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three generations of matter interactions / force carriers
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e Neutrinos are particles of the Standard Model. | e " posens)
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e Neutrinos are particles of the Standard Model.

=10*
Neutrinos are the second most abundant particles in T
. - . i Cosmological v
the universe (after photons). sl o
. . . 2102 v
e They only interact via weak force with extremely small E.o | QUESITIVE BUrsEu A7)
cross sections. S0 | o BRI
e Neutrinos can enlighten the path and help answering 3 o careunditomiklspermioray
. . 4 10
some unsolved questions about particle physics, as |, N F—
well as to understand some astrophysical objects. 100 Atmospheric v
e Neutrinos coming from very different sources: 1o vfrom AGN
‘IO*ZO-
> The Sun 10724: Cosmogenic
v
> Supernovae. 10}
> AGNs. MV MV & KV Mev GV Tev  Pev v
Neutri
> Nuclear reactors. SO SRSy
> Atmospheric neutrinos.
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KM3NeT

S International collaboration
Cities and Sites of KM3NeT % [ with
j > ~250 members.
> 65 partner institutes.
. > Over 22 countries.
ix Amsterdam b ! . .
a’ W t? ! . Two detectors in different
e sites: KM3NeT/ORCA and

Erlangen
°

——— = Tubingen
Lqu\z/n Mg‘é’q:te’ Wurzburg. KM3N€T/ARCA:
G >~ .Parrs (S PragueA r KO:ICG ;
o @ Strasbogrg atislay A > Same technology.

Potchefstroom “ Tb.ilisi
. “ i Bugharest *‘ > Same data processing.
Bol o)
[—  Genpra”g " >  Same software and
South Africa 2 Ma.rsellle X **
R : l’ ,- common dataformats.
74

Australia

S 'Taulon R
Vilanova i la Geltrti @ OIS
USA @@ Barcelona Cacerta Bari

> Different size and
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KM3NeT - ARCA and ORCA
ARCA DOM
e KM3NeT/ORCA: 36m vert. DOM sep. 31x3” PMTs
90m hor. DU sep. , ~

>  Low energies (~few GeV to hundreds of GeVs). 1 Gton detector

> Fundamental neutrino property studies (mainly).

>  Full ORCA: 115 DUs, 18 DOMs per DU.

> Current ORCA: 23 DUs deployed.

> High energies (sub-TeV to few PeV).

> Astrophysical studies (mainly). p

>  Full ARCA: 230 DUs, 18 DOMs per DU. \

> Current ARCA: 28 DUs deployed. |

9m vert. DOM sep
DU: Detection Unit. String of 18 DOMs. 20m hor. DU sep

YOI (Bt Gttt Wil 7 Mton detector

e s ey
L :
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Cherenkov light

s =, Wecan detect neutrlnos' e et
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https://www.youtube.com/watch?v=B7cbc7OHCbM&list=PLL9OR_-tW5qNsDSwmKUQtr3eRk4BypbGP

KM3NeT - Detection principle. Event topology

1. track like events 2. shower like events 3. “double bang” BACKGROUND !!

good pointing good energy reconstruction

i'\' ¢
v\l

»
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PART II
Machine Learning in

KM3NeT
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Deep Learning Projects in KM3NeT

CNNss:
e  Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, KM3NeT)

e  Event Classification and Energy Reconstruction for ANTARES using Convolutional Neural Networks (N. Geifelbrecht,
ANTARES)

e  Deep learning reconstruction in ANTARES (J. Garcia-Méndez et al., ANTARES)

e  Dark matter search towards the Sun using Machine [.earning reconstructions of single-line events in ANTARES (J.
Garcia-Méndez et al., ANTARES)

Fully-connected NNs:
e  Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA®6 (S. Pefia Martinez, KM3NeT)

Several different ML-based projects being already part of physics analyses (BDTs, RFs...):
e  ParamPID: t/s. nu/noise and nu/mu classifier with XGBoost (A. Lazo & L. Maderer, KM3NeT)

e  CR composition measurement: Atm. muon bundle reconstruction using RFs (P. Kalaczynski, KM3NeT)

e  BoostTaulD: identify GeV tau neutrinos in ORCA with XGBoost/ParamPID (N.Geif3elbrecht, KM3NeT)

Al GOEs MAD:2 12



https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
https://ecap.nat.fau.de/wp-content/uploads/2021/05/Masters_Thesis_Nicole_Geisselbrecht.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/16/09/C09018
https://pos.sissa.it/444/1443/pdf
https://pos.sissa.it/444/1035/pdf
https://git.km3net.de/parapid/parampid
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Deep Learning Projects in KM3NeT

