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A Quick Refresher on
Particle Physics

And its computational
o challenges
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The Standard Model

« Makes up all visible matter in the
universe

« Creates (almost) all known forces

and mass

Electricity, magnetism, strong, and
weak

« Helps us understand the origins
and evolution of the universe

« All interactions governed by
mathematical rules (Lagrangian)




What is dark matter?

Where is the graviton?

Is super symmetry
real?

How do neutrinos
change flavor?

But....

Are there more
generations of matter?

What is dark energy?

Why is the top so heavy?
The Higgs so light?

Are there other Higgs
bosons?




The Large Hadron Collider

17 mile proton-proton collider

under the the French-Swiss

border

Produces 1000 million collisions

per second

Allows us to study the fundamental
constituents of matter i

Particle Collisions:

- Accelerate protons to .99x the speed of light

- Collide the accelerated particles

-  E=mc2, so the high energy collisions create
rare, exciting particles

- Measure the decay products with specialized
detectors.




Particle Collisions




Physics at the LHC

* Theorists model new particles that fit with
the SM to explain these phenomena

* If they exist (and are accessible at LHC
energy scales) we can create them and
record their SM decay products

* Increasing collision energy means a wider
variety of particles and increasing
N luminosity means more data!

SSSSS

 Can also make more precise checks of the
SM
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LHC Data

Collision data measured by dedicated

subsystems
*  Quantifies interactions with highly granular
detectors

* Readouts must be reconstructed into particle
components (tracks, clusters) then full particle
candidates and event information

We can only measure SM particles, so we
must (accurately) extrapolate what

happened during the initial collision

Poses many computing challenges
* Non-fixed size, heterogenous data
°  Varying density/sparsity
*  Very tight computing time and resource
constraints




Al and Particle Physics

02 - Symbiotic evolut ion



The LHC Involves Extensive Software
ATLAS Computing

Full Simulation Fast Simulation
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Al Can Be Utilized In Nearly Every Aspect

7. Inference

8. Experiment

Design ’
e AI 3. Simulation 5
= Smueton 8

% 6. Triggers

1. Tagging
2. Reconstruction

4. Unfolding

Al models are studied 5. Anomaly Detection

for all aspects of
experimental
particle physics

S/(S+B) weighted events / GeV'

e D Photon invanant mass Diagram from Gregor
Kasieczka
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I literature (‘machine learning' or 'deep learning' or 'Al') in hep-ex

Date of paper

1985

2024

40k papers

An Evolving Field

Al has been used in particle physics, in some
form, for nearly 40 years
Particle physics has often been at the forefront

of adopting and innovating novel Al methods
See Kyle Cranmer’s keynote at NeurlPS 2016!
And our ongoing ML and the Physical Sciences
Workshop (large particle physics component)
The methods have substantially evolved over
the years, from decision trees to neural

networks to transformers
The data representations have similarly evolved
(see next slides!)

However, much remains the same
Overall focus has been on leveraging the full, low
level data
Many unanswered questions still remain



https://t.co/pvmPCFexyZ
https://ml4physicalsciences.github.io/2024/
https://ml4physicalsciences.github.io/2024/

Current R&D in Al and
Particle Physics

A wide variety of

O approaches for shared
° goals



Common Themes

DATA FORMATS  GEOMETRIC DL ANOMALIES

Preserve information and Leverage relationships and Identify potential beyond
enable effective learning structure between data points the standard model events

GENERATIVE Al UNFOLDING FOUNDATION
MODELS

Perform multiple tasks
with the same model

Improve or accelerate Accurately experimental
simulations for training observations to nature
and analysis




Data
Representations



How Should We Represent Particle Collisions?

Image? Sequence? Set/Point Cloud?
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How Should We Represent Particle Collisions?

Image? Sequence? Set/Point Cloud?
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Language? Maybe! We'll return to this later....




