

SMALL THINKS BIG Transfer learning in KM3NeT/ORCA with transformers

15/10/2024, Caen Iván Mozún Mateo On behalf of the KM3NeT collaboration

Overview

- 1. KM3NeT: neutrino telescopes
- 2. Need for data in large language models
- 3. Why transfer learning?
- 4. Multi-detector configuration and multi-task for KM3NeT/ORCA
- 5. Summary & The road ahead

KM3NeT

KM3NeT is an **international collaboration**

- 22 countries
- 65 partner institutes
- ~250 members

Two undersea neutrino telescopes

KM3NeT/ARCA

- Optimized for 1 TeV 10 PeV
- Identify high-energy neutrino sources in the Universe.
- 36m vertical spacing and 90m horizontal spacing

KM3NeT/ORCA

- Optimized for 1 100 GeV
- Determine the mass ordering of neutrinos.
- 9m vertical spacing and 20m horizontal spacing

Currently under construction: ORCA23 (20%), ARCA28 (12%)

KM3NeT: neutrino telescopes

Same **technology**:

- 1 (2) building block(s) for ORCA (ARCA)
- 115 vertical detection units (DUs) per block
- 18 digital optical modules (DOMs) per DU
- 31" PMTs per DOM

Same **detection principle**:

Light collection from **Cherenkov radiation** emitted by particles traveling faster than the speed of light in water

KM3NeT: Small thinks big

Building the detectors

KM3NeT telescopes collect, process and analyze data as they are being built.

Foundation model in KM3NeT?

- learns as the detectors grow
- can handle multiple geometries
- can handle both KM3NeT/ORCA and KM3NeT/ARCA
- classification ↔ reconstruction

Reconstructing neutrino physics

The **official KM3NeT pipeline for reconstruction and classification** relies on algorithms that are applied separately for track-like event or shower-like events. Then, simple BDTs are applied on the reconstructed variables for classification tasks.

Classic approach

Reconstructing neutrino physics

The **official KM3NeT pipeline for reconstruction and classification** relies on algorithms that are applied separately for track-like event or shower-like events. Then, simple BDTs are applied on the reconstructed variables for classification tasks.

Track reco
JMuon

BDT classification
Neutrino vs Background

BDT classification
Track-like vs Shower-like

DL classification Neutrino vs Background

DL classification Track-like vs Shower-like

Track and shower reconstruction

Deep Learning representation

Novel **deep learning** techniques use low-level information from the detector, i.e. light pulses to

- 1. Let the model decide the features to use
- 2. Generalise over a large input domain dimensions
- 3. Perform different tasks

Classification and reconstruction are performed **independently**, and for any type of event.

Large DL models needs **huge amounts of very diverse data** to generalize and interpolate, improving the performances of existing algorithms.

Classic approach

KM3NeT Deep Learning Outreach

Various DL models tested. So far, no one is considered for official analysis.

Convolutional Neural Networks

- Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, KM3NeT)
- Event Classification and Energy Reconstruction for ANTARES using Convolutional Neural Networks (N. Geißelbrecht, ANTARES)
- Deep learning reconstruction in ANTARES (J. García-Méndez et al., ANTARES)
- Dark matter search towards the Sun using Machine Learning reconstructions of single-line events in ANTARES (J. García-Méndez et al., A NTARES)

Deep Neural Networks

• Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA6 (S. Peña Martínez, KM3NeT)

Graph Neural Networks:

- Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the measurement of oscill ation parameters with KM3NeT/ORCA (D. Guderian, KM3NeT)
- Data reconstruction and classification with graph neural networks in KM3NeT/ARCA6-8 (F. Filippini et al., KM3NeT)
- Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, KM3NeT)
- Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B. Setter, KM3NeT)
- Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA (L. Hennig, KM3NeT)

More details here: A Comprehensive Insight into Machine Learning Techniques in KM3NeT (J. Prado)

Need for data in large language models

Neutrino telescope data is described as a set of spatial points with timing & charge information (point-cloud data), hence, most developed DL architectures are based on GNNs.

Language models are starting to overtake but...

