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A Quick Refresher on 
Particle Physics

01. And its computational 
challenges



The Standard Model

• Makes up all visible matter in the 
universe

• Creates (almost) all known forces 
and mass
• Electricity, magnetism, strong, and 

weak
• Helps us understand the origins 

and evolution of the universe

• All interactions governed by 
mathematical rules (Lagrangian)



But….

What is dark matter?

Where is the graviton?

Is super symmetry 
real?

How do neutrinos 
change flavor?

Are there more 
generations of matter?

What is dark energy?

Why is the top so heavy? 
The Higgs so light?

Are there other Higgs 
bosons?



The Large Hadron Collider
• 17 mile proton-proton collider 

under the the French-Swiss 
border

• Produces 1000 million collisions 
per second

• Allows us to study the fundamental 
constituents of matter

Particle Collisions:
• Accelerate protons to .99x the speed of light
• Collide the accelerated particles
• E=mc2, so the high energy collisions create 

rare, exciting particles
• Measure the decay products with specialized 

detectors.



Particle Collisions



Physics at the LHC
• Theorists model new particles that fit with 

the SM to explain these phenomena

• If they exist (and are accessible at LHC 
energy scales) we can create them and 
record their SM decay products

• Increasing collision energy means a wider 
variety of particles and increasing 
luminosity means more data!

• Can also make more precise checks of the 
SM



LHC Data
• Collision data measured by dedicated 

subsystems 
• Quantifies interactions with highly granular 

detectors
• Readouts must be reconstructed into particle 

components (tracks, clusters) then full particle 
candidates and event information

• We can only measure SM particles, so we 
must (accurately) extrapolate what 
happened during the initial collision

• Poses many computing challenges
• Non-fixed size, heterogenous data
• Varying density/sparsity
• Very tight computing time and resource 

constraints



AI and Particle Physics

02. Symbiotic evolution



The LHC Involves Extensive Software



AI Can Be Utilized In Nearly Every Aspect

Diagram from Gregor 
Kasieczka

mailto:https://indico.nikhef.nl/event/4875/contributions/21153/attachments/8264/11798/DeepLearning_EUCAIFCon_Amsterdam_2024_v2.pdf


An Evolving Field
• AI has been used in particle physics, in some 

form, for nearly 40 years
• Particle physics has often been at the forefront 

of adopting and innovating novel AI methods
• See Kyle Cranmer’s keynote at NeurIPS 2016!
• And our ongoing ML and the Physical Sciences 

Workshop (large particle physics component)
• The methods have substantially evolved over 

the years, from decision trees to neural 
networks to transformers
• The data representations have similarly evolved 

(see next slides!)
• However, much remains the same

• Overall focus has been on leveraging the full, low 
level data

• Many unanswered questions still remain

https://t.co/pvmPCFexyZ
https://ml4physicalsciences.github.io/2024/
https://ml4physicalsciences.github.io/2024/


Current R&D in AI and 
Particle Physics

03.
A wide variety of 

approaches for shared 
goals



Common Themes

Leverage relationships and 
structure between data points

Identify potential beyond 
the standard model events

Preserve information and 
enable effective learning

Improve or accelerate 
simulations for training 

and analysis  

Accurately experimental 
observations to nature Perform multiple tasks 

with the same model

DATA FORMATS GEOMETRIC DL ANOMALIES

GENERATIVE AI UNFOLDING FOUNDATION
MODELS



Data 
Representations



How Should We Represent Particle Collisions?



How Should We Represent Particle Collisions?

Language? Maybe! We’ll return to this later….



Point Clouds

Can naturally represent many types of data



Graphs

• If we add relational information to a 
point cloud we get a graph
• Nodes: vertices 𝑢∈𝑉 with associated 

information xu∈ℝdv

• Spatial coordinates, features, etc
• Edges: connections between nodes (𝑢,𝑣)∈𝐸 
• Can be directed or undirected, can have 

associated information eu,v∈ℝdv

• Graphs can represent many types of 
relational/geometric data

• Inherent geometric inductive bias
• By including edges we encode information 

about data structure and can localize 
computation



Graphs

An intuitive representation for all kinds of geometric, structured, variable 
length physics data



Geometric Deep 
Learning



Graph Neural Networks



Graph Neural Networks

The goal of a (or at least some) GNN(s) is to learn a smart re-embedding of the graph data 
that preserves the relational structure but makes it easier to solve some downstream task 