Point Clouds
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(a) Lamelia (c) Hexagonal (hex)

(b) Ixs

(d) Gyroid (gyr)

Can naturally represent many types of data
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Graphs

If we add relational information to a

point cloud we get a graph
Nodes: vertices u€elV with associated
information x,€R9"
Spatial coordinates, features, etc
Edges: connections between nodes (u,v)EE
Can be directed or undirected, can have
associated information e, ,ERy,

Graphs can represent many types of
relational/geometric data

Inherent geometric inductive bias
By including edges we encode information
about data structure and can localize
computation




Adjacency relation

Graphs

Faaturs matrix
ﬁ P 'f[h mac -
Doxycycli MA effects /Ab mvastatn °

f —A Mupirocin

4 Drug @ Proten ry Gastroimesting bleed side efect  &—@ Drug-proten imarnaction
E Node feature vector 2 Bradycardia side effect @@ Prolein-peotein interachon

An intuitive representation for all kinds of geometric, structured, variable
length physics data



Geometric Deep
Learning



Graph Neural Networks

Message Passing (MPNN) Layers:

Framework for many equivariant graph updates

At each layer k, compute messages
in each node’s neighborhood:

k k-1 k-1 k-1
i = 4O (D, K, (i)

Aggregate messages in a
permutation-invariant way:

Messages passed only from u's
direct neighbors

(k) _ (k)
a, = ®vEN(u) my,
Any permutation invariant
operation (e.g. sum, mean, max)

Update the node’s state based on
the messages it received:

k k= k
ht(t) . ¢(k)(h£ 1),a§ ))




Graph Neural Networks

MOS “, “ enersx H \ ‘ n.

multiset of EEEE local function
neighbour features I x;
= 'E-

X, ={Xjen, } permutation invariant
- g1, Xna»Enw)) —\ equivariance
- X0, Xneo), E — | enforced by

fX,A) = g(x; N.(.?) N@) applying g to all f(x,) = (x |:| LIJ( )
_ 9w, Xnqvp, EN(IVI)) B nodes equally i i A

Learnable
S

permutation equivariant

function of graphs local function operating on each node’s

neighborhood... needs to be permutation
invariant!

The goal of a (or at least some) GNN(s) is to learn a smart re-embedding of the graph data
that preserves the relational structure but makes it easier to solve some downstream task



Graph Neural Networks

We can also update the
graph edges

= |sotropic message passing can’t
differentiate importance of
neighbors

= Anisotropic message passing:
encode a combination of node and
neighbor along each edge

Outputs: | Node classification
zi = f(h;)

@/O | GNN Graph classification
O/ f >: h 26 = f (Biey i)
”””” Inputs

(X,A)

. | Link prediction
zij = f(hi, hy,e;5)

GNN-Wednesday.pdf (petar-v.com)

I Pre-encoded channels

E Encoded channels

And we can use
the updated
graph in many
ways




Graphs and GNNs for Physics

- Many physics datasets have inherent relational structure and/or no inherent ordering
» We get permutation equivariance by construction

- Grids, sequences, etc. can’t naturally represent irreqgular geometries
* Graphs can handle sparsity, different data size, different measuring devices

- Many experimental data sets are heterogeneous
» Data recorded from multiple subdetectors or even experiments
» Different types of objects
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GNNs for Tracking

Form initial graph from spacepoints/hits
(pre-processing)

Process with GNN to get probabilities of all
edges

Apply post-processing algorithm to link
edges together into tracks and get
parameters
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Graph Construction:

Input event in graph representation

GNN Classifies Edges:

Green = true track segment
Red = false hit connection

Track Finding
Connecting-the-dots
algorithm extracts tracks

o o

o (e}

- Many places to improve/innovate
2 1s 14 *  Graph construction, architectures, data augmentation...