- lot of trainable parameters
- lot of training data

The data is too complex and requires a lot of computing resources to be produced and to encapsulate all the physics \rightarrow we must be efficient

Scaling law for trainable parameters and tokens for large language models arxiv.org/abs/2203.15556

Transformer architecture

The input data is the low-level hit information that composes the light pattern detected in the telescope.

The light pulses information

$$X_{\text{pulse}} = [pos_x, pos_y, pos_z, dir_x, dir_y, dir_z, t, ToT]$$

is processed in parallel by the transformer and the highlevel information is extracted in the attention blocks.

Model has ~1.6M trainable parameters.

Prediction

Transfer learning studies

Multiple tasks with a single model

- Classification and reconstruction done together
- Test the capacity of the model

Efficient use of data

- Run-by-Run: simulates MC runs based on data runs to reduce discrepancies
- Not enough data to train large models for every time the detector response is updated

Missing detector information

- PMTs do not exist.
- PMTs correspond to DUs not deployed yet.

Efficient use of computing resources

- Saves time and increases performance
- The information is propagated across detectors

AUROC value for track-shower classification with KM3NeT/ORCA6 data. The AUROC curves are shown as function of the training size sample.

The model is able to **interpolate** to **non-existing DUs information** because it pre-learned the full geometry.

- Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
- Performance: fine-tuned model works way better than the scratch one
- High dependence on event geometry: not enough discrimination with few lines

The model is able to **interpolate** to **non-existing DUs information** because it pre-learned the full geometry.

- Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
- Performance: fine-tuned achieves separation in events with above 10 triggered DOMs
- Peak at ~40 triggered DOMs: fine-tuned model compensates the low statistics

The model is able to **interpolate** to **non-existing DUs information** because it pre-learned the full geometry.

- Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
- Performance: fine-tuned model works way better than the scratch one
- High dependence on event geometry: not enough discrimination with few lines
- Major improvement with increasing detector size ↔ better event containment

The model is able to **interpolate** to **non-existing DUs information** because it pre-learned the full geometry.

- Limited data: 200k events for a detector with 6 lines is not enough to do a proper separation
- Performance: fine-tuned achieves separation in events with above 10 triggered DOMs
- Multiple peaks: fine-tuned model compensates the low statistics

The model is able to **interpolate** to **non-existing DUs information** because it pre-learned the full geometry.

Energy and direction reconstruction:

- Loss curves reveal fine-tuning's performance boost
- Similar resolution in energy reconstruction, but in less time!
- Direction reconstruction improved significantly

Interaction reconstruction vertex:

- The hardest task
- Dynamic detector coordinates from rbr approach
- Small fiducial volume burdens the reconstruction

Parallel component (m)

Better data representation?
Build a latent space to effectively accommodate dynamic coordinates and detector conditions & geometries

Interaction vertex reconstruction at KM3NeT/ORCA6 (left) and KM3NeT/ORCA10 (right) projected over the neutrino direction for 1-100 GeV atmospheric neutrinos.

Interaction reconstruction vertex:

- The hardest task
- Dynamic detector coordinates from rbr approach
- Small fiducial volume burdens the reconstruction

From big to small...

 $ORCA115 \rightarrow ORCA6$, ORCA10, etc.

...and vice versa

 $ORCA115 \rightarrow ORCA6 \rightarrow ORCA10 \rightarrow etc.$

We need to propagate the knowledge between detectors!

Classification to energy reconstruction

- A model that can handle multiple tasks
- A dataset 1 unrelated to dataset 2 (different detectors or water properties or atmospheric muons), helps a model into performing another task and makes it more robust

Track-score in function of neutrino energy in KM3NeT/ORCA115 for **dataset 1**

Multi-task study ORCA115 dataset 1: track-shower ORCA115 dataset 2: energy 850k tracks & 850k showers each

Energy resolution in function of neutrino energy in KM3NeT/ORCA115 for tracks from **dataset 2**

Classification to energy reconstruction

- A model that can handle multiple tasks
- A dataset 1 unrelated to dataset 2 (different detectors or water properties or atmospheric muons), helps a model into performing another task and makes it more robust

Track-score in function of neutrino energy in KM3NeT/ORCA115 for **dataset 1**

Multi-task study

ORCA115 dataset 1: track-shower ORCA115 dataset 2: energy 850k tracks & 850k showers each

Energy resolution in function of neutrino energy in KM3NeT/ORCA115 for showers from **dataset 2**

Classification to energy reconstruction

- A model that can handle multiple tasks
- A dataset 1 unrelated to dataset 2 (different detectors or water properties), helps a model into performing another task and makes it more robust

Fine-tuned model shows **faster convergence and efficiency**.

