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To address complex problems in quantum 
physics by classical machine learning.

Quantum machine learning 

To apply quantum resources to enhance the 
performance of classical machine learning. 

Quantum
Physics

Quantum Neural Network

Neuromorphic quantum hardwares 
can offer the advantage as it is 
expected to be trained on multiple 
batches of real world data in 
parallel.



Neural networks are valuable in distinct quantum sensing scenarios. 

ü A Neural Network Assisted 171Yb+ Quantum Magnetometer
npj Quantum Inf. 8, 152 (2022). Quantum Sci. Technol. 6, 045012 (2021).

ü Detection of Nuclear Spins at Arbitrary Magnetic Fields 

arXiv: 2212.12058.

ü Neural networks for Bayesian quantum many-body magnetometry
Phys. Rev. Lett. 132, 150801 (2024).

ü Breaking adiabatic quantum control with deep learning
Sci. China. Phys. Mech. Astron. 65, 250312 (2022). 

Deep learning are useful for quantum control. 

Phys. Rev. A 103, L040401 (2021).
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ü Machine-learning-assisted quantum control in a random environment

Phys. Rev. Applied 17, 024040 (2022).

YONGCHENG DING et al. PHYSICAL REVIEW A 103, L040401 (2021)

FIG. 2. (a) Scheme of DRL approach to quantum control with
the LZ scheme for one time step in training. An ANN (agent) of
three hidden layers observes a state, which encodes the physical
information of the qubit. An action is outputted, evolving the system
for one time step, resulting in its state of the next time step. The
environment rewards or punishes the agent by an artificially designed
reward function, enabling the agent to learn by an accumulation of
them. (b) State evolution of the qubit on Bloch spheres, driven by
digital pulses from DRL within 20 time steps, where the parameters
are the same as those in Fig. 1. (c) Renormalized detuning pulses
after pretraining for control of LZ type, and fine tuning according to
systematic errors and populations. Following Fig. 1(c), !max are set
to 1.5 and 1.7 " for the ! and " errors, respectively. (d) Final pop-
ulation of state |1⟩ vs relative systematic errors. Protocols designed
by STA and obtained from DRL are both robust against systematic
errors with similar features, comparing to the resonant flat π pulse as
a time-optimal solution.

rewarding the linear growth of detuning. Pretraining can fil-
ter other strategies and accelerate the convergence as well.
Later, we reward the agent by a constant for fine tuning under
random systematic errors characterized by a Gaussian distri-
bution, if |ρ22| > 0.997 at the final time step.

By using TENSORFORCE [62] and QUTIP [63], we first in-
vestigate if the DRL agent learns digital quantum control
resembling STA [see Fig. 1(c)], with an operation time T =
60.6 and 48.8 ns split equally by using 20 pulses as the
only hint. The control calculated by STA eliminates the error
transition, which bounds the upper limit of robustness. Thus,
the performance of DRL can be easily benchmarked. We find
out that the DRL agent manages to flip the qubit against

FIG. 3. (a) State evolution during an arbitrary time tN = 55 ns
in an ideal system. (b) Digital pulses given by DRL, where !max

is chosen as 1.6 " without knowledge of STA. (c) Deviation of
population under both " and ! errors.

systematic errors by digital pulses [see Figs. 2(b) and 2(c)],
which are not the coarse-grained analog controls.

In Fig. 2(d), we compare the robustness of STA, DRL,
and the flat π pulse against !/" errors. The agent discovers
digital quantum control with the same feature of STA, which
is quite satisfying for approaching the theoretical maximum
of robustness. Inspired by this preliminary result, we further
employ DRL for the sake of searching for robust digital con-
trol against both " and ! errors. In this scenario, DRL is more
straightforward since the inverse engineering from STA does
not work perfectly even with more free parameters, depending
on a certain proportion of δ! and δ". With the same training
strategy, we educate the DRL agent for qubit flipping against
both types of errors, which is shown in Fig. 3. It is worthwhile
to mention that we set the operation time and tunable range
of detuning without any knowledge from STA. The agent
learns its goal, resulting in populations exceeding 0.99 within
δ!/!max, δ" ∈ [−0.1, 0.1].

Discussion. Although one may argue that other numerical
algorithms such as GRAPE and CRAB are also capable of
completing similar tasks, in our practice, we perceive that
these gradient algorithms have their limitations. Some of them
easily get stuck to local minima, being far from optimal
solutions because of initial configurations. For the specific
problem presented in this Letter, one might not meet the
local minimum problem but unwanted control pulses instead,
even if the trial control is initialized according to the goal of
realizing LZ-type control (see Supplemental Material [58]).
By contrast, we obtain the control pulses of LZ type with the
appropriate reward function design. DRL algorithms tune the
ANN for maximizing the accumulative reward, achieving an
almost optimal result with a similar robustness feature of ana-
lytical STA, which bounds the upper limit by the second-order
perturbation theory. Moreover, it is proved that the global
minimum (maximum) can be found in ANN with a gradient
descent [64,65]. Studies also verify that any complex ANN
can be reduced to one with much smaller sizes without loss
of performance [66], massively saving training time. This the-
oretical research from the computer science community will
continuously improve DRL, widening its application in quan-
tum control. We also emphasize the critical issue that we are
far from exploiting the power of DRL in this Letter because
of physical constraints. In other scenarios of applied DRLs,
states for agents are easily observed. For example, states of
Go, real-time strategy (RTS) games, and automatic driving
are already digitized during information collection processes.
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FIG. 1. A schematic configuration of an SSH chain. The edge
state can be nonadiabatically transferred from the left side to the
right one by adding the hopping between the neighboring sites of
sublattice A.

fidelity

F(t) = | ⟨!0(t)|"(t)⟩ |2, (5)

which is used to characterize the extent to which the state
evolves along the instantaneous eigenstate in the interval
t ∈ [0, T], we can obtain the fidelity robustness F(T) >
99.9% at T ≡ π/$ = 100π/t0, fulfilling the adiabatic
condition mentioned above.