«  Work shown here uses TrackML dataset

*  Open, experiment agnostic
. 200 PU, silicon semiconductor detector



https://www.kaggle.com/c/trackml-particle-identification
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Interaction Networks
Originally developed for next time step | s
predictions of physical systems 1
Our implementation adds an additional relational 1

model to predict edge weights 1

Includes geometric edge features
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Total of ~6,000 learnable parameters 0.9985 -
*  Smaller than many other architectures
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Qur Paper, Original Paper



https://arxiv.org/abs/2103.16701
https://arxiv.org/abs/1612.00222

Particle Flow

® GNN based framework
that constructs particle
candidates

Improves on previous
rule based methods

1e5
a [ PF (M=1.01,IQR=0.06)
MLPF (M=1.00,IQR=0.03)

n
1=}

Matchs-zd jets / bin

(=3
T
!

l

0.5 } B

HR
,,AJ S

06 08 10 12 4
jet PT,reco/PT, gen

0.0

Event as input set Event as graph Transformed inputs
= {x;} X={x},A=A4 H={h}

® 9 Graph building Message passing g H

O
... ﬁ-ﬁ .
A
O

° F(X|w) = X, Alw) =

Target set ¥ = {yj} Output set Y’ = {yj’} 1
Decoding
Elementwise loss L(y;, y;) elementwise
classification & regression FFN
—>

xi = [type’ pT’ EECAL’ EHCAL’ 77’ ¢a nouter’ ¢outer’ q7 .. -]a type € {traCk’ CluSter}

y; = [PID, py,E,n,$.q. ...], PID € {none, charged hadron, neutral hadron, y, e*, u*}

h, € R2%
Trainable neural networks: &, &, 9

® - track, M - calorimeter cluster, M - encoded element
- target (predicted) particle, - no target (predicted) particle

Pata et al, 2309.06782



https://arxiv.org/abs/2309.06782

Many Many More Examples!

Graph Neural Networks in Particle Physics: Implementations,
Innovations, and Challenges

Savannah Thais*!, Paolo Calafiura?, Grigorios Chachamis®, Gage DeZoort!, Javier
Duarte?, Sanmay Ganguly®, Michael Kagan®, Daniel Murnane?, Mark S. Neubauer”,
and Kazuhiro Terao®

Technical Review | Published: 17 April 2023

Graph neural networks at the Large Hadron Collider

Gage DeZoort &, Peter W. Battaglia, Catherine Biscarat & Jean-Roch Vlimant

Nature Reviews Physics 5, 281-303 (2023) | Cite this article

1875 Accesses | 9 Citations | 26 Altmetric | Metrics

Thais et al 2203.12852 and DeZoort et al



https://arxiv.org/abs/2203.12852
https://www.nature.com/articles/s42254-023-00569-0

Anomaly
Detection



Overview of CMS EXO results

CMS preliminary

Anomalies

® We know there are
unanswered particle physics
questions, but so far no
evidence of BSM physics

® Anomaly detection aims to

identify ANY events that do '

not fit with the SM
0 Ae opposed to identifying a
single BSM model and i
conducting a dedicated
search

[—




Three Main Approaches

Overdensity
Estimation

Learn approximation of the
likelihood ratio between
background (SM) and signal
(BSM). Typically uses classifier
between signal enriched region
data and background model

Paata®) = (1 = ©)ppg(x) + €pgig (),

Outlier
Detection

Looks for out of distribution
samples in any area of
kinematic phase space.

Often uses VAEs or GMMs.

Parameterizing

Trains a model on data and
reference sample (with
anomalies) and learns reference
sample as small perturbations
away from reference. Returns
ratio between best fit of data
and reference distribution.