Freezing the backbone has a **trade-off** between training speed-up and accuracy → suboptimal feature representation

Overall, the three cases achieve show improvements with respect to classical reconstruction methods.

Summary

Transfer Learning in multiple-detectors

- Transformers are particularly effective to deal with small detectors and very limited data
- Further optimization is still needed in vertex reconstruction

Transfer Learning for multi-task

- Speeds up training and boosts model robustness
- Leverages knowledge from different tasks

The road ahead

- From simulations to data: ensure consistency and accuracy when transitioning to real detector data
- Robustness tests & uncertainties: validate model reliability across different conditions and detectors
- Estimate improvements as the detector grows to optimize scalability
- Develop **common benchmark** with state-of-the-art models \rightarrow On the way, see Jorge's talk
- Implement any deep learning reconstruction in the **official data processing pipeline** → Almost there
- Start testing pre-training models (BERT-like, GPT-like) with neutrino telescope data

Thank you for your attention!

Motivation: the transformer is a language model

- KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
- We can think of other configurations as similar languages to learn
- The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification Neutrino vs Background

DL classification Track-like vs Shower-lik

Track and shower reconstruction

Event rate for neutrino score (0 for atmospheric muons, 1 for neutrinos).

Purpose: reject background data (atm. muon) from neutrino signal.

Atmospheric muons are more energetic, having their starting & ending points in most of the cases, out of the fiducial volume.

The model easily isolates **neutrino events** as they are mostly **fully contained** in the detector.

Motivation: the transformer is a language model

- KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
- We can think of other configurations as similar languages to learn
- The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification Neutrino vs Background

DL classification Track-like vs Shower-like

Track and shower reconstruction

Event rate for track score (0 for showers, 1 for tracks) for 1-100 GeV atmospheric neutrinos.

Purpose: separate the two neutrino event topologies, track-like and shower-like.

Enough separation power below 10 GeV (AUROC = 0.82)

High separation power above 10 GeV (AUROC = 0.91).

Low energy events do not contain enough pulses to properly separate these two categories

Motivation: the transformer is a language model

- KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
- We can think of other configurations as similar languages to learn
- The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification Neutrino vs Background

DL classification Track-like vs Shower-like

Track and shower reconstruction

Track score (0 for showers, 1 for tracks) as funtion of neutrino energy for 1-100 GeV atmospheric neutrinos.

Purpose: separate the two neutrino event topologies, track-like and shower-like.

Enough separation power below 10 GeV (AUROC = 0.82)

High separation power above 10 GeV (AUROC = 0.91).

Low energy events do not contain enough pulses to properly separate these two categories

Motivation: the transformer is a language model

- KM3NeT/ORCA115 is the final detector, having all the possible neutrino physics encapsulated
- We can think of other configurations as similar languages to learn
- The information about KM3NeT/ORCA115 is used to understand our current detector

DL classification Neutrino vs Background

DL classification Track-like vs Shower-like

Track and shower reconstruction

Purpose: reconstruct neutrino energy and neutrino direction.

Reconstruction done simultaneously for both track-like and shower-like events.

Saturation at high energies due to event containment.

Underestimation at low energies due to limited number of pulses.

