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Nobel Prize in Physics 2024： Machine learning with ANN

Nobel Prize in Chemistry 2024： Computational and ML protein design
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Basic Science
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The Second Quantum Revolution refers to

a contemporary wave of advancements and breakthroughs in the field of quantum physics
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Quantum Simulation Quantum MetrologyQuantum Information Processing

Essential: Preparation, control and manipulation of quantum states with high-fidelity and in a fast and robust way

Quantum information exploits quantum mechanical properties to enable more efficient information processing. 

Superposition             Coherence                                       Entanglement
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Types of Machine Learning – Supervised, Unsupervised, Reinforcement

Active Learning

ML can be combined with quantum control and quantum
information, embodying the interdisciplinary spirit of the
2nd quantum revolution. This integration not only drives
the advancement of QST but also fosters the development
of new paradigms in high-performance CS and AI.
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Reinforcement Learning for Quantum Optimal Control

Phys. Rev. A 103, L040401 (2021).

Sci. China Phys. Mech. Astron.  65, 250312 (2022). Phys. Rev. Lett. 104, 063002 (2010)
Rev. Mod. Phys. 91, 045001 (2019)
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Physical Model – single qubit control 

We consider two-level system, which is described by

The corresponding Lewis-Riesenfeld invariant is given by

and its eigenstates are 

The condition

gives

Landau–Zener type
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The ansantz

where

We find the error sensitivity, using time-dependent perturbation theory，

Considering the systematic errors in Rabi frequency and detuning, e.g.

Shortcuts-to-adiabaticity Protocol

Rabi

detuning
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Proximal Policy Optimization

Agent: Deep Artificial Neural Network (ANN)

Input Layer Nodes: encoded state

Output Layer Nodes: encoded action

A deep ANN can effectively approximate an (unknown) optimal map

DRL obtains digital STA pulses

STA educates DRL agent well

DRL explores protocols independently

Breaking adiabatic quantum control with deep learning
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Yb

USTC's experiment on ion trap systems

DL works for mixed errors and has noise-resilience feature

even when the system lacks an analytical solution
12
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Closed-loop control with weak-value feedback

Mach. Learn.: Sci. Technol. 4, 025020 (2022)

Lindblad
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Weak measurement

In this way, we can obtain <A> of the qubit by measuring the ancilla’s position q with an arbitrary

uncertainty, since weak measurement protocol requires σ ≫ maxj (aj ). 

The probability distribution of the ancilla’s. position gives

If we perform a weak measurement on the Z direction of the qubit, which leads to |a1⟩ = |0⟩, |a2⟩ = |1⟩, and a2, a1 = ∓ 1 ,

The probability can be approximated by

A normalized wave function of the system

after a quantum measurement on the apparatus is

the measurement feedback of the apparatus position
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This combination of closed-loop control and transfer learning
can thus enhance the system's resilience and adaptability, 

providing a dynamic way to maintain quantum coherence and 
improve control fidelity under varying conditions.

(a) detuning, (b) dephasing, and (c)  σx relaxation
15
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Dropout is all you need - robust two-qubit gate

16Phys. Rev. A 110, 032614 (2024)
Gaussian perturbation on the action and dropout in

the ANN are used to obtain robustness against systematic errors
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The general Hamiltonian appears in the study of Josephson charge qubits or liquid-state NMR

we simplify the two-qubit Hamiltonian into two parts

where and

The dynamical invariant of H is then given by

where
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Robustness of the entangling gate RYY (π/4) against errors

(a) standard batch method

(b) Gaussian perturbation

(c) dropout

(d) analytical nonadiabatic geometric gate 
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ML-enhanced quantum control in random environment

𝐃𝐢𝐬𝐨𝐫𝐝𝐞𝐫 𝐫𝐞𝐚𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧𝐬 ∼ 𝟐𝓝 𝓝: 𝒊𝒎𝒑𝒖𝒓𝒊𝒕𝒚 𝒏𝒖𝒎𝒃𝒆𝒓

random potential

Phys. Rev. Applied 17, 024040 (2022)
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𝑡 = 0,𝜔! = 1 𝑡 = 𝑡" = 1,𝜔" = 0.1

Expansion of quantum particle in presence of random potential

Parameters: U" = 1,ω" = 1,and ω# = 0.1.

initial ground state (red solid line)

final ground state (black solid line)

final state (blue dotted) by our protocol

Two realizations are exemplified to illustrate the consequence of disorder
thegroundstatecan be positionedfarawayfromtheorigin
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The fidelity on the control policy 𝐴 = {𝑎", 𝑎#}.

Control Ansatz
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22convolution and pooling layers, fully-connected layer with the activation function f(x) and the output y!.

Supervised learning for randomness recognition and regression

𝑆$[𝑗] = {1,1,−1,1, . . . ,−1,1} 1×160

𝑆$
%& 𝑗', 𝑗% = 𝑆$ 𝑗' +𝑆$ 𝑗% 160×160

conversion from 1D S( to 2D grid S(
%) j', j%
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The outputs from two trained CNNs (red crosses)  

compared with the numerical results (black circles) for 100 testing realizations
CNN1 CNN2

The performances by using 2D input date outperform! 
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CNN2CNN1

Thecombinedeffectsof the trappingpotential and 

disorderplaysan importantrole in dynamical control, 

characterizedbythe fidelityand therequiredenergycost. 

Gradient-descent

Polynomial ansatz

Hint: the fidelity depends on the localization induced by random potential rather than on the control strategy

Stationary state and dynamics rely on the disorder realizations

Choosing various ansatz forms would not modify the effect of disorder

Our methods are applicable to other the robust optimal control 

Results:
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Retrieving Quantum Information with Active Learning

Phys. Rev. Lett. 124, 140504 (2020)

Adv. Quantum Technol. 2300208 (2023)
25

Quantum Active Learning, see arXiv: 2405.18230

https://arxiv.org/abs/2405.18230
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least confidence margin sampling entropy-based USAMP
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Gaming strategy: active learning Weak-to-strong measurement

A Game between Alice and Bob
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Voting entropy for query-by-committee
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Multinomial classification qutrit system

Phys. Rev. Research 4, 013213 (2022)
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Phase boundary prediction in geometrically frustrated system
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Summary 

PRL 124, 140504 (2020) PRA 101, L040401 (2021)

PR Applied 15, 024038 (2021)SCPMA 65, 250312 (2022) PR Applied 17, 024040 (2022)

PRR 4, 013213 (2022)
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