective to deal with small detectors and very limited data
* Further optimization is still needed in vertex reconstruction

Transfer Learning for multi-task
* Speeds up training and boosts model robustness
* Leverages knowledge from different tasks

’Ihe road ahead

From simulations to data: ensure consistency and accuracy when transitioning to real detector data
* Robustness tests & uncertainties: validate model reliability across different conditions and detectors
» Estimate improvements as the detector grows to optimize scalability
* Develop common benchmark with state-of-the-art models — On the way, see Jorge’s talk
* Implement any deep learning reconstruction in the official data processing pipeline — Almost there
 Start testing pre-training models (BERT-like, GPT-like) with neutrino telescope data

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 22
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Preliminary results on KM3NeT/ORCA115

Motivation: the transformer is a language model

e KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
* We can think of other configurations as similar languages to learn

* 'The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification _,» KM3NET/ORCA11S5 preliminary, simulations Purpc)»sfe: reject‘ bagkgrc;und data  (atm.
. = o EavE e aete muon) from neutrino signal.
Neutrino vs Background PR
1o Atmospheric muons are more energetic,
. ] having their starting & ending points in most
Y = of the cases, out of the fiducial volume.
ﬁ 1074
. N I —— The model easily isolates neutrino events as
ol they are mostly fully contained in the
10
detector.
1078
0.0 02 04 06 08 10

Neutrino score

Event rate for neutrino score (0 for atmospheric muons, 1 for neutrinos).

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen 24



Preliminary results on KM3NeT/ORCA115
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Motivation: the transformer is a language model
* KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
* We can think of other configurations as similar languages to learn
The information about KM3NeT/ORCA115 is used to understand our current detector

10734

DL classification

Track-like vs Shower-like

1077,

KM3NeT: Small thinks big

KM3NeT/ORCA115 preliminary, simulations

[ all events OO WEEH RS T o + K harer
[ Track events ——== oCC 4 GCC cC gec
shower events % + Uy Vi track Vi track

ST MO N

0.0 0.2 0.4 0.6 0.8
Track score

Event rate for track score (0 for showers, 1 for tracks) for
1-100 GeV atmospheric neutrinos.

I. Mozun-Mateo - LPC Caen

1.0

Purpose: separate the two neutrino event
topologies, track-like and shower-like.

Enough separation power below 10 GeV
(AUROC = 0.82)

High separation power above 10 GeV
(AUROC = 0.91).

Low energy events do not contain enough

pulses to properly separate these two
categories
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Preliminary results on KM3NeT/ORCA115
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Motivation: the transformer is a language model
e KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
* We can think of other configurations as similar languages to learn
The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification

Track-like vs Shower-like

KM3NeT: Small thinks big

Track score

10 KM3NeT/ORCA115 preliminary, simulations

Median and 68% quantiles
—— Tracks Showers

0.8

o
=)

o
IS

0.2 4

0.0 ;
10° 10t 10?
True energy (GeV)

Track score (0 for showers, 1 for tracks) as funtion of neutrino
energy for 1-100 GeV atmospheric neutrinos.

I. Mozun-Mateo - LPC Caen

Purpose: separate the two neutrino event
topologies, track-like and shower-like.

Enough separation power below 10 GeV
(AUROC = 0.82)

High separation power above 10 GeV
(AUROC = 0.91).

Low energy events do not contain

enough pulses to properly separate
these two categories
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Preliminary results on KM3NeT/ORCA115
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Motivation: the transformer is a language model
e KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
* We can think of other configurations as similar languages to learn
The information about KM3NeT/ORCA115 is used to understand our current detector

Track and shower

reconstruction

KM3NeT: Small thinks big

102

KM3NeT/ORCA115 preliminary, simulations

10!

Reco energy (GeV)

—— Transformer all JGandalf tracks ~ —— JShowerFit showers —

Median and 68% quantiles

10°

10!

1671

10°

Median and 68% quantiles
—— Transformer tracks JShowerfFit showers
JGandalf tracks —— Transformer showers

10°

10! 102
True Energy (GeV)

I. Mozun-Mateo - LPC Caen

True and reconstructed neutrino energy and zenith angle

Resolution for 1-100 GeV atmospheric neutrinos.

Purpose: reconstruct neutrino energy and
neutrino direction.

Reconstruction done simultaneously for
both track-like and shower-like events.

Saturation at high energies due to event
containment.

Underestimation at low energies due to
limited number of pulses.
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Multi-detector study
ORCAG6 (Feb20 — Nov21): 4075 runs
ORCA10 (Dec21 — May22): 1889 runs
100k tracks & 100k showers

detector = ORCA(
configuration = detector_configl*path'],
du_selection = (
detector_configl s
detector_configl ‘s
),
shift_coordinates
)

data_definition = HitsSequence(
detector = detector,
node_definition = NodesAsHitsTimeSeries(
input_feature names

max_hits = configl*data it
ta"1["trig

trig_name = configl
).
input_feature names - features,
)

dataset = SQLiteDataset(
path = detector_config['path'],
truth_table = configl'data']1['truth_table_name
pulsemaps = configl'data’]1[ pulsema
truth = truth,
features = features,
graph_definition - data definition,
selection = configl'selection'],
)

train_dataset, val_dataset = train_test_split(
dataset,
train_size = 1 - config['data
test_size = configl'da
random state = config['trai

KM3NeT: Small thinks big

features,

1["na

configuration: Optionall 1,
du_selection: OptionallTuple[List[ 1, Listl 111,
shift_coordinates: Optionall 1 o

(O._init_ ()

RCA115 = du_selection[0]
t RCA du_selection[1]
shift coordinates

L f.geometry le p 0s.
KM3NeT GEOMETRY TABLE DIR,

geometry_table_path = os.path.j
KM3NeT GEOMETRY TABLE DIR,

)

xyz = ["pos .

string_id_column

floor_id_column

sensor_id_column

ORCA115_df - pd.
ORCAX df = pd.

ORCA115 DUs = ORCA115 df[ORCA115 df['Du id'].is
ORCAX_DUs = ORCAX_df [ORCAX_df['DU_id'].1 (

x_shift = ORCAX DUs['pos 5 ORCA115_DUs[
y_shift = ORCAX DUs['p y'l. ORCA115 DUs[
z_shift = ORCAX DUs['pos 2 ORCA115_DUs[

(x_shift, y _shift, z_shift)

I. Mozun-Mateo - LPC Caen

05.| . (KM3NeT _GEOMETRY_TABLE_DIR, configuration)

f, x: torch.

Preliminary results on multi-geometries for KM3NeT/ORCA Al

3
i
i
€
i
]

Dictl

o mE

, Callable
functions to each dimension of

torch.




4

Preliminary results on multi-task for KM3NeT/ORCA

LR ETH RIS 13
Al GOES

g " g
[

Thanks to the modular structure of GraphNeT: fine-tuning between tasks is as well possible.

backbone = Transformer(

Multi-task study
ORCA115 dataset 1: track-shower

seq_length = configl

ORCA115 dataset 2: energy
850k tracks & 850k showers each

StandardModel

Data
Representation

> Converted
data

model = StandardModel(
data definition,
Architecture
AdamW,
config["optimize

> I Tasks

Predictions

configl'training
backbone weights

model.
config['training

name.
param.

KM3NeT: Small thinks big I. Mozin-Mateo - LPC Caen
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