GNNs s:

e Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the
measurement of oscillation parameters with KM3NeT/ORCA (D. Guderian, KM3NeT)

e  Data reconstruction and classification with graph neural networks in KM3NeT/ARCAG6-8 (F. Filippini et al., KM3NeT)

e  (Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, KM3NeT)

e  Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B.Setter, KM3NeT)

e  Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA (L. Hennig, KM3NeT)

e  Energy reconstruction in ARCA21 using GNNs (E. Tragia, P. Gkotsis, E. Drakopoulou, KM3NeT)

e  Particle ID classification, energy, direction and interaction vertex position reconstruction in KM3NeT/ORCA using Dynedge (J.
Prado, KM3NeT)

e  Neutrino Selection using GNNs for ARCA28 (A. Veutro, KM3NeT)
e  Heavy neutral lepton signal identification using DYENDGE in KM3NeT/ORCA (J. Prado, KM3NeT)

Transformers/Foundation models:
e  Transformer based classification and reconstruction in KM3NeT/ORCA (I. Mozin, KM3NeT)
e  Transfer learning in KM3neT/ORCA with transformers (I. Mozin, KM3NeT)

9



https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://pos.sissa.it/444/1194/pdf
https://ecap.nat.fau.de/wp-content/uploads/2023/12/2022-07_Stefan_Reck_phd_GNN_ORCA_MuonBundles.pdf
https://drive.google.com/file/d/1TYsVkXVvdKS8qEW4S2muEGk7FnkBmwEw/view
https://ecap.nat.fau.de/wp-content/uploads/2023/06/2023-06_LukasHennig_MSc_ORCA_TauID_GNNs.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf

*V
Representing data with graphs

®  “[tis preferable not to shape the problem to the tool, but the
tool to the problem™ [My ML professor].

e  GNNs using graphs as input capture the irregular
geometries of our events with no underlying assumption
of on the geometry.

e  Using nodes with inputs:

> Position where the hit happens (x,y,z)

> The direction of the PMT collecting the hit (dx,dy,dz)

> The time when the hit happens (t)

> The time that the PMT is collecting over 3 PE (ToT)
e Connected to its N-nearest neighbors in an euclidean space.

\\ 3.4 TeV ve event as graph with k =8 ‘

Al Gaes MAD?2 ' 14
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Representing data with graphs

®  “[tis preferable not to shape the problem to the tool, but the tool
to the problem” [My ML professor].
o  GNNs using graphs as input capture the irregular geometries

0.3

of our events with no underlying assumption of on the
geometry. 4,3
e Using nodes with inputs: '
> Position where the hit happens (x,y,z)
> The direction of the PMT collecting the hit (dx,dy,dz) 0.1 '
> The time when the hit happens (t) : “'
> The time that the PMT is collecting over 3 PE (ToT) - ‘QL, -

e Connected to its N-nearest neighbors in an euclidean space. 0 PG as aroft S PP P, — V0
20 ¢ 40 60 80

Recorded hit time Time [ns]

I T T T 1 I T T T T I T L
|

'



ParticleNeT Model
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ParticleNeT is a GNN that was originally designed to jets at
LHC.

Adapted and used in ORCA under the name of ORCANeT
since some years ago.

3 convolutional blocks connected after to some average
pooling to summarize the learned information and connect to a
fully connected perceptron to learn more complex relations
between node features.

Features a hierarchical structure, early layers focused on
learning low level features while deeper layers will capture
more abstract, global patterns.

Model with 521k trainable parameters®.

(*) Original model of ParticleNeT uses “mean” as the only node aggregation. Here

” ’ 2 9

it has been changed to [ “mean”, “max”, min”, "sum”| changing the number of

EdgeConv Block
k =16, C = (64, 64, 64)

p
EdgeConv Block
k=16, C = (128, 128, 128)

—1

EdgeConv Block

-

k=16, C = (256, 256, 256)
v

[ Global Average Pooling ]

¥

Fully Connected
| 256, ReLU, Dropout = 0.1

17

Fully Connected
2

7

Softmax

U

e

edge features

Linear |

BatchNorm
ReLU

|

Linear

BatchNorm

RelLU

b

I

Linear |

BatchNorm

RelU |

Aggregation

16

trainable parameters of the model from ~370k to this 512k.
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More complex GNNs - DYNEDGE D sitices