Golling et al 2307.11157

Finke et al

Gross et al 2305.14137



https://arxiv.org/abs/2305.14137
https://arxiv.org/abs/2307.11157
https://link.springer.com/article/10.1007/JHEP06(2021)161
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SB

Pdata(zlm € SB)
= ppg(zlm € SB)

SR SB m

Pdata(zlm € SB)

Paata(z|m € SR) = pg(z|m € SB)

Generative
model output

Actual data

0 1
Classifier

Signal Region
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Signal Efficiency (True Positive Rate)

CATHODE

I. Don't assume mass or type of
resonant (BSM) particle but assume
decay products

2. Train a generative model conditional

on resonant feature (here m)

Interpolate and sample in SR

Train classifier on prediction vs data

bl

Hallin et al 2109.00546



https://arxiv.org/abs/2109.00546

Variational Autoencoders

Compressed knowledge representation of x.
Embedded in latent space RK, where k < mxn
Prevents memorisation of input, must learn

N
X X
E' E? Bl E?
JI . [
opl H : - : : : 1
Fo : : H : i I A
[ . p?
nxm R nxm

i Outliers

MSE(x, %)




Many More Examples!

Contents lists available at ScienceDirect

Reviews in Physics

journal homepage: www.elsevier.com/locate/revip

REVIEWS IN

PHYSICS

Machine learning for anomaly detection in particle physics
Vasilis Belis, Patrick Odagiu, Thea Klaeboe Aarrestad *

Institute for Particle Physics and Astrophysics, ETH Zurich, 8093 Zurich, Switzerland

4 @iHARP
NSF HDR ML Challenge

Scientific discovery often involves finding an inconsistent pattern within our data. Data that
behaves differently from what is expected can indicate that the underlying science is
different. Different behavior can result from a number of effects, but ultimately this could
imply that we have observed something new .. !

Depending on the scientific domain, a new, unpredictable object/event could have a
profound impact. This could be a new type of material, the discovery of a new astrophysical
object B, the observation of unusual climate behavior ', or the discovery of a new species

W. The observation of something different, incongruous with the data, is what we call
anomaly detection . Looking for anomalies is often quite different than other tasks since
we do not know what exactly to look for, we just need to look for something different.

The challenge of scientific anomaly detection is one of the main focuses. Using machine
learning to identify these anomalies &

Belis et al and HDR Challenge



https://www.sciencedirect.com/science/article/pii/S2405428324000017
https://www.nsfhdr.org/mlchallenge

Generative Al



ATLAS Preliminary
2020 Computing Model -CPU: 2030: Baseline
% 15%

9%
6%
= Data Proc
10%; - MC-Full(Sim)
MC-Full(Rec)
MC-Fast(Sim)
W MC-Fast(Rec)
N EvGen
A Heavy lons
i mmm Data Deriv
20% BN MC Deriv
. 3% Analysis

Generator

G(a)

Discriminator

GAN: Adversarial ’ x
D(x)

s X
training

Encoder Decoder

VAE: maximize X —
variational lower bound 4(z[x) e (x|z)
Flow-based models: X Flow z Inll?rse I
Invertible transform of f(x) = f(2)

distributions

Diffusion models: Xo
Gradually add Gaussian -~ PR
noise and then reverse

GenAl for Simulation

e Simulation is essential for training models
and for connecting theory predictions with
experimental data

e But simulation is very computationally
expensive

e Aim to use GenAl trained on physics-
driven simulation or data to augment
traditional simulation

e All simulators attempt to (implicitly or
explicitly) learn an approximation of p(x)

Hallin et al 2109.00546



https://arxiv.org/abs/2109.00546
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Normalizing Flows

e Rather than learning to decode the
encoder as in VAEs, Normalizing Flows
attempt to exactly learn the likelihood

® Progressively add bijective and invertible
functions to a simple distribution

e Use Jacobian of the transformations to
evaluate probability density

e Should be higher fidelity than GANs or
VAEs because it is learning exact
likelihood

But requires some tricks (mainly data splitting)
to train on high dimensional data

Diefenbacher et al 2302.11594



https://arxiv.org/abs/2302.11594

Forward

(Data — Noise)

Diffusion Models

To improve the generative
fidelity, move to a point
cloud diffusion model

Do (Xt—llxt) =

N

N(Xt—l; Ne(xt, t)) Ze(xta t))