Indeed, it is worth noting that previous efforts have
primarily focused on expediting the slow adiabatic pro-
tocol for edge-state transfer by using inverse-engineering
methods [27,37]. While inverse engineering provides the
advantage of flexibility in designing the time-dependent
couplings t1,2(t) (if it is allowed experimentally), it does
run the risk of exciting other intermediate states, rather
than the zero-energy eigenstate. In contrast, CD driving
offers the distinct advantage of ensuring adiabatic follow-
ing of the original Hamiltonian [31–33,35] but within a
shorter time frame. In what follows, we shall focus on
the optimal CD terms, providing a promising pathway
to achieve more robust and high-fidelity state transfers,
even in the presence of noise and other experimental
imperfections.

III. NONADIABATIC EDGE-STATE TRANSFER

A. Approximate CD contribution
In this section, we provide a speed-up protocol inspired

by CD driving where the state evolution is always along
|!0(t)⟩, by canceling the nonadiabatic transitions from all
instantaneous eigenstates. This leads to the total Hamilto-
nian H(t) = H0(t) + Hcd(t). However, instead of finding
the exact CD terms, which requires spectral knowledge,
we apply the adiabatic gauge potentials [38] to achieve the

approximate CD terms

H (l)
cd = λ̇A(l)

λ (6)

in the preselected form, with the approximate gauge poten-
tial expanded in terms of NCs [31,33] as

A(l)
λ = i

l∑

k=1

α
(l)
k [H0, [H0, . . . , [H0︸ ︷︷ ︸

2k−1

, ∂λH0]]], (7)

where α
(l)
k ≡ α

(l)
k (t), with k ∈ {1, . . . , l} and l being the

order of the expansion, are time-dependent coefficients.
In the limit of l → ∞, Eq. (7) becomes the exact gauge
potential. Consequently, considering a larger value of l
makes the approximate CD terms approach the exact CD
driving more closely. The coefficients α

(l)
k are determined

by minimizing the action Sl = tr[G2
l ] with Gl = ∂λH0 −

i[H0,A(l)
λ ] (see details in Appendix A). The first-order NC,

A(1)
λ = iα(1)

1 [H0, ∂λH0], is given by

A(1)
λ = iκ (1)

⎡

⎣
N−2∑

j =1

c†
2j +2c2j −

N−1∑

j =1

c†
2j +1c2j −1

⎤

⎦+ h.c., (8)

where κ (1) = −)λ̇α
(1)
1 , and α

(1)
1 is obtained by minimizing

S1 = tr[G2
1]. In this scenario, the CD drivings are situated

as the NNN hopping between odd-odd and even-even sites
with the same absolute strength |κ (1)|. More detailed ana-
lytical solutions on the first-order NC for a general SSH
chain with 2N − 1 sites can be found in Appendix A.

As the nonadiabatic transfer protocol needs the NNN
hoppings, as shown in Eq. (8), chiral symmetry [27,39]
is broken. However, aiming at transferring the edge state
along the zero-energy eigenstate [Eq. (3)], the probabilities
in the even sites are zero, leading to zero hopping between
even and even sites. Consequently, the first-order NC terms
are simplified to only be located between the neighboring
sublattice A.

Subsequently, the second-order NC term goes as

A(2)
λ = i

(
α

(2)
1 [H0, ∂λH0] + α

(2)
2 [H0, [H0, [H0, ∂λH0]]]

)
,

(9)

where

[H0, [H0, [H0, ∂λH0]]] = )() − λ)2

⎡

⎣4
N−2∑

j =1

(c†
2j +1c2j −1 − c†

2j +2c2j )+ c†
2N−1c2N−3

⎤

⎦ + )λ2

⎡

⎣
N−2∑

j =1

(3c†
2j +3c2j +1 + c†

2j +1c2j −1

− 4c†
2j +2c2j ) + c†

2N−1c2N−3

⎤

⎦ + 4)λ()− λ)

⎡

⎣
N−3∑

j =1

(c†
2j +3c2j −1 − c†

2j +4c2j ) + c†
2N−1c2N−5

⎤

⎦−h.c.

(10)
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ü Optimizing edge-state transfer in a topological SSH chain
Phys. Rev. Applied 21, 034033 (2024). 

ü Exploring Ground States of FH Model on Honeycomb Lattices 
arXiv:2405.09225, accepted by npj Quantum Materials.

Quantum machine learning algorithms
ü Tranining embedding quantum kernels with data reuploading quantum neural networks

arXiv:2401.04642.
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FIG. 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n.

acquired during training. This feature map is then utilized to
construct an EQK. The subsequent application of the SVM
algorithm, using this kernel, aims to identify the optimal sep-
aration hyperplane in the feature space. In this context, the
optimization is equivalent to adjusting the optimal measure-
mentM(�) while keeping the data points fixed.