Graph Convolutional Layers

Input Graph

15 Global | | —
C@ 'Etatisti(;s I [,5] [1'1029]>{ MLP hPredlctuon]

[n,6] - [1,n_outputs]
™ < s £
State Graph 1 =
( ‘] = JL @@ This makes the \ |
n, ;
EdgeConv | > [ ] o301 MLP m_odel compa‘tlble
o e | witheventswinany | (7 4M trainable
State Graph 2 T number of pulses or
| DOMs parameters
EdgeConv (ﬁ% [n, 256]
- ( EdgeConv
State Graph 3
L for j in range(num_nodes):
This configuration of EdgeConv [n, 256] nhllknny & n,256]
convolution layers let o= Z_:mlp(mi’ zj — i)
the GNN dynamically State Graph 4
tam thg thimal A neighbouring nodes
conneptlylty of each EdgeConv contributes to the
GUHE s tant space. oy Our Choice in Convolution convolution!
k [n, 256] (https://arxiv.org/pdf/1801.07829.pdf)

IHC "



Transformers in KM3NeT

Transformer model are inspired in Natural Language [Credit |. MozUn]
Processing tasks. They are starting to overtake but they have a

lot of learnable parameters that require a lot of data for an

optimal performance.
The model arranges light pulses in tokens with information
[pos, dir, t, ToT] in a sequence and learns relationships among

them to then perform different tasks.

(O g s s 908

Model with 1.6M trainable parameters.

Ofters potential for transfer learning: fine-tuning pre-trained

(N+M) x (Attention Block)

models for different detector configurations.

ey, SatteEEes

Normalization

More details about the model and transfer learning in
the follow up talk by Ivan Mozun!

X = [Xpulse 1,Xpu|se 2y seey Xpulse N]

"
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Comparing models in KM3NeT

DataRepresentation \

r
DeepCore Raw Data

DeepCore

e GraphNeT is a common framework for DL projects. 4
e It has a modular structure that makes it very easy to Raw Data DeepCore  aw Data

— b —

embed your detector and your models in the software.

NodesAsPulses TimeSeries

e Dedicated instructions to include your detector.
e Many models implemented. ParticleNeT, DYNEDGE,
RNNSs and top 3 kaggle solution (see description here)

— —

{ K-NN
L

Image Representation Point Cloud Graph Representation Sequence Representation

e  Working on SQLite or Parquet.

/ DataConverter \
" [nanfs Jusn

82 F'Ies J -
. o — Reader "
% @ GraphNeT
%o Deep Leaning for Neutrino Telescopes -
graphnet.deployment

& i 8180

Writer 1
Labelled training data i Unlal?glled data H Reconstruct ) ? } g l:
(Experiment-specific format) h (Experiment-specific format) i

K / Predictions
On disk

graphnet.data graphnet.models graphnet.training
S : ° & 2
- - - IR
o 3
1\ I Model GraphNeT
Develop / Experiment

9



https://graphnet-team.github.io/graphnet/integration/integration.html
https://arxiv.org/pdf/2310.15674
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Comparing models in KM3NeT

e GraphNeT is a common framework for DL projects. Bargast o) saLite O(log(n))
e It has a modular structure that makes it very easy to U LI
embed your detector and your models in the software. f:& P e
e Dedicated instructions to include your detector. ET
e Many models implemented. ParticleNeT, DYNEDGE, N
RNNSs and top 3 kaggle solution (see description here)
e  Working on|SQLite or Parquet. <g—
Dataset Size
B | Parquet
% SQlite
3
s
]
s
W
Dataset Size

2



https://graphnet-team.github.io/graphnet/integration/integration.html
https://arxiv.org/pdf/2310.15674

PART III
Preliminary model

comparison
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Comparing Models

e Comparison between ParticleNeT, DYENDGE and the Tracks | Showers
transformer model training, validating and testing on the exact Training 1.92M 1.92M
same events.

e Trained for: classification between tracks and showers, Validation 480k 480k
reconstruction of the neutrino energy and the incoming Test 278k 278k
direction of the neutrino.

e Using electron (anti-)neutrino as showers and muon Trainable
(anti-)neutrinos as tracks in the energy range 1-100 GeV. e

ParticleNeT 521k
Dynedge 1.4M
Transformer 1.6M

ParticleNeT and DYNEDGE trained 1 GPU Tesla V100-SXM2-32GB

O'n ransformer trained in 8 GPUs NVIDIA A100-SXM4-80GB

s 2
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Track-Shower Classification

e Transformer performing worse DYNEDGE or N-epochs Loss function Time per epoch
ParticleNeT. . . .
. . . ParticleNeT 38 BinaryCrossEntropy ~26min
e The simplest model is performing the best.
Lack of training events to extract the full potential | DYNEDGE 28 BinaryCrossEntropy ~28min
of D EDGE or the transformer? Transformer 52 BinaryCrossEntropy ~15min

