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PART I
Neutrino Telescope: 
KM3NeT



Neutrinos

4

● Neutrinos are particles of the Standard Model.
● Neutrinos are the second most abundant particles in 

the universe (after photons).
● They only interact via weak force with extremely small 

cross sections.
● Neutrinos can enlighten the path and help answering 

some unsolved questions about particle physics, as 
well as to understand some astrophysical objects.
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● Neutrinos are particles of the Standard Model.
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the universe (after photons).
● They only interact via weak force with extremely small 

cross sections.
● Neutrinos can enlighten the path and help answering 

some unsolved questions about particle physics, as 
well as to understand some astrophysical objects.

● Neutrinos coming from very different sources:
➢ The Sun.
➢ Supernovae.
➢ AGNs.
➢ Nuclear reactors.
➢ Atmospheric neutrinos.



Neutrino telescopes
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4 km³ - 
Future

1 km³ - 
Under-cons.

0.01 km³ - 
2008-2022

1 km³ - 
2011-Now
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Under-cons.
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Future
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KM3NeT
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● International collaboration 
with 
➢ ~250 members.
➢ 65 partner institutes.
➢ Over 22 countries.

● Two detectors in different 
sites: KM3NeT/ORCA and 
KM3NeT/ARCA:
➢ Same technology.
➢ Same data processing.
➢ Same software and 

common dataformats.
➢ Different size and 

granularity.

 KM3NeT/ORCA

KM3NeT/ARCA

 



KM3NeT - ARCA and ORCA

8

● KM3NeT/ORCA:

➢ Low energies (~few GeV to hundreds of GeVs).

➢ Fundamental neutrino property studies (mainly).

➢ Full ORCA: 115 DUs, 18 DOMs per DU.

➢ Current ORCA: 23 DUs deployed.

● KM3NeT/ARCA:

➢ High energies (sub-TeV to few PeV).

➢ Astrophysical studies (mainly).

➢ Full ARCA: 230 DUs, 18 DOMs per DU.

➢ Current ARCA: 28 DUs deployed.

ARCA
 36m vert. DOM sep.

90m hor. DU sep.
1 Gton detector

 

ORCA
9m vert. DOM sep
 20m hor. DU sep
7 Mton detector

 

DOM
31x3” PMTs

 

DU: Detection Unit. String of 18 DOMs.

DOM: Digital Optical Module. 
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We can detect neutrinos!

Cherenkov light

Video

https://www.youtube.com/watch?v=B7cbc7OHCbM&list=PLL9OR_-tW5qNsDSwmKUQtr3eRk4BypbGP


KM3NeT - Detection principle. Event topology
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PART II
Machine Learning in 
KM3NeT



Deep Learning Projects in KM3NeT
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● Event reconstruction for KM3NeT/ORCA using convolutional neural networks (M. Moser, KM3NeT)

● Event Classification and Energy Reconstruction for ANTARES using Convolutional Neural Networks (N. Geißelbrecht, 
ANTARES)

● Deep learning reconstruction in ANTARES (J. García-Méndez et al., ANTARES)

● Dark matter search towards the Sun using Machine Learning reconstructions of single-line events in ANTARES (J. 
García-Méndez et al., ANTARES)

CNNs:

 

● Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA6 (S. Peña Martínez, KM3NeT)
Fully-connected NNs:

 

Several different ML-based projects being already part of physics analyses (BDTs, RFs…):

 

● ParamPID: t/s, nu/noise and nu/mu classifier with XGBoost (A. Lazo & L. Maderer, KM3NeT)

● CR composition measurement: Atm. muon bundle reconstruction using RFs (P. Kalaczynski, KM3NeT)

● BoostTauID: identify GeV tau neutrinos in ORCA with XGBoost/ParamPID (N.Geißelbrecht, KM3NeT) 

https://iopscience.iop.org/article/10.1088/1748-0221/15/10/P10005
https://ecap.nat.fau.de/wp-content/uploads/2021/05/Masters_Thesis_Nicole_Geisselbrecht.pdf
https://iopscience.iop.org/article/10.1088/1748-0221/16/09/C09018
https://pos.sissa.it/444/1443/pdf
https://pos.sissa.it/444/1035/pdf
https://git.km3net.de/parapid/parampid


Deep Learning Projects in KM3NeT
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● Development of detector calibration and graph neural network-based selection and reconstruction algorithms for the 
measurement of oscillation parameters with KM3NeT/ORCA (D. Guderian, KM3NeT)

● Data reconstruction and classification with graph neural networks in KM3NeT/ARCA6-8 (F. Filippini et al., KM3NeT)

● Cosmic ray composition measurement using Graph Neural Networks for KM3NeT/ORCA (S. Reck, KM3NeT)

● Optimisation of energy regression with sample weights for GNNs in KM3NeT/ORCA (B.Setter, KM3NeT)