Building upon this insight, we propose constructing EQKs
using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,
these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This method allows us to scale the QNN as much as possible
during training, and when it reaches a performance plateau,
we can utilize the trained feature map to construct an EQK.

In the 1-to-n construction, we train a single-qubit QNN✓

from Eq. 3, fixing the ✓⇤ and we leverage this training to con-
struct the kernel

ki j = |h0|
L�1Y

l=1

⇣
U(xi)†⌦n U(✓⇤l )†⌦n E

⌘
U(xi)†⌦n

U(x j)⌦n

0
BBBBBB@

L�1Y

l=1

E U(✓⇤l ) U(x j)

1
CCCCCCA |0i|

2,

(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we

will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and the 1-to-n
architectures and generalize it to n-to-m·n, where m represents
some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

V. NUMERICAL RESULTS

Let us now explore the practical implementation of our
approaches and evaluate their performance across various
datasets detailed in Appendix F. Both the training and test sets
consist of 500 data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as

E =
n�1Y

s=1

CNOTs+1
s , (7)

ü Regressions on quantum neural networks at maximal expressivity
arXiv:2311.06090. 4

ü Satellite image classification with neural quantum kernels
arXiv:2409.20356.

Phys. Rev. Research 5, 023173 (2023).

ü Time-optimal control of driven oscillators by variational circuit learning
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ü Characterizing target fields in the presence of large shot noise. 
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Figure1.SchematicconfigurationofthequantumparameterestimationemployingaNN
withkhiddenlayers,labelledasHL1,...,HLk.Thequantumsensorinteractswiththetarget
signalthattriggersaresponsewhichismeasured.Suchquantumsensorresponseencodesthe
relevantparametersaboutthetargetsignalweaimtoinfer,A.Themeasureddatafromthe
quantumregisterXatdi�erenttimeinstancesisprocessedbyanumberofhiddenlayersso
thattheNNfinallyoutputsY,whosedimensionisequaltothenumberofparameterstobe
estimatedna.ByadequatelytrainingtheNNwithknownrelationsbetweenXandthetarget
parametersA,theNNisabletolearnthefunctionaldependenceF(X)=Y�A.Seemain
textfordetails.

Y={y1,y2,...,yna}.Inthetrainingstage,thedataXisfedintotheNNwithitscorresponding
knownoutputparametersA={a1,a2,...,ana},sothattheweightsandneuralconnections
withinthehiddenlayersareoptimizedtoachieveF(X)=Y�AwhereF(X)denotesthe
actionoftheNNontheinputX(cf.Fig.1)
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forthetrainingset,wherethesuperscriptjaccountsforcorrespondingnumberamongthe
Nexamples.ThevalueofCforthevalidation/testsetcanbeobtainedsimilarlybyusing
theoutputsyj

ifromthecorrespondingset(i.e.validationandtest).Weusethegradient
descentalgorithmtotrainourNN,whereLevenberg-Marquardtbackpropagationisapplied
asitisusuallythefastestone.Sincetheweightsandbiasesarerandomlyinitialised,wetrain
thenetworkseveraltimestoobtainstatistical-significancevalues.Byapplyingbackward
propagationstepsandfindingpartialderivativesoftheweightswandthebiasb,i.e.,�C/�w
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sample size can be generalized to the original distribution

p(x). Although ERM focuses on minimizing error on

the training data, the ultimate goal is to achieve good

performance on unseen data. Therefore, to construct a

training dataset, the way to sample data from di↵erent

working regimes of the sensor in the presence of noise is

the key for the NN to learn.

Deep learning has gained a lot attention with the ad-

vent of cloud computing due to the facts that the sub-

stantial increase in computing power improves training

e�ciency. Having increased in parallel with the com-

puter hardware improvements [], the enlargement of the

depth has promoted the ability of a NN to process the

increasing amount of data [11] and complexity of algo-

rithms [12].

As for the task of quantum sensing, the input do-

main X = {x1, x2, ..., xm} and the label domain A =

{a1, a2, ..., an} derived from measuring the quantum reg-

ister correspond to the response and the target param-

eters to be measured, respectively. When the external

fields such as magnetic fields, dynamical decoupling pulse

sequences etc, are applied to the sensing system, the sen-

sor emits the responses containing the information of the

parameters to be estimated, which can be either the ones

of the external fields or the ones indicating the charac-

teristics of the environment. The adequately trained NN

is able to learn the functional dependence F (X) = Y,

while approximating the targets A. This relation is es-

tablished in di↵erent working regimes which cannot be

dealt with by standard methods.