E;?xt_ﬂxt)
& —0" "0 —®

Q(Xt |Xt—1) =
Individual step

N(Xt; v1-= BeXe—1, 51&1)
L——

Noise schedule
(hyper-parameter)

x¢(xp, €) = \/_xo—}—\/l—oz]eforeNNOI)

Rewrite: State at any time
Will try to predict

_ t
ap=1—p Qi = Hszl Qs

Backward
(Noise — Data)

Lsimple(e) Et ,X0,€ || . X() + v 1-— ate t)” i|
Noisy imal /
Reminder: Forward =
diffusion to time t Xt(xo’ 6) = VaXo + V1 —aze

Timestep

Diagrams from Gregor Kasieczka



https://indico.cern.ch/event/1297159/contributions/5766832/attachments/2791851/4868850/DeepLearning_CERN_IML_2024.pdf
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Buhmann et al 2309.05704



https://arxiv.org/abs/2309.05704

A Very Active Area of Research!

Unleashing the power of generative
models Anomalles, Slmulatlons, a;I,d-

Gregor KaSIeczka

Email? gregor.kasieczka@uni-hamburg.de
Twitter/X: @GregorKasieczka

CERN IML Workshop — 1.2.2024

CLUSTER OF EXCELLENCE
m DASHH. # s
ANTUM UNIVER
W s o i
cpcs
CENTER FOR DATA AND COMPUTING [ | P | ERM
ol universitat Hamburg |\ naTURAL SCIENCES

P ( rship
DER FORSCHUNG | DER LEHRE | DER BILDUNG ItH mburg and DESY

Recent Talk from Gregor Kasieczka



https://indico.cern.ch/event/1297159/contributions/5766832/attachments/2791851/4868850/DeepLearning_CERN_IML_2024.pdf

Unfolding



Detector-level

Natural

Step 1:
Reweight Sirr

1. to Data

Vn—1 — Wn

Synthetic

/
e

Simulation

|oe

SN

I

L. wy(m) = v5™7(m) L[(1, Data), (VT Sim.)](m),

2. vp(t) = vp_1(t) L[(wB™, Gen.), (v,,—1, Gen.)](t).

Pull Weights

_—
—

Push Weights

Particle-level

Step 2:

Reweight Gen.

Vi1 —2 Un

Generation

=z

=

Data
\
(&) (&

[ Observable
Method | m [ M | w [Inp [ 7 [ 2
OmnIFoLD | 2.77 |1 0.33 | 0.10 | 0.35 | 0.53 | 0.68
MurriFoLp| 3.80 | 0.89 | 0.09 @ 0.37 | 0.26 | 0.15
UNIFOLD 8.82 | 1.46 | 0.15 | 0.59 | 1.11 | 0.59
IBU 9.31 | 1.51 [ 0.11 | 0.71 | 1.10 | 0.37
Data 24.6 130 15.7 | 14.2 | 11.1 | 3.76
Generation | 3.62 15 22.4 19 20.8 | 3.84

OmniFold

® Even our best simulations differ from
nature. These effects must be accounted

for in order to trust our physics results.
Traditional approach uses a weight function
developed separately for each variable

e Unfolding tries to learn generalized

corrections
Either using trained networks or diffusion
models for reweighting

e Omnifold pushes particle weights to
detector weights, learns py...(m)/psim(M),
pulls back to particle weights and

calculates new weighting function
Push and pull “functions’ are trained NNs

Andreassen et al 11911.09107



https://arxiv.org/abs/1911.09107

Active Area of Research

IML Machine Learning Working Group: unfolding

Thursday Jul 27, 2023, 3:00 PM — 6:00 PM Europe/Zurich
Q Virtual

Description Topic: unfolding

@ @ Recording_IML_Me...

Videoconference ‘@ IML Machine Learning Working Group v

| |

Recent IML Workshop



https://indico.cern.ch/event/1271641/

Foundation
Models
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High Energy Physics Workflow

R Reco.
Pretext
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as a set)

Input / physical space

Foundation Model Workflow

g Y
y
X — | Backbone | | e |-—|5f’pmcx.