● Tau neutrino identification with Graph Neural Networks in KM3NeT/ORCA (L. Hennig, KM3NeT)

● Energy reconstruction in ARCA21 using GNNs (E. Tragia, P. Gkotsis, E. Drakopoulou, KM3NeT)

● Particle ID classification, energy, direction and interaction vertex position reconstruction in KM3NeT/ORCA using Dynedge (J. 
Prado, KM3NeT)

● Neutrino Selection using GNNs for ARCA28 (A. Veutro, KM3NeT)

● Heavy neutral lepton signal identification using DYENDGE in KM3NeT/ORCA (J. Prado, KM3NeT)

 

GNNs:

 

● Transformer based classification and reconstruction in KM3NeT/ORCA (I. Mozún, KM3NeT)
Transformers/Foundation models:

 ● Transfer learning in KM3neT/ORCA with transformers (I. Mozún, KM3NeT)

https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf
https://pos.sissa.it/444/1194/pdf
https://ecap.nat.fau.de/wp-content/uploads/2023/12/2022-07_Stefan_Reck_phd_GNN_ORCA_MuonBundles.pdf
https://drive.google.com/file/d/1TYsVkXVvdKS8qEW4S2muEGk7FnkBmwEw/view
https://ecap.nat.fau.de/wp-content/uploads/2023/06/2023-06_LukasHennig_MSc_ORCA_TauID_GNNs.pdf
https://www.uni-muenster.de/imperia/md/content/physik_kp/agkappes/abschlussarbeiten/doktorarbeiten/doktorarbeit_daniel_guderian.pdf


Representing data with graphs
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● “It is preferable not to shape the problem to the tool, but the 
tool to the problem” [My ML professor].

● GNNs using graphs as input capture the irregular 
geometries of our events with no underlying assumption 
of on the geometry.

● Using nodes with inputs:
➢ Position where the hit happens (x,y,z)
➢ The direction of the PMT collecting the hit (dx,dy,dz)
➢ The time when the hit happens (t)
➢ The time that the PMT is collecting over 3 PE (ToT)

● Connected to its N-nearest neighbors in an euclidean space.
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ParticleNeT Model
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● ParticleNeT is a GNN that was originally designed to jets at 
LHC.

● Adapted and used in ORCA under the name of ORCANeT 
since some years ago.

● 3 convolutional blocks connected after to some average 
pooling to summarize the learned information and connect to a 
fully connected perceptron to learn more complex relations 
between node features.

● Features a hierarchical structure, early layers focused on 
learning low level features while deeper layers will capture 
more abstract, global patterns. 

● Model with 521k trainable parameters*.

(*) Original model of ParticleNeT uses “mean” as the only node aggregation. Here 
it has been changed to [“mean”, “max”, min”,”sum”] changing the number of 
trainable parameters of the model from ~370k to this 512k.

 



More complex GNNs - DYNEDGE
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1.4M trainable 
parameters



Transformers in KM3NeT
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● Transformer model are inspired in Natural Language 
Processing tasks. They are starting to overtake but they have a 
lot of learnable parameters that require a lot of data for an 
optimal performance.

● The model arranges light pulses in tokens with information 
[pos, dir, t, ToT] in a sequence and learns relationships among 
them to then perform different tasks.

● Model with 1.6M trainable parameters.
● Offers potential for transfer learning: fine-tuning pre-trained 

models for different detector configurations.

[Credit I. Mozún]

More details about the model and transfer learning in 
the follow up talk by Iván Mozún!



Comparing models in KM3NeT
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● GraphNeT is a common framework for DL projects. 
● It has a modular structure that makes it very easy to 

embed your detector and your models in the software.
● Dedicated instructions to include your detector.
● Many models implemented. ParticleNeT, DYNEDGE, 

RNNs and top 3 kaggle solution (see description here)
● Working on SQLite or Parquet.

https://graphnet-team.github.io/graphnet/integration/integration.html
https://arxiv.org/pdf/2310.15674
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PART III
Preliminary model 
comparison



Comparing Models
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Tracks Showers

Training 1.92M 1.92M

Validation 480k 480k

Test 278k 278k

● Comparison between ParticleNeT, DYENDGE and the 
transformer model training, validating and testing on the exact 
same events.

● Trained for: classification between tracks and showers, 
reconstruction of the neutrino energy and the incoming 
direction of the neutrino.

● Using electron (anti-)neutrino as showers and muon 
(anti-)neutrinos as tracks in the energy range 1-100 GeV.

Trainable 
parameters

ParticleNeT 521k

Dynedge 1.4M

Transformer 1.6M

-Dir
-Pos
-t
-ToT

ParticleNeT and DYNEDGE trained 1 GPU Tesla V100-SXM2-32GB

Transformer trained in 8 GPUs NVIDIA A100-SXM4-80GB 

 



Track-Shower Classification
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● Transformer performing worse DYNEDGE or 
ParticleNeT.