III. SCENARIOS WHERE ANALYTICAL
MODELS FAIL TO DETECT COMPLEX

SIGNALS

A. Case study: Magnetometry with an atomic-size
sensor

An
171

Yb
+

quantum sensor, encoded in the
2
S 1

2
man-

ifold consisting of four hyperfine levels |0i, |0́i, |1i and

| � 1i with the application of a static magnetic field

Bz, detects the amplitude ⌦tg and frequency detuning

⇠ = !tg � (!1 � !0́) of the target electromagnetic fields

by using the |0́i $ |1i transition. Two microwave driv-

ings resonant with |0i $ |1i and |0i $ | � 1i with

the same amplitude ⌦ cancel the magnetic field fluctu-

ations to achieve long-time coherence. In the dressed

state basis
�
|ui, |di, |Di, |0́i

 
where |ui = |Bi + |0i/

p
2,

|di = (|Bi � |0i)/
p

2, |Di = (| � 1i � |1i)/
p

2, |Bi =

(| � 1i + |1i)/
p

2, PD(t), the survival probability of the

state |Di, is the response of the sensor, when the tar-

get electromagnetic field ⌦tg cos(!tgt) acts on it. Ac-

cording to the scheme put forward in [41,34,42], the

conditions limited by the rotating wave approximation

(RWA)⌦tg ⌧ ⌦ ⌧ !tg together with ⇠ = 0 determine

the working regime of the sensor into the harmonic re-

sponse PD(t) = cos
2
(⇡t/tR) with tR = 2⇡

p
2/⌦tg. In

other words, ⌦tg can be deduced from the harmonic re-

sponse PD(t). However, as long as RWA is broken, e.g.,

⌦tg becomes comparable to ⌦ and/or ⇠ 6= 0, PD(t) be-

haves in arbitrary shapes.

Quantum sensing is the natural playground of neural networks. 

Phase estimation
Parameter estimation
Sensors calibration …
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Scenario I: A reduced number of measurements. 
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Scenario I: A reduced number of measurements. 



Scenario II: Continuous data acquisition. 
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• 2D CNN block: This convolutional segment includes a 2-dimensional convolutional layer with 32 filters and a (3, 3) kernel
size, followed by a 2-dimensional transposed convolutional layer with 16 filters of the same kernel size. Notably, this last
layer employs a stride of 2, e↵ectively doubling the width and height of the input image to the layer. Batch normalization
layers are placed between the convolutional layers and the ReLU activation functions, and a dropout layer with a 0.2 rate
is added between the convolutional layers. The output of the neural network is a 2D convolutional layer with 1 filter, a
(3, 3) kernel size, and a sigmoid activation function that scales each pixel to fall within the range of 0 to 1.

2. Image post-processing

The image post-processing procedure begins with the application of erosion and dilation filters to smooth the image and
diminish spurious values in the predicted network outputs (refer to Fig. S2(b)). A threshold is then applied to the smoothed
image for refinement. Next, adjacent pixels are grouped by connectivity to create clustered objects, followed by the application
of an area filter to remove clusters that are deemed too small. These pixel clusters represent regions in the image (depicted as
white rectangles in Fig. S2(c)). Each region corresponds to a predicted nucleus or a set of “closely located” nuclei, meaning their
(Az, A?) values are similar. Each of these regions is examined to identify local maxima. To account for potential local variations
in pixel values, a minimum distance of 3 pixels (⇠ 3 kHz) between two maxima in the same region is required to consider them
as di↵erent nuclei (see Sec. III for in-depth analysis). If two or more nuclei are detected in the same region, we identify the
maxima of each one of them and enclose them in 5 ⇥ 5 red boxes centered around the maxima (see Fig. S2(c)). When a single
nucleus is detected in a region (i. e. there is just one maximum), the entire region is considered as the detected nucleus, with its
centroid serving as the predicted coupling constants of the nucleus.

The neural network outputs can be interpreted as a scaled probability distribution, indicating the potential locations of nu-
clei. Some predicted nuclei exhibit higher pixel values, signifying the network’s confidence in their presence in the sample.
Conversely, others may have lower pixel values, indicating lower confidence from the neural network (see Fig. S2(b)). This
characteristic can be leveraged by adjusting the parameters of the image post-processing (pixel threshold, cluster size...) to
achieve a trade-o↵ between precision and recall.

Figure S2. (a) True output image taken from the test subset of the low-field case. 8 nuclei are represented in the image, 2 of them closely
located. (b) Output image predicted by the neural network. (c) Output image after the post-processing module. The regions corresponding
to a single nucleus or, in this particular case, two closely located nuclei, are represented by white boxes. In the region where two nuclei are
detected (because there are two maxima), we also see two red boxes, each representing one nucleus. (d) Evaluation of the prediction, depicting
the true nuclei in green boxes. All 8 nuclei are correctly predicted.
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Supplemental Material:
Automatic Detection of Nuclear Spins at Arbitrary Magnetic Fields via Signal-to-Image AI Model

I. DESCRIPTION OF THE SYSTEM

We consider a system composed of an NV and n 13C nearby nuclear spins with Larmor frequency !L = �nBz, such that
�n = (2⇡) ⇥ 10.705 MHz/T, while the magnetic field Bz is aligned with the NV axis (ẑ). The Hamiltonian that describes this
system reads as

HI =

nX

j=1

! j !̂ j · ~I j +
1
2
�z

nX

j=1

~Aj · ~I j +
⌦

2
��, (S1)

where ! j !̂ j = �nBz ẑ + 1
2
~Aj are the e↵ective Larmor frecuencies, and ~Aj = (Az

j, A
?
j ) are the hyperfine coupling parameters.

The pulses of the CPMG sequence are applied through a microwave driving represented as the final term in the Hamiltonian
from Eq. (S1). Specifically, the CPMG sequence involves the application of N ⇡-pulses with an interpulse delay of 2⌧. In a
rotating frame with respect to H0 =

⌦
2 �� and applying this pulse sequence, one obtains the following Hamiltonian:

H =
nX

j=1

! j !̂ j · ~I j +
f (t)
2
�z

nX

j=1

~Aj · ~I j, (S2)

where the modulation function f (t) is a step function that alternates between +1 and �1 each time a ⇡-pulse is applied, as it can
be seen in Fig. S1(a).