— .
y A
 x—|x Head V25" | Zaown
Map embedded constituents to their closest
token in embedding space
Encoder Embedding space Embedding space Decoder Output / physical space

Constituents in physical space

e
»
. Xl‘/f 1/ ‘ /‘
v /
" D e ‘-»‘ . [ q \ o
5y 1 Al

®
All available tokens Tokenized constituents

Constituents in physical space
Embedded constituents  in embedding space

Foundation Models

e Goalis (like in LLMs) to pretrain on a large
dataset for a certain task then finetune for
a different dataset or task

e Enables sharing of models and data
Potentially even across experiments

e Could enable discovery of new physics

e Need to tokenize physics data
Binning
Vector quantization with VAE




Multhead .
attention

Multihead
attention block
n heads

N blocks

o
©

Accuracy
o
e ]

0.7 A

Omnijet-a transfer learning

=

—e— Fine-tuning
Fine-tuning

(backbone fixed)
—e— From scratch

102 103 104 10°
Number of training jets

10°

Omnijet

Uses generative pretraining (while learning

to generate, model also learns physics)
O Based on GPT1 Transformer model

Transformer backbone takes tokens as
input, sends output to task specific head
Causal mask to prevent attention to future
tokens

Transferred to task of classifying g/g vs
t->bqq’ jets

Birk et al


https://arxiv.org/html/2403.05618v1

Open Questions

How do we continue to
o improve science with Al



Common Themes

UNCERTAINTY INDUCTIVE BIAS  EXPLAINABILITY

How do we characterize How do we incorporate physics Can we reliably describe
and propagate knowledge into Al models? what the model is learning?
uncertainty? Does it help?

PHYSICS FOR Al NATURE OF SCIENCE

Can physics help us What does it mean to do
better understand Al? physics with Al?




Uncertainty



— Uncertaint
= - y

e Simulation has inherent uncertainty
(systematics) that needs to be propagated
through trained model

/\ wing =055 O But uncertainties of actual detector data is
Simpgit(i;flzti:ntyateof unknown
R e Current common approach is train model on

normal simulation (Z=1) then estimate
uncertainties with alternate simulations (shift
Z) and look at impact on model outcomes

e In the language of ML, this is aleatoric
uncertainty (from the data). There is also

epistemic uncertainty due to model
O Handling this is still an open question in ML. See
this talk.

A review of uncertainty quantification in deep learning: Techniques,

applications and challenges, Abdar et al



https://indico.ijclab.in2p3.fr/event/5999/contributions/25935/attachments/18725/25153/Uncertainties_Deep_Learning_to_discover.pptx
https://www.sciencedirect.com/science/article/pii/S1566253521001081?via%3Dihub
https://www.sciencedirect.com/science/article/pii/S1566253521001081?via%3Dihub

New Approaches

i)
e Adversarial decorrelation
Train a model to predict nuisance parameter

~Trained on true Z —Adversarial usin output Of classifier
—Uncertainty Aware Data Augmentation 9 P
—Baseline

. e Uncertainty aware learning

:Z Parameterize the classifier based on Z
gus. Narrower is ey’ :
z | better e Inference aware neural optimization

1.00
fm_ Include uncertainty on parameters of interest in
= 050/ loss function

0.25

0.00 A
6 1.25
'dg 1.00
= 0.75

0.6 0.8 1.0

1?2 1?4
u  (Signal Strength)



https://arxiv.org/abs/1611.01046
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.056026
https://arxiv.org/abs/1806.04743

Inductive Bias



Physical Inductive Bias

DATA
STRUCTURE

Relational structure,

ordering, feature selection, TASK

pre-processing, etc
FORMULATION
MODEL Physics informed neural
Ve networks, incorporating
CONSTRA]NTS conservation laws or
Restricting model weights, equations through loss

learned function, propagated function design, etc
information, etc




Task Formulation

A simple inductive bias: Inertial dynamics

yt+ = t Has to learn to predict
NN(X L ) static motion

x® = xt + NN(xE, vb) Has to learn to predict
inertial motion

Position: x(t)