KM3NeT - Preliminary KM3NeT - Preliminary KM31|\TETI‘ - .Prfflimlinalry .
L B L B B e L L B S

True positive rate

Lok i) 070F DYNED'GlEl b T [ Tracks DYNEDGE -~ 4
- E ) i X ] Showers DYNEDGE ]
0.65 - E ParticleNeT . [ 1 Tracks ParticleNeT
i 1 ¥ = — Transformer 3 [ Showers ParticleNeT
0.8 | § 0.60 F . [ Tracks Transformer
L 4 g Ur ] Showers Transformer
I 1 8 1 £
6F s 0.55F 4 § ¢
0.6 I ] % . ] ¢
& i “
L £0.50 - ] ;
b~ X ] <
0.4F | 4 © C 1 =
L o - ] 35
L 1 8 [ ] 103F
0.2 . 1 = o040fF 3
Al , —— DYNEDGE (AUC=0.85) | Z "*t ]
i - ParticleNeT (AUC=0.85) - - ]
0 0'_ < —— Transformer (AUC=0.82) ] 0'35: ]
tf I ST TS oo e S (TR Lo T s vl vsnlvwr Tesn glowraTramelarialsg oyl
0.0 0.2 0.4 0.6 0.8 1.0 0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975 ; ; 0.4 0.6
False positive rate Purity Model Score

1C 2



Track-Shower Classification
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e Check if the models are targeting different events. If, for instance,
one model finds it easy to classify a track as a track while the other
struggles, while for a different track the opposite happens, then the
combination of both predictions might be valuable.

e Here it has been considered events classified as a shower for a model
those with a score smaller than 0.3 and tracks the ones with a score
greater than 0.7.

e  Most of the events are understood the same way by the three models.

e Tried a BDT with features: the three scores + the three energy
reconstructions (see in a moment) but very little improvement in the
classification (AUC=0.86).

Showers

51.5%

ParticleNeT

Tracks

DYNEDGE

68.4%

ParticleNeT

Al GOoEs MAD= '
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Energy Reconstruction

KM3NeT - Preliminary 102 KM3NeT - Preliminary
o . 1.0F T = T
e Very similar performances of the three models 5 — DYNEDGE — DYNEDGE
ParticleNeT ParticleNeT
n the el’ltll'e energy range. osk —— Transformer ] —— Transformer

=2
=
=

e For tracks and showers all the three models

g
=
T

struggle with events below 3 GeV.

Tracks
Abs mean error

Reconstructed Energy [GeV]

e For tracks over 60 GeV the three models have T
difficulties in the prediction as well. 02f y
Ogey it e 10T if 0
True Energy [GeV] True Energy [GeV]
KM3NeT - IPreliminary 102 KM3NeT - IPreliminary
N-epochs Loss function Time per epoch Lok —— DYNEDGE ] — DYNEDGE
ParticleNeT ParticleNeT
——— Transformer . —— Transformer
ParticleNeT 29 LogCosh ~22mins 0 0.8 - E
| 5
DYNEDGE 22 LogCosh ~23mins d;J = 06f E o
< ] F 7
g 2
. O [ 2
Transformer 58 LogCosh ~15mins o o %
(/) g
0.2l =
0-9gv T w0 1046 0T 102
True Energy [GeV] True Energy [GeV]

z
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Direction Reconstruction

KM3NeT - Preliminary
T

40 —— DYNEDGE ]
e Better performance of ParticleNeT and DYNEDGE over the N3 e ]

=== Theoretical limit

transformer.

%)
S
T

)
S
T

]

e (Can reach resolutions below 15° for tracks and for showers over
10 GeV.
e VonFisherMises loss function outputs as well a measurement of

-
1
T

Showers
Angular resolution [deg]

10

how certain the model is of a prediction. Can be used to achieve 5 ;
a sample of over 30% of the events but with angular resolutions 107 — o o 0
Tue Energy |Ge
close to the theoretical limit. (See this talk at NPML2024) : KRNeT - Frelimuary .
—— DYNEDGE
35F ParticleNeT -
—— Transformer
?30 o === Theoretical limit
N-epochs Loss function Time per 0 %
epoch X | BE E
O [Zxf 3
ParticleNeT 45 VonfisherMises ~27mins E E; oF ]
=
DYNEDGE 25 VonFisherMises ~31mins 10F E
sE 3
Transformer 56 GaussianNegativelLogLikelihood ~28mins s T m
True Energy [GeV]

2


https://indico.phys.ethz.ch/event/113/contributions/843/attachments/517/1112/jprado_NPML_presentation_june2024.pdf
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Trying new loss functions?