By initializing the NV sensor in an eigenstate of �x and applying the aforementioned pulse sequence (i.e. CPMG), one can
measure the final state of the sensor (|0ix or |1ix). Repeating this process Nm times, one estimates the probability Px of the state
of the sensor being preserved. This probability can be computed for various values of ⌧ (half the interpulse delay), generating a
signal of Px as a function of ⌧.

a) b) c)

� 2� . . .
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Figure S1. (a) Top panel, CPMG pulse sequence. Initially, a ⇡/2-pulse is applied to rotate the NV electron spin to the XY plane. Subsequently,
N ⇡-pulses are applied, and finally, another ⇡/2-pulse is applied before the measurement. Bottom panel, f (t) modulation function resulting
from the application of the ⇡-pulses in the CPMG sequence. (b) and (c) Px calculated at Bz = 0.056 T and Bz = 0.0056 T, respectively. Each
sequence contains N = 32 ⇡-pulses, and Px is sampled Np = 1000 times in the range ⌧ 2 [6, 50] µs. In this example, the node contains the NV
and 3 nuclei with (3, 75) kHz, (�45, 42) kHz, and (23, 4) kHz.

In Fig. S1(b)-(c), one can observe the Px performance for distinct values of the magnetic field Bz. In particular, in Fig. S1(b)
(Bz = 0.056T) the signal exhibits clear resonance peaks at specific values of ⌧ = k⇡

2! j
, for k odd. Fig. S1(c) shows the behavior

of Px in a low-field regime (Bz = 0.0056T), where these resonances cannot be seen anymore (see mathematical derivation in
Supplemental Material from reference [S1]).

not require prior knowledge of the number of nuclei in
each node, and more importantly, (iv) performs well in
low-field conditions, where conventional approximations
break down, resulting in intricate and challenging signals.
Through detailed numerical simulations, we evaluate the
performance of our model in nodes containing up to 20
nuclei, considering both high and low magnetic field
scenarios.
The system.—We consider a quantum node consisting

of an NV and n 13C nearby nuclear spins with Larmor
frequency ωL ¼ γnBz, such that γn¼ð2πÞ×10.705MHz=T,
while the magnetic field Bz is aligned with the NV axis (ẑ).
The Hamiltonian that describes this system is
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fðtÞ
2

σz
Xn

j¼1
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where ωjω̂j ¼ γnBzẑþ 1
2 A⃗j, A⃗j ¼ ðAz

j; A
⊥
j Þ is the hyperfine

vector joining the NVwith the jth nucleus with spin operator
I⃗j, andfðtÞ ¼ %1 is themodulation function that appears as a
consequence of the introduced microwave driving (for more
details see Supplemental Material (SM) [23]). In particular,
we consider trains of π pulses over the NV (which is
initialized to the jþi state, such that σxjþi ¼ jþi) according
to theCarr-Purcell-Meiboom-Gill (CPMG) sequence [24,25],
after which the NV is measured. Repeating this process Nm
times, one estimates the survival probability (Px) of the initial
state jþi. In the ideal scenario of infinite number of
measurements (note our numerical simulations consider a
finite number of measurements and decoherence effects) Px
reads
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, αj ¼ fωjτ, β ¼ ωLτ, and τ is half

the interpulse spacing of a CPMG sequence (see full
derivation in Supplemental Material from Ref. [21]). In a
scenario such that ωL ≫ Az

j; A
⊥
j (namely, at high magnetic

field, Bz ¼ 0.056 T in our case) Px exhibits clear resonance
peaks at τ ¼ ðkπ=2ωjÞ. In this context, techniques based on
classical algorithms [21,22], as well as deep learning
models [4], are used to find Az

j and A⊥
j . However, in the

low-field regime, where the conditionωL ≫ Az
j; A

⊥
j does not

hold (Bz ¼ 0.0056 T in our particular case), resonance peaks
cannot be observed [23]. More specifically, in this regime Px
shows an intricate behavior that makes previously mentioned
techniques for system characterization challenging.
Now we introduce our SALI model designed to

effectively process complex signals across diverse mag-
netic field scenarios, leading to ðAz

j; A
⊥
j Þ as output. Our

model showcases robust performance in handling noisy
signals commonly encountered in experimental scenarios
and operates seamlessly without requiring any prior
information about the number of nuclei involved in
the node.
The SALI model.—A scheme of SALI is given in Fig. 1

(see caption for details on the architecture of the model).
The 1D → 2D CNN module takes two input signals (Px)
coming from CPMG sequences with different number of
pulses (N ¼ 32 and N ¼ 256 in our specific example).
This approach ensures that each sequence exhibits different
evolution times, enabling the network to infer both weak
and strongly coupled nuclei. In this instance, these two
specific sequences yielded highly favorable results. The
architecture of the neural network is as follows. (i) Two
separate 1D CNN blocks analyze the inputs. After process-
ing the signals, the outputs of these blocks are flattened and
concatenated into a single array. (ii) A fully connected
block is introduced between the 1D CNN block and the
next 2D CNN block, serving as an intermediary between
these two blocks, and additionally, allowing for the
adaptation of the final output image size. The outcome
of the fully connected block is reshaped into a two-
dimensional array, treated as an image to exploit the spatial
relations among adjacent pixels. (iii) In the 2D CNN block,
the reshaped image is processed. Finally, this block con-
nects to the output layer of the neural network (NN output
in Fig. 1), which is a convolutional layer with sigmoid
activation function that encodes the target parameters
ðAz

j; A
⊥
j Þ in a two-dimensional image.

