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Data collection in CMS experiment

Tens of petabytes of data are recorded every
year at the Large Hadron Collider (LHC).

CMS CMS Experiment at the LHC, CERN \
Data recorded: 2016-Aug-15 01:00:30.361728 GMT

Run / Event / LS: 278822 / 837399836 / 484




Machine Learning use for classification problem

Algorithm able to We measure its
improve its i@} é:(_):% success with the use

performance by of specific and
learning from data ﬁ §:§:§ 1’ appropriate metrics
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What about uncertainty for ML?

We can obtain great results Point estimate:
with Machine learning
methods, but they are usually
presented as mere point

estimations. Uncertainty Interval estimate:
measures such as variance
offer more complete results.
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Are my results reliable ?



Stochastic \

regularisation
techniques, Dropout

Bayesian Approximation

BNNs present the in our case, applied
network parameters pwith derburion] to a MLP result in an
as random variables, hidden layer equivalent

allowing for weighs: optimisation

(with distribution)

problem. [Y. Gal.

Uncertainty in Deep
Learning (2016)]

uncertainty analysis.
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https://mlg.eng.cam.ac.uk/yarin/thesis/thesis.pdf
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Bayesian Approximation

Proposition  Given p(y*|f“(x*)) = N(y*; £“(x*), 77I) for some 7 > 0, Egr (yr 1) [y*]
can be estimated with the unbiased estimator
T We can obtain an
E LAl unbiased estimator
of the First and
second moment!!

with W ~ qp(w).

Proposition

Given p(y*|f*(x*)) = N(y* £(x*), 77I) for some 7 > 0, Eqs (yr|x- )[(y*)T(y*)] can be
estimated with the unbiased estimator

B[ (5")] = T o 3 £ ()T E () 0 By 077 0)]

T—o0

with w; ~ ¢4 (w) and y*, £t (x*) row vectors (thus the sum is over the outer-products).




Probabilistic Random Forest

The Random Forest
algorithm is
modified to take
into account
uncertainties in the
input data.




Probabilistic Random Forest D
Instead of a deterministic

outcome PRF calculates
the probability of each
possibility.
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We can compute then the
fFirst and second moment
of the prediction.
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L ocal Ensembles

a

hidden layers

N

| ()
This method involves :~
(O

the calculation of the XN ",le,‘
norm of the prediction i

O\
570 OV

S eal
The matrix of Hessian
eigenvectors spanning a

subspace of low curvature
is also needed.

gradient.




Local Ensembles

« N
The calculated score for a point x’is proportional to the standard
deviation of the prediction for x’. [D. Madras. J. Atwood. A. D’Amour, in:
ICLR 2020 International Conference on Learning Representations, (2019)]
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Proposition 1. Let Ay be the projection of a random perturbation with mean zero and covariance

proportional to the identity € - I into the ensemble subspace spanned by {&(;y : j > m}. Let Pp be
the linearized change in prediction induced by the perturbation

Pa(x') := go=(2") T Ag = §(z', 0 + Ag) — G(a’, 0%).

Then Ep(2’) = € 1/2 . SD(Pa(z")).


https://arxiv.org/pdf/1910.09573.pdf
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Top antitop discrimination in CMS

a

The three methods are
applied to a classification
problem: Discrimination of
top antitop decays.

<

Background includes WW, WZ, ZZ or single top processes.



The probability density Functions of the
Results classification parameter For true signal and
background events are shown.
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(a) Local Ensembles (b) Probabilistic Random Forest (c) Bayesian approximation




Model TPR for 1—FPR=0.95

Probabilistic Random Forest 0.953 +£0.010
Local Ensembles 0.915 4+ 0.008
Bayesian Approximation 0.982 +£0.003

Results
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(a) Local Ensembles (b) Probabilistic Random Forest (c) Bayesian approximation




Model AUC

Results Probabilistic Random Forest 0.969 + 0.005
Local Ensembles 0.951 + 0.006
Bayesian Approximation 0.990 £ 0.001
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(a) ROC curve. (b) ROC curve with x-axis in logarithmic scale.




Conclusions

e All of them exhibit an excellent discrimination power.

e The model uncertainty measure turns out to be small, showing that the
predictions are precise and robust.

e Prediction uncertainties supplied by the three methods are quite similar.

e This work foresees the prospect of generalizing the use of ML uncertainty
methods in particle physics. The huge volume of data in the field makes it
ideal to exploit the possibilities of these tools.



The End