| KM3NeT - IPreliminamy :
q o 40 7 —— ParticleNeT-VFM 7
e ParticleNeT in KM3NeT and the transformer model used = ParticleNeT-Gauss.
. 3vF —-==-Theoretical limit
GaussianNegativeLogLikelihood (GNLL) as loss function for 0 5s Be ;
<
3 0 0 0 5 3 -
direction reconstructions while DYENDGE for IceCube direction @ (£ M E
- . . E i L
reconstruction used VonFisherMises (VFM). Can any of the % far i e ;
models perform better by using a different loss function? ‘.,:) :%15- L“H\,_,—L E
. . . 10F '__I _
e ParticleNeT trained with the exact same hyperparameters shows S
5F tews  F
an improvement when changing from the GNLL to the VFM by s ot
. . True Energy [GeV]
1n every encrgy bin. KM3NeT - Preliminary
e Transformer might enhance its performance as well (under study). w e e |
=== Theoretical limit
Py Theoret ¢
N-epochs Time per epoch 0 TZ o - =
L., L ]
=< [ e
ParticleNeT 29 ~28mins 8 R S E
Gauss. = (5 E iy E
- (& 5
< =l 1
ParticleNeT 45 ~27mins OF
VFM o s e
o7 o m
True Energy [GeV]

Al Gaes MAD?2 ' 27
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Node features studies

Lo
e How well the model performs
. . . 3 08-
with less node information? N-epochs Time per epoch .
= o[
e ToT does not affect the B T e e E
performance but PMT direction S0l
DYN. no-ToT 26 ~22mins S
does. ,
0.2 DYENDGE no-ToT (AUC=0.84) ]
o Need to check per task. DYN. no_ToT,dir 38 ~20mins DYNEDGE no-ToT no-dir (AUC=0.82)
. 0.0F7 DYNEDGE all-node-features (AUC=0.84) |
(WOI’k m pI'OgI'GSS). B X (¥ S ¥ Y (SR

False positive rate

KM3NeT - Preliminary
LT L I L L0 LB B

—— DYENDGE no-ToT
0.65F DYNEDGE no-ToT no-dir ]
—— DYNEDGE all-node-features

ing

TFraction of tracks remain

0.35F b

1 1 1 1 1 1 1 1
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
Purity

Al Gaes MAD?2 ' 28
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Node Inputs Normalization Effect

e In principle, the model should be able to find out the range of values for o
each feature and learn how to deal with it. 08p

e Providing a normalization so that the features are in the range [-10, 10] “06
(as in here) enhances the performance and improves the training times. i

e Need to study and optimize the normalization? Normalizing X, y and z so £ n

| —— DYNEDGE (AUC=0.85)
0.2 |

that they lay within -10 and 10 can not distort the geometry? Is this possible | issind lumer S
| ,=—— DYNEDGE no norm. (AUC=0.83)
that this also affects to the choice of neighbours? 0o »*" ==~ Transformer no norm. (AUC=052) ]
0 00 : 5 : 0.0 0.2 0.4 0.6 0.3 1.0
e For sure it affects, but the optimization is work in progress. False positive rate
KM3NeT - Preliminary
0T DyNEDGE
065E T r[\ra}nsforn}elr E
u _ === DYNEDGE no norm.
. % 0.60F Transformer no norm. J
N-epochs Time per epoch g
5 053 ]
DYNEDGE (Norm / No-norm) 26/30 21 mins / 24mins § 050E 3
£ oasf ]
Transformer (Norm / No-norm) 32/52 15.3mins / 14.9mins g ’
50‘40- P L
035F -1

I | I I 1 | I |
0.800 0.825 0.850 0.875 0.900 0.925 0.950 0.975
Purity

z



https://nbi.ku.dk/english/theses/masters-theses/kaare-endrup-iversen/Kaare_Endrup_Iversen.pdf

Conclusions

e Deep learning techniques are very suitable techniques to study neutrino events in KM3NeT
detector as they capture information that with BDT or likelihood based methods for study are missing.

e Need to perform further comparisons and then study how well is the agreement between the
predictions on simulation and data.

e [t is key to see the adaptability of models for different detector configurations as we are working on a
growing project. See next talk about Transfer Learning!

o IceCube, KM3NeT, P-One, Baikal-GVD...very similar detectors. Would it be nice to study how well
the techniques used in one detector work in another. (work in progress, see paper soon)

0



Thank you!

Models trained in:

% GENERALITAT
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Appendix - TS score over E, Zen and Az
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[Credit A. Veutro] [Credit S. Pefia Martinez]
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