For the training, validation, and testing of the neural
network, we generated two distinct datasets, one for the high
magnetic field scenario and the other for the low magnetic
field scenario, each comprising 3.6 × 106 samples. Each
sample within these datasets contains a random number of
nuclei ranging from1 to 20. Each nucleus is characterized by
random values of Az and A⊥, falling within the ranges
Az ∈ ½−100; 100' kHz and A⊥ ∈ ½2; 102' kHz, resulting in a
set of coupling constants ðAz

j; A
⊥
j Þ. Note that Eqs. (2), (4)

dictate that Px is symmetric with respect to the change
A⊥ → −A⊥. Consequently, we only consider positive values
for A⊥. The input data strings (Px) are generated with
N ¼ 32 π pulses, with τ varying in the range τ32 ∈ ½6; 50' μs,
and N ¼ 256 π pulses, with τ in the range τ256 ∈ ½10; 40' μs.
EachPx contains Np ¼ 1000 points, resulting in resolutions
of Δt32 ¼ 44 ns and Δt256 ¼ 30 ns. Thus, the employed
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The 1D → 2D CNN module takes two input signals (Px)
coming from CPMG sequences with different number of
pulses (N ¼ 32 and N ¼ 256 in our specific example).
This approach ensures that each sequence exhibits different
evolution times, enabling the network to infer both weak
and strongly coupled nuclei. In this instance, these two
specific sequences yielded highly favorable results. The
architecture of the neural network is as follows. (i) Two
separate 1D CNN blocks analyze the inputs. After process-
ing the signals, the outputs of these blocks are flattened and
concatenated into a single array. (ii) A fully connected
block is introduced between the 1D CNN block and the
next 2D CNN block, serving as an intermediary between
these two blocks, and additionally, allowing for the
adaptation of the final output image size. The outcome
of the fully connected block is reshaped into a two-
dimensional array, treated as an image to exploit the spatial
relations among adjacent pixels. (iii) In the 2D CNN block,
the reshaped image is processed. Finally, this block con-
nects to the output layer of the neural network (NN output
in Fig. 1), which is a convolutional layer with sigmoid
activation function that encodes the target parameters
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For the training, validation, and testing of the neural
network, we generated two distinct datasets, one for the high
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Supplemental Material:
Automatic Detection of Nuclear Spins at Arbitrary Magnetic Fields via Signal-to-Image AI Model

I. DESCRIPTION OF THE SYSTEM

We consider a system composed of an NV and n 13C nearby nuclear spins with Larmor frequency !L = �nBz, such that
�n = (2⇡) ⇥ 10.705 MHz/T, while the magnetic field Bz is aligned with the NV axis (ẑ). The Hamiltonian that describes this
system reads as

HI =

nX

j=1

! j !̂ j · ~I j +
1
2
�z

nX

j=1

~Aj · ~I j +
⌦

2
��, (S1)

where ! j !̂ j = �nBz ẑ + 1
2
~Aj are the e↵ective Larmor frecuencies, and ~Aj = (Az

j, A
?
j ) are the hyperfine coupling parameters.

The pulses of the CPMG sequence are applied through a microwave driving represented as the final term in the Hamiltonian
from Eq. (S1). Specifically, the CPMG sequence involves the application of N ⇡-pulses with an interpulse delay of 2⌧. In a
rotating frame with respect to H0 =

⌦
2 �� and applying this pulse sequence, one obtains the following Hamiltonian:

H =
nX

j=1

! j !̂ j · ~I j +
f (t)
2
�z

nX

j=1

~Aj · ~I j, (S2)

where the modulation function f (t) is a step function that alternates between +1 and �1 each time a ⇡-pulse is applied, as it can
be seen in Fig. S1(a).

By initializing the NV sensor in an eigenstate of �x and applying the aforementioned pulse sequence (i.e. CPMG), one can
measure the final state of the sensor (|0ix or |1ix). Repeating this process Nm times, one estimates the probability Px of the state
of the sensor being preserved. This probability can be computed for various values of ⌧ (half the interpulse delay), generating a
signal of Px as a function of ⌧.
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Figure S1. (a) Top panel, CPMG pulse sequence. Initially, a ⇡/2-pulse is applied to rotate the NV electron spin to the XY plane. Subsequently,
N ⇡-pulses are applied, and finally, another ⇡/2-pulse is applied before the measurement. Bottom panel, f (t) modulation function resulting
from the application of the ⇡-pulses in the CPMG sequence. (b) and (c) Px calculated at Bz = 0.056 T and Bz = 0.0056 T, respectively. Each
sequence contains N = 32 ⇡-pulses, and Px is sampled Np = 1000 times in the range ⌧ 2 [6, 50] µs. In this example, the node contains the NV
and 3 nuclei with (3, 75) kHz, (�45, 42) kHz, and (23, 4) kHz.