Graph Neural Networks



Graphs and GNNs for Physics

• Many physics datasets have inherent relational structure and/or no inherent ordering 
• We get permutation equivariance by construction

• Grids, sequences, etc. can’t naturally represent irregular geometries 
• Graphs can handle sparsity, different data size, different measuring devices

• Many experimental data sets are heterogeneous 
• Data recorded from multiple subdetectors or even experiments 
• Different types of objects 

• Graph representations help address the curse of dimensionality and include a 
geometric prior



GNNs for Tracking
Basic procedure
1. Form initial graph from spacepoints/hits 

(pre-processing)
2. Process with GNN to get probabilities of all 

edges
3. Apply post-processing algorithm to link 

edges together into tracks and get 
parameters

• Many places to improve/innovate
• Graph construction, architectures, data augmentation…

• Work shown here uses TrackML dataset
• Open, experiment agnostic
• 200 PU, silicon semiconductor detector

https://www.kaggle.com/c/trackml-particle-identification


Interaction Networks
• Originally developed for next time step 

predictions of physical systems

• Our implementation adds an additional relational 
model to predict edge weights 

• Includes geometric edge features

• Total of ~6,000 learnable parameters 
• Smaller than many other architectures 

Our Paper, Original Paper

https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/1612.00222


Particle Flow
• GNN based framework 

that constructs particle 
candidates• Improves on previous 
rule based methods

Pata et al, 2309.06782

https://arxiv.org/abs/2309.06782


Many Many More Examples!

Thais et al 2203.12852 and DeZoort et al 

https://arxiv.org/abs/2203.12852
https://www.nature.com/articles/s42254-023-00569-0


Anomaly 
Detection



Anomalies

• We know there are 
unanswered particle physics 
questions, but so far no 
evidence of BSM physics

• Anomaly detection aims to 
identify ANY events that do 
not fit with the SM• As opposed to identifying a 

single BSM model and 
conducting a dedicated 
search



Three Main Approaches

Learn approximation of the 
likelihood ratio between 

background (SM) and signal 
(BSM). Typically uses classifier 
between signal enriched region 

data and background model

Looks for out of distribution 
samples in any area of 
kinematic phase space. 

Often uses VAEs or GMMs.

Trains a model on data and 
reference sample (with 

anomalies) and learns reference 
sample as small perturbations 
away from reference. Returns 
ratio between best fit of data 

and reference distribution. 

Overdensity
Estimation

Outlier 
Detection Parameterizing

Gross et al 2305.14137Golling et al 2307.11157 Finke et al

https://arxiv.org/abs/2305.14137
https://arxiv.org/abs/2307.11157
https://link.springer.com/article/10.1007/JHEP06(2021)161


CATHODE

1. Don’t assume mass or type of 
resonant (BSM) particle but assume 
decay products

2. Train a generative model conditional 
on resonant feature (here m) 

3. Interpolate and sample in SR
4. Train classifier on prediction vs data

Hallin et al 2109.00546

https://arxiv.org/abs/2109.00546


Variational Autoencoders



Many More Examples!

Belis et al and HDR Challenge

https://www.sciencedirect.com/science/article/pii/S2405428324000017
https://www.nsfhdr.org/mlchallenge


Generative AI



GenAI for Simulation
● Simulation is essential for training models 

and for connecting theory predictions with 
experimental data

● But simulation is very computationally 
expensive

● Aim to use GenAI trained on physics-
driven simulation or data to augment 
traditional simulation

● All simulators attempt to (implicitly or 
explicitly) learn an approximation of p(x)

Hallin et al 2109.00546

https://arxiv.org/abs/2109.00546


Normalizing Flows
● Rather than learning to decode the 

encoder as in VAEs, Normalizing Flows 
attempt to exactly learn the likelihood

● Progressively add bijective and invertible 
functions to a simple distribution 

● Use Jacobian of the transformations to 
evaluate probability density 

● Should be higher fidelity than GANs or 
VAEs because it is learning exact 
likelihood
○ But requires some tricks (mainly data splitting) 

to train on high dimensional data

Diefenbacher et al 2302.11594

https://arxiv.org/abs/2302.11594


Diffusion Models

Diagrams from Gregor Kasieczka

https://indico.cern.ch/event/1297159/contributions/5766832/attachments/2791851/4868850/DeepLearning_CERN_IML_2024.pdf


Calo Clouds

Buhmann et al 2309.05704

https://arxiv.org/abs/2309.05704


A Very Active Area of Research!