● The simplest model is performing the best. 
Lack of training events to extract the full potential 
of DYNEDGE or the transformer?

N-epochs Loss function Time per epoch

ParticleNeT 38 BinaryCrossEntropy ~26min

DYNEDGE 28 BinaryCrossEntropy ~28min

Transformer 52 BinaryCrossEntropy ~15min



Track-Shower Classification
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● Check if the models are targeting different events. If, for instance, 
one model finds it easy to classify a track as a track while the other 
struggles, while for a different track the opposite happens, then the 
combination of both predictions might be valuable.

● Here it has been considered events classified as a shower for a model 
those with a score smaller than 0.3 and tracks the ones with a score 
greater than 0.7.

● Most of the events are understood the same way by the three models.
● Tried a BDT with features: the three scores + the three energy 

reconstructions (see in a moment) but very little improvement in the 
classification (AUC=0.86).



Energy Reconstruction
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N-epochs Loss function Time per epoch

ParticleNeT 29 LogCosh ~22mins

DYNEDGE 22 LogCosh ~23mins

Transformer 58 LogCosh ~15mins

● Very similar performances of the three models 
in the entire energy range.

● For tracks and showers all the three models 
struggle with events below 3 GeV.

● For tracks over 60 GeV the three models have 
difficulties in the prediction as well.



Direction Reconstruction
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N-epochs Loss function Time per 
epoch

ParticleNeT 45 VonfisherMises ~27mins

DYNEDGE 25 VonFisherMises ~31mins

Transformer 56 GaussianNegativeLogLikelihood ~28mins

● Better performance of ParticleNeT and DYNEDGE over the 
transformer.

● Can reach resolutions below 15º for tracks and for showers over 
10 GeV. 

● VonFisherMises loss function outputs as well a measurement of 
how certain the model is of a prediction. Can be used to achieve 
a sample of over 30% of the events but with angular resolutions 
close to the theoretical limit. (See this talk at NPML2024)

https://indico.phys.ethz.ch/event/113/contributions/843/attachments/517/1112/jprado_NPML_presentation_june2024.pdf


Trying new loss functions?
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● ParticleNeT in KM3NeT and the transformer model used 
GaussianNegativeLogLikelihood (GNLL) as loss function for 
direction reconstructions while DYENDGE for IceCube direction 
reconstruction used VonFisherMises (VFM). Can any of the 
models perform better by using a different loss function?

● ParticleNeT trained with the exact same hyperparameters shows 
an improvement when changing from the GNLL to the VFM 
in every energy bin. 

● Transformer might enhance its performance as well (under study).

N-epochs Time per epoch

ParticleNeT 
Gauss.

29 ~28mins

ParticleNeT 
VFM

45 ~27mins
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Node features studies

-Dir
-Pos
-t
-ToT

-Dir
-Pos
-t

-Pos
-t

N-epochs Time per epoch

DYN. all 26 ~27mins

DYN. no-ToT 26 ~22mins

DYN. no_ToT,dir 38 ~20mins

● How well the model performs 
with less node information?

● ToT does not affect the 
performance but PMT direction 
does.

● Need to check per task.      
(work in progress).  



Node Inputs Normalization Effect
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● In principle, the model should be able to find out the range of values for 
each feature and learn how to deal with it.

● Providing a normalization so that the features are in the range [-10, 10] 
(as in here) enhances the performance and improves the training times.

● Need to study and optimize the normalization? Normalizing x, y and z so 
that they lay within -10 and 10 can not distort the geometry? Is this possible 
that this also affects to the choice of neighbours?

● For sure it affects, but the optimization is work in progress.

N-epochs Time per epoch

DYNEDGE (Norm / No-norm) 26 / 30 21 mins / 24mins

Transformer (Norm / No-norm) 32 / 52 15.3mins / 14.9mins 

https://nbi.ku.dk/english/theses/masters-theses/kaare-endrup-iversen/Kaare_Endrup_Iversen.pdf


Conclusions
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● Deep learning techniques are very suitable techniques to study neutrino events in KM3NeT 
detector as they capture information that with BDT or likelihood based methods for study are missing.

● Need to perform further comparisons and then study how well is the agreement between the 
predictions on simulation and data.

● It is key to see the adaptability of models for different detector configurations as we are working on a 
growing project. See next talk about Transfer Learning!

● IceCube, KM3NeT, P-One, Baikal-GVD…very similar detectors. Would it be nice to study how well 
the techniques used in one detector work in another. (work in progress, see paper soon)
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 Thank you!

Models trained in:



Appendix - TS score over E, Zen and Az
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ParticleNeT in KM3NeT
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[Credit A. Veutro] [Credit S. Peña Martínez]