In Fig. S1(b)-(c), one can observe the Px performance for distinct values of the magnetic field Bz. In particular, in Fig. S1(b)
(Bz = 0.056T) the signal exhibits clear resonance peaks at specific values of ⌧ = k⇡

2! j
, for k odd. Fig. S1(c) shows the behavior

of Px in a low-field regime (Bz = 0.0056T), where these resonances cannot be seen anymore (see mathematical derivation in
Supplemental Material from reference [S1]).

not require prior knowledge of the number of nuclei in
each node, and more importantly, (iv) performs well in
low-field conditions, where conventional approximations
break down, resulting in intricate and challenging signals.
Through detailed numerical simulations, we evaluate the
performance of our model in nodes containing up to 20
nuclei, considering both high and low magnetic field
scenarios.
The system.—We consider a quantum node consisting

of an NV and n 13C nearby nuclear spins with Larmor
frequency ωL ¼ γnBz, such that γn¼ð2πÞ×10.705MHz=T,
while the magnetic field Bz is aligned with the NV axis (ẑ).
The Hamiltonian that describes this system is

H ¼
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where ωjω̂j ¼ γnBzẑþ 1
2 A⃗j, A⃗j ¼ ðAz

j; A
⊥
j Þ is the hyperfine

vector joining the NVwith the jth nucleus with spin operator
I⃗j, andfðtÞ ¼ %1 is themodulation function that appears as a
consequence of the introduced microwave driving (for more
details see Supplemental Material (SM) [23]). In particular,
we consider trains of π pulses over the NV (which is
initialized to the jþi state, such that σxjþi ¼ jþi) according
to theCarr-Purcell-Meiboom-Gill (CPMG) sequence [24,25],
after which the NV is measured. Repeating this process Nm
times, one estimates the survival probability (Px) of the initial
state jþi. In the ideal scenario of infinite number of
measurements (note our numerical simulations consider a
finite number of measurements and decoherence effects) Px
reads

Px ¼
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, αj ¼ fωjτ, β ¼ ωLτ, and τ is half

the interpulse spacing of a CPMG sequence (see full
derivation in Supplemental Material from Ref. [21]). In a
scenario such that ωL ≫ Az

j; A
⊥
j (namely, at high magnetic

field, Bz ¼ 0.056 T in our case) Px exhibits clear resonance
peaks at τ ¼ ðkπ=2ωjÞ. In this context, techniques based on
classical algorithms [21,22], as well as deep learning
models [4], are used to find Az

j and A⊥
j . However, in the

low-field regime, where the conditionωL ≫ Az
j; A

⊥
j does not

hold (Bz ¼ 0.0056 T in our particular case), resonance peaks
cannot be observed [23]. More specifically, in this regime Px
shows an intricate behavior that makes previously mentioned
techniques for system characterization challenging.
Now we introduce our SALI model designed to

effectively process complex signals across diverse mag-
netic field scenarios, leading to ðAz

j; A
⊥
j Þ as output. Our

model showcases robust performance in handling noisy
signals commonly encountered in experimental scenarios
and operates seamlessly without requiring any prior
information about the number of nuclei involved in
the node.
The SALI model.—A scheme of SALI is given in Fig. 1

(see caption for details on the architecture of the model).
The 1D → 2D CNN module takes two input signals (Px)
coming from CPMG sequences with different number of
pulses (N ¼ 32 and N ¼ 256 in our specific example).
This approach ensures that each sequence exhibits different
evolution times, enabling the network to infer both weak
and strongly coupled nuclei. In this instance, these two
specific sequences yielded highly favorable results. The
architecture of the neural network is as follows. (i) Two
separate 1D CNN blocks analyze the inputs. After process-
ing the signals, the outputs of these blocks are flattened and
concatenated into a single array. (ii) A fully connected
block is introduced between the 1D CNN block and the
next 2D CNN block, serving as an intermediary between
these two blocks, and additionally, allowing for the
adaptation of the final output image size. The outcome
of the fully connected block is reshaped into a two-
dimensional array, treated as an image to exploit the spatial
relations among adjacent pixels. (iii) In the 2D CNN block,
the reshaped image is processed. Finally, this block con-
nects to the output layer of the neural network (NN output
in Fig. 1), which is a convolutional layer with sigmoid
activation function that encodes the target parameters
ðAz

j; A
⊥
j Þ in a two-dimensional image.

For the training, validation, and testing of the neural
network, we generated two distinct datasets, one for the high
magnetic field scenario and the other for the low magnetic
field scenario, each comprising 3.6 × 106 samples. Each
sample within these datasets contains a random number of
nuclei ranging from1 to 20. Each nucleus is characterized by
random values of Az and A⊥, falling within the ranges
Az ∈ ½−100; 100' kHz and A⊥ ∈ ½2; 102' kHz, resulting in a
set of coupling constants ðAz

j; A
⊥
j Þ. Note that Eqs. (2), (4)

dictate that Px is symmetric with respect to the change
A⊥ → −A⊥. Consequently, we only consider positive values
for A⊥. The input data strings (Px) are generated with
N ¼ 32 π pulses, with τ varying in the range τ32 ∈ ½6; 50' μs,
and N ¼ 256 π pulses, with τ in the range τ256 ∈ ½10; 40' μs.
EachPx contains Np ¼ 1000 points, resulting in resolutions
of Δt32 ¼ 44 ns and Δt256 ¼ 30 ns. Thus, the employed
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(see caption for details on the architecture of the model).
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evolution times, enabling the network to infer both weak
and strongly coupled nuclei. In this instance, these two
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these two blocks, and additionally, allowing for the
adaptation of the final output image size. The outcome
of the fully connected block is reshaped into a two-
dimensional array, treated as an image to exploit the spatial
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nects to the output layer of the neural network (NN output
in Fig. 1), which is a convolutional layer with sigmoid
activation function that encodes the target parameters
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j Þ in a two-dimensional image.