Recent Talk from Gregor Kasieczka

https://indico.cern.ch/event/1297159/contributions/5766832/attachments/2791851/4868850/DeepLearning_CERN_IML_2024.pdf


Unfolding



OmniFold
● Even our best simulations differ from 

nature. These effects must be accounted 
for in order to trust our physics results.
○ Traditional approach uses a weight function 

developed separately for each variable
● Unfolding tries to learn generalized 

corrections
○ Either using trained networks or diffusion 

models for reweighting
● Omnifold pushes particle weights to 

detector weights, learns pdata(m)/psim(m), 
pulls back to particle weights and 
calculates new weighting function 

○ Push and pull ‘functions’ are trained NNs

Andreassen et al 11911.09107

https://arxiv.org/abs/1911.09107


Active Area of Research

Recent IML Workshop

https://indico.cern.ch/event/1271641/


Foundation 
Models



Foundation Models

● Goal is (like in LLMs) to pretrain on a large 
dataset for a certain task then finetune for 
a different dataset or task 

● Enables sharing of models and data
○ Potentially even across experiments

● Could enable discovery of new physics

● Need to tokenize physics data
○ Binning
○ Vector quantization with VAE



OmniJet

● Uses generative pretraining (while learning 
to generate, model also learns physics)
○ Based on GPT1 Transformer model 

● Transformer backbone takes tokens as 
input, sends output to task specific head 

● Causal mask to prevent attention to future 
tokens 

● Transferred to task of classifying q/g vs    
t->bqq’ jets

Birk et al

https://arxiv.org/html/2403.05618v1


Open Questions

04. How do we continue to 
improve science with AI



Common Themes

How do we incorporate physics 
knowledge into AI models? 

Does it help?

Can we reliably describe 
what the model is learning?

How do we characterize 
and propagate 
uncertainty?

Can physics help us 
better understand AI?

What does it mean to do 
physics with AI?

UNCERTAINTY INDUCTIVE BIAS EXPLAINABILITY

PHYSICS FOR AI NATURE OF SCIENCE



Uncertainty



Uncertainty
● Simulation has inherent uncertainty 

(systematics) that needs to be propagated 
through trained model 
○ But uncertainties of actual detector data is 

unknown
● Current common approach is train model on 

normal simulation (Z=1) then estimate 
uncertainties with alternate simulations (shift 
Z) and look at impact on model outcomes

● In the language of ML, this is aleatoric 
uncertainty (from the data). There is also 
epistemic uncertainty due to model
○ Handling this is still an open question in ML. See 

this talk. 

A review of uncertainty quantification in deep learning: Techniques, 
applications and challenges, Abdar et al

https://indico.ijclab.in2p3.fr/event/5999/contributions/25935/attachments/18725/25153/Uncertainties_Deep_Learning_to_discover.pptx
https://www.sciencedirect.com/science/article/pii/S1566253521001081?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1566253521001081?via%3Dihub


New Approaches

● Adversarial decorrelation 
○ Train a model to predict nuisance parameter 

using output of classifier

● Uncertainty aware learning 
○ Parameterize the classifier based on Z 

● Inference aware neural optimization 
○ Include uncertainty on parameters of interest in  

loss function

https://arxiv.org/abs/1611.01046
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/1806.04743


Inductive Bias



TASK 
FORMULATION
Physics informed neural 
networks, incorporating 
conservation laws or 
equations through loss 
function design, etc

MODEL 
CONSTRAINTS

Relational structure, 
ordering, feature selection, 

pre-processing, etc

Restricting model weights, 
learned function, propagated 

information, etc

DATA 
STRUCTURE

Physical Inductive Bias



Task Formulation

Slide from Alvaro Sanchez

https://indico.ijclab.in2p3.fr/event/5999/contributions/25927/attachments/18683/25070/Alvaro%20Sanchez%20Gonzalez%20-%20Learning%20general%20purpose%20physical%20simulators.pdf


Including Symmetries

● Physics has many inherent symmetries, 
thus a popular inductive bias approach is 
enforcing symmetry conservation 