Thanks to the modular structure of GraphNeT: different detector configuration are easily handled.

```
Multi-detector study
                ORCA6 (Feb20 - Nov21): 4075 runs
               ORCA10 (Dec21 – May22): 1889 runs
                          100k tracks & 100k showers
                    configuration = detector config['path'],
                                         detector_config['selection']['ORCA115'],
detector_config['selection']['ORCAX'],
                    shift coordinates = True
data_definition = HitsSequence(
                                detector = detector,
                                node definition = NodesAsHitsTimeSeries(
                                                                                input feature names = features.
                                                                               max_hits = config["data"]["max_hits"],
trig name = config["data"]["trig name"
dataset = SQLiteDataset(
                            path = detector_config['path'],
truth_table = config['data']['truth_table_name'],
pulsemaps = config['data']['pulsemap'],
                             features = features,
                            graph_definition = data_definition
                             selection = config['selection'],
rain dataset, val dataset = train test split(
                                                  train size = 1 - config['data']['validation size'],
                                                 test_size = config['data']['validation_size'],
random state = config['training']['seed'],
```

```
ass ORCA(Detector):
  """ Detector class for ORCA."""
     configuration: Optional[str],
     du_selection: Optional[Tuple[List[int], List[int]]],
     shift coordinates: Optional[bool] = True,
     self.configuration = os.path.join(KM3NeT GEOMETRY TABLE DIR. configuration)
     self.du selection ORCAll5 = du selection[0]
     self.du selection ORCAX = du selection[1]
     self.shift = shift coordinates
         KM3NeT GEOMETRY TABLE DIR, "ORCA115.parquet"
     if self.shift:
  geometry table path = os.path.join(
         KM3NeT GEOMETRY TABLE DIR. "ORCA115.parquet"
  string id column = "DU id"
  floor id column = "floor id"
  sensor id column = "dom id"
  def shift to ORCA115(self):
     ORCAll5 df = pd.read parquet(self.geometry_table_path)
     ORCAX df = pd.read parquet(self.configuration)
     ORCA115 DUs = ORCA115 df[ORCA115 df['DU id'].isin(self.du selection ORCA115)]
     ORCAX DUs = ORCAX df[ORCAX df['DU id'].isin(self.du selection ORCAX)]
     x shift = ORCAX DUs['pos x'].mean() - ORCA115 DUs['pos x'].mean()
     y shift = ORCAX DUs['pos y'].mean() - ORCA115 DUs['pos y'].mean()
     z shift = ORCAX DUs['pos z'].mean() - ORCA115 DUs['pos z'].mean()
     return (x shift, y shift, z shift)
```

```
eature map(self) -> Dict[str, Callable]:
    ""Map standardization functions to each dimension of input data."""
   feature map = {
   return feature map
def dom x(self, x: torch.tensor) -> torch.tensor:
   if self.shift:
def dom y(self, x: torch.tensor) -> torch.tensor:
   if self shift:
def dom z(self, x: torch.tensor) -> torch.tensor:
   return (x - 117.5) / 7.75
lef _dom_time(self, x: torch.tensor) -> torch.tensor:
   return (x - 1800) / 180
lef tot(self, x: torch.tensor) -> torch.tensor:
   return (x - 75) / 7.5
def _dir_xy(self, x: torch.tensor) -> torch.tensor:
lef dir z(self, x: torch.tensor) -> torch.tensor:
```


Thanks to the modular structure of GraphNeT: fine-tuning between tasks is as well possible.


```
backbone = Transformer(
                           seg length = config["backbone"]["seg length"].
                           n features = config["backbone"]["n features"].
                           position encoding = config["backbone"]["position_encoding"],
                           emb dims = config["backbone"]["emb dims"],
                           num heads = config["backbone"]["num heads"],
                           dropout attn = config["backbone"]["dropout attn"],
                           hidden dim = config["backbone"]["hidden_dim"],
                           dropout FFNN = config["backbone"]["dropout FFNN"].
                           no hits blocks = config["backbone"]["no hits blocks"],
                           no evt blocks = config["backbone"]["no evt blocks"],
task = BinaryClassificationTask(
                                   hidden size = backbone.nb outputs,
                                    target labels = config["task"]["target"],
                                    loss function = BinaryCrossEntropyLoss(),
model = StandardModel(
                        graph definition = data definition,
                        backbone = backbone.
                        tasks = [task].
                       optimizer class = AdamW.
                       optimizer kwargs = config["optimizer"]["parameters"],
                       scheduler class = None,
                       scheduler kwargs = None,
                        scheduler config = None.
  config['training']['fine tune']:
   backbone weights = torch.load(config["pretrained"])['state dict']
    model.load state dict(backbone weights, strict = False)
    if config['training']['freeze backbone']:
       for name, param in model.named parameters():
           if name.startswith('backbone'):
               param.requires grad = False
```