Velocity: v(t)
o5 X1 = xt + Atevi+ NN(xE, vt)
Z F=ma= m(

de? 0

Slide from Alvaro Sanchez



https://indico.ijclab.in2p3.fr/event/5999/contributions/25927/attachments/18683/25070/Alvaro%20Sanchez%20Gonzalez%20-%20Learning%20general%20purpose%20physical%20simulators.pdf

B Including Symmetries

,//,
\ stituents 4-
\ momenta R(8)p!'

® Physics has many inherent symmetries,

'-_“a"kh”s thus a popular inductive bias approach is
" %_Quark flavour q enforcing symmetry conservation
Vertex R()¥ =~~~ \ ) : ;
origin e Consider rotating a jet by angle ¢, using

rotation matrix R(9)
Some predictions like the production vertex will

Invariance Equivariance ; ] - ; f 3
Fogld) = £x) (e ) = 71 () rotate with the transformation: “equivariant
¢ ‘ Some predictions like the jet flavor should not
y y be affected: “invariant”
Pe(x) Pe(x)
\ \f )
AN f Y l
} fx) } fx)

Bogatskiy et al 2203.06153



https://arxiv.org/abs/2203.06153

Equivariance

X = Xo + LMLP(m;)(x; — xo)
my = MLP(||x; — x,ll)

my = MLP(|lx2 — xoll)

c—— @i}ﬁg = MLP(|lx3 — xoll)
\
@

TR

e - s T s
IRx3 — Rxoll* = (Rx3 fs_xor) (Rx3 — Rxp) Message passing invariant to
(Ira = xo)" 2R R(x3 — x5) rotation and translation
X3 — Xp

Aggregation equivariant to
rotation and translation

Rxy + YMLP(m;)(Rx; — Rxp) = Rx;

Satorras et al 2102.09844



https://arxiv.org/abs/2102.09844

Potential Benefits of Equivariance

ACCURACY

Most published models achieve
SotA accuracy and attribute it to
design choices

In practice, equivariant models
performance varies across
formulations

MODEL
EFFICENCY

Models may have an ‘easier’
time learning an optimal
function

Using ant factor, we find that
equivariant models are not the
most efficient

GENERALIZABILITY

Models should learn complete
symmetry orbit from one example
Demonstrated in practice, but
other models can generalize well
too

DATA
EFFICENCY

Models don’t need to rely on data
augmentation to learn symmetries
Most replicable benefit of
equivariance

Thais and Murnane 2311.03094



https://arxiv.org/abs/2311.03094

Explainability



Signal/Background Pairs

R-maps averaged over 25k primary tracks correctly classified as charged hadrons
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Physics Studies

e \We often want to understand what a model

is learning

To ensure model is obeying known physics
To uncover new physics

e |ayerwise relevance propagation helps
characterize what information the network
is leveraging

e |earn surrogate models trained on
interpretable features

e Apply symbolic regression to identify the
analytic function approximated by the Al
model



https://arxiv.org/abs/2111.12840
https://arxiv.org/abs/2010.11998
mailto:https://arxiv.org/abs/2006.11287

But There Are Many Limitations...

- No clear way to map relevances to mathematical information
* Can't understand what a model is learning outside of known features

- No way to know if explanation is correct or due to statistical artifacts
* No way to know if model is ultimately correct either...

- We don’t always have a nice space of features to use for surrogate models
- Symbolic regression doesn’t provide guarantees on accuracy of equation

- Explainability methods do not account for uncertainty

- Overall, a very exciting and open area of research in Al as a whole




Physics for Al



Al Has a Reliability Problem

AI and the Everything in the Whole Wide World
Benchmark

Amandalynne Paullada
ics  Department of Linguistics
University of Washington  University of Washington

Leakage and the Reproducibility Crisis in ML-based Science

Sayash Kapoor ! Arvind Narayanan !