● Consider rotating a jet by angle 𝜙, using 
rotation matrix 𝑅(𝜃)
○ Some predictions like the production vertex will 

rotate with the transformation: “equivariant”
○ Some predictions like the jet flavor should not 

be affected: “invariant”

Bogatskiy et al 2203.06153

https://arxiv.org/abs/2203.06153


Equivariance

Satorras et al 2102.09844

https://arxiv.org/abs/2102.09844


Potential Benefits of Equivariance

• Most published models achieve 
SotA accuracy and attribute it to 
design choices 

• In practice, equivariant models 
performance varies across 
formulations

ACCURACY

MODEL 
EFFICENCY

GENERALIZABILITY

DATA
EFFICENCY

• Models should learn complete 
symmetry orbit from one example 

• Demonstrated in practice, but 
other models can generalize well 
too 

• Models may have an ‘easier’ 
time learning an optimal 
function

• Using ant factor, we find that 
equivariant models are not the 
most efficient 

• Models don’t need to rely on data 
augmentation to learn symmetries

• Most replicable benefit of 
equivariance

Thais and Murnane 2311.03094

https://arxiv.org/abs/2311.03094


Explainability



Physics Studies
● We often want to understand what a model 

is learning
○ To ensure model is obeying known physics
○ To uncover new physics

● Layerwise relevance propagation helps 
characterize what information the network 
is leveraging

● Learn surrogate models trained on 
interpretable features 

● Apply symbolic regression to identify the 
analytic function approximated by the AI 
model

https://arxiv.org/abs/2111.12840
https://arxiv.org/abs/2010.11998
mailto:https://arxiv.org/abs/2006.11287


But There Are Many Limitations…

• No clear way to map relevances to mathematical information
• Can’t understand what a model is learning outside of known features

• No way to know if explanation is correct or due to statistical artifacts
• No way to know if model is ultimately correct either…

• We don’t always have a nice space of features to use for surrogate models

• Symbolic regression doesn’t provide guarantees on accuracy of equation

• Explainability methods do not account for uncertainty
• Overall, a very exciting and open area of research in AI as a whole



Physics for AI



AI Has a Reliability Problem
Focus on constructed 
tasks and benchmark 
data sets that may be 
distant from real world 
distributions or goals

Application to impossible 
tasks, robustness issues, 
misrepresented 
capabilities, engineering 
mistakes or failures

Data leakage, incorrect 
or neglected testing, 
poor experimental 
design practices

Acceptance of inherent 
unknowability of AI 
systems, willingness to use 
imprecise or unscientific 
language



Physics As a Sandbox
We know many of the 
dependencies in our 
data and how our 
experiments/pre- 
processing shape the 
data → evaluate de-
biasing methods

We know some 
patterns a model should 
learn and can build 
interpretable bases for 
some problems → 
contribute to 
mechanistic 
interpretability 

We know the phase 
space of our data and 
axes along which it 
varies → can study 
generalizability of 
models

We can compare 
model learned 
knowledge to true 
generating 
functions → 
evaluate robustness 
of new 
architectures



Physics and Trustworthy AI

Paper

https://www.nature.com/articles/s42254-024-00772-7


The Nature of 
Science



What Do We Want From Science?

• Using AI for science may be different than other application/co-design areas. 
What are our priorities?

• Efficient models? Interpretable models? Accurate models? (what does accuracy mean?) 
Physics inspired models? Interpretable models? 

• Our ultimate goal in science is to extract reliable and robust knowledge about 
the universe, is our approach to AI helping us get there? 

• Is ML Good or Bad for the Natural Sciences?
• Artificial Intelligence and Illusions of Understanding in Scientific Research

https://arxiv.org/abs/2405.18095
https://www.nature.com/articles/s41586-024-07146-0


How Does AI Help Us Get There? 
• Is it worth chasing every innovation in AI? Are we focused more on 

innovation that reliable science?

• What paradigms are most useful to explore? We have a strong 
mathematical foundation that still doesn’t explain everything. Should we 
focus more on anomaly detection or latent space explanation? 

• Simulation and data are expensive, should we follow the scale approaches 
in broader AI?

• Are industry language models useful for doing science? Are they reliable? 
How do we study this?

• How do we continue to build meaningful community around this 
intersection?
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