Focus on constructed
tasks and benchmark
data sets that may be
distant from real world
distributions or goals

The Fallacy of Al Functionality

INIOLUWA DEBORAH RAJI*, University of California, Berkeley, USA
I. ELIZABETH KUMAR®, Brown University, USA

AARON HOROWITZ, American Civil Liberties Union, USA
ANDREW D. SELBST, University of California, Los Angeles, USA

Enchanted Determinism:

Data leaka g e | ncorrect Power without Responsibility in Artificial Intelligence

or neglected testing,
poor experimental
design practices

ALEXANDER CAMPOLO:
UNIVERSITY OF CHICAGO

KATE CRAWFORD:
NEW YORK UNIVERSITY, MICROSOFT RESEARCH

Application to impossible
tasks, robustness issues,
misrepresented
capabilities, engineering
mistakes or failures

Acceptance of inherent
unknowability of Al
systems, willingness to use
imprecise or unscientific
language




Physics As a Sandbox

Learning to Pivot with Adversarial Networks

Gilles Louppe Michael Kagan Kyle Cranmer
New York University ~ SLAC National Accelerator Laboratory New York University
g-louppe@ayu. edu makagan@slac.stanford.edu le.cranmer@nyu.edu

ATLAS flavour-tagging algorithms
for the LHC Run 2 p p collision dataset

The ATLAS Collaboration

We know many of the
dependencies in our
data and how our
experiments/pre-
processing shape the
data — evaluate de-
biasing methods

We know the phase
space of our data and
axes along which it
varies — can study
generalizability of
models

Energy flow polynomials:
A complete linear basis for jet substructure

Patrick T. Komiske, Eric M. Metodiev, Jesse Thaler
Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

E-mail: pkomiske@nit.edu, metodiev@mit.edu, jthaler@mit.edu

Constraint-based Graph Network Simulator

Yulia *1 Alvaro Sanchez-G lez"! Tobias Pfaff! Peter Battaglia'

We know some

patterns a model should

learn and can build

interpretable bases for

some problems —
contribute to
mechanistic
interpretability

We can compare
model learned
knowledge to true
generating
functions —
evaluate robustness
of new
architectures




Physics and Trustworthy Al
Physics and the empirical gap of trustworthy Al

Savannah Thais &

Nature Reviews Physics (2024) | Cite this article

90 Accesses | 4 Altmetric | Metrics

Understanding what cutting-edge Al models are doing ‘under the hood’ requires not just
theoretical research but also well-controlled computational experiments. Savannah
Thais explains why physics datasets may be the testing ground that Al developers need

and how physicists can play a critical role in developing trustworthy Al.

Paper


https://www.nature.com/articles/s42254-024-00772-7

The Nature of
Science



What Do We Want From Science?

- Using Al for science may be different than other application/co-design areas.

What are our priorities?
« Efficient models? Interpretable models? Accurate models? (what does accuracy mean?)

Physics inspired models? Interpretable models?

- Our ultimate goal in science is to extract reliable and robust knowledge about

the universe, is our approach to Al helping us get there?

* |s ML Good or Bad for the Natural Sciences?
» Artificial Intelligence and lllusions of Understanding in Scientific Research



https://arxiv.org/abs/2405.18095
https://www.nature.com/articles/s41586-024-07146-0

How Does Al Help Us Get There?

Is it worth chasing every innovation in Al? Are we focused more on
innovation that reliable science?

What paradigms are most useful to explore? We have a strong
mathematical foundation that still doesn’t explain everything. Should we
focus more on anomaly detection or latent space explanation?

Simulation and data are expensive, should we follow the scale approaches
in broader Al?

Are industry language models useful for doing science? Are they reliable?
How do we study this?

How do we continue to build meaningful community around this
intersection?




THANKS!

st3b65@columbia.edu

@basicscienceqirl
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