For the training, validation, and testing of the neural
network, we generated two distinct datasets, one for the high
magnetic field scenario and the other for the low magnetic
field scenario, each comprising 3.6 × 106 samples. Each
sample within these datasets contains a random number of
nuclei ranging from1 to 20. Each nucleus is characterized by
random values of Az and A⊥, falling within the ranges
Az ∈ ½−100; 100' kHz and A⊥ ∈ ½2; 102' kHz, resulting in a
set of coupling constants ðAz
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dictate that Px is symmetric with respect to the change
A⊥ → −A⊥. Consequently, we only consider positive values
for A⊥. The input data strings (Px) are generated with
N ¼ 32 π pulses, with τ varying in the range τ32 ∈ ½6; 50' μs,
and N ¼ 256 π pulses, with τ in the range τ256 ∈ ½10; 40' μs.
EachPx contains Np ¼ 1000 points, resulting in resolutions
of Δt32 ¼ 44 ns and Δt256 ¼ 30 ns. Thus, the employed
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not require prior knowledge of the number of nuclei in
each node, and more importantly, (iv) performs well in
low-field conditions, where conventional approximations
break down, resulting in intricate and challenging signals.
Through detailed numerical simulations, we evaluate the
performance of our model in nodes containing up to 20
nuclei, considering both high and low magnetic field
scenarios.
The system.—We consider a quantum node consisting

of an NV and n 13C nearby nuclear spins with Larmor
frequency ωL ¼ γnBz, such that γn¼ð2πÞ×10.705MHz=T,
while the magnetic field Bz is aligned with the NV axis (ẑ).
The Hamiltonian that describes this system is

H ¼
Xn

j¼1

ωjω̂j · I⃗j þ
fðtÞ
2

σz
Xn

j¼1

A⃗j · I⃗j; ð1Þ

where ωjω̂j ¼ γnBzẑþ 1
2 A⃗j, A⃗j ¼ ðAz

j; A
⊥
j Þ is the hyperfine

vector joining the NVwith the jth nucleus with spin operator
I⃗j, andfðtÞ ¼ %1 is themodulation function that appears as a
consequence of the introduced microwave driving (for more
details see Supplemental Material (SM) [23]). In particular,
we consider trains of π pulses over the NV (which is
initialized to the jþi state, such that σxjþi ¼ jþi) according
to theCarr-Purcell-Meiboom-Gill (CPMG) sequence [24,25],
after which the NV is measured. Repeating this process Nm
times, one estimates the survival probability (Px) of the initial
state jþi. In the ideal scenario of infinite number of
measurements (note our numerical simulations consider a
finite number of measurements and decoherence effects) Px
reads

Px ¼
1

2

!
1þ

Yn

j¼1

Mj

"
; ð2Þ

where

Mj ¼ 1 −m2
j;x

ð1 − cos αjÞð1 − cos βÞ
1þ cos αj cos β −mj;z sinαj sin β

sin
Nϕj

2

2

;

ð3Þ

cosϕj ¼ cosαj cos β −mj;z sin αj sin β; ð4Þ

with mj;z ¼ ½ðAz
j þ ωLÞ=fωj', mj;x ¼ ðA⊥

j =fωjÞ, eωj ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðAz

j þ ωLÞ2 þ A⊥2
j

q
, αj ¼ fωjτ, β ¼ ωLτ, and τ is half

the interpulse spacing of a CPMG sequence (see full
derivation in Supplemental Material from Ref. [21]). In a
scenario such that ωL ≫ Az

j; A
⊥
j (namely, at high magnetic

field, Bz ¼ 0.056 T in our case) Px exhibits clear resonance
peaks at τ ¼ ðkπ=2ωjÞ. In this context, techniques based on
classical algorithms [21,22], as well as deep learning
models [4], are used to find Az

j and A⊥
j . However, in the

low-field regime, where the conditionωL ≫ Az
j; A

⊥
j does not

hold (Bz ¼ 0.0056 T in our particular case), resonance peaks
cannot be observed [23]. More specifically, in this regime Px
shows an intricate behavior that makes previously mentioned
techniques for system characterization challenging.
Now we introduce our SALI model designed to

effectively process complex signals across diverse mag-
netic field scenarios, leading to ðAz

j; A
⊥
j Þ as output. Our

model showcases robust performance in handling noisy
signals commonly encountered in experimental scenarios
and operates seamlessly without requiring any prior
information about the number of nuclei involved in
the node.
The SALI model.—A scheme of SALI is given in Fig. 1

(see caption for details on the architecture of the model).
The 1D → 2D CNN module takes two input signals (Px)
coming from CPMG sequences with different number of
pulses (N ¼ 32 and N ¼ 256 in our specific example).
This approach ensures that each sequence exhibits different
evolution times, enabling the network to infer both weak
and strongly coupled nuclei. In this instance, these two
specific sequences yielded highly favorable results. The
architecture of the neural network is as follows. (i) Two
separate 1D CNN blocks analyze the inputs. After process-
ing the signals, the outputs of these blocks are flattened and
concatenated into a single array. (ii) A fully connected
block is introduced between the 1D CNN block and the
next 2D CNN block, serving as an intermediary between
these two blocks, and additionally, allowing for the
adaptation of the final output image size. The outcome
of the fully connected block is reshaped into a two-
dimensional array, treated as an image to exploit the spatial
relations among adjacent pixels. (iii) In the 2D CNN block,
the reshaped image is processed. Finally, this block con-
nects to the output layer of the neural network (NN output
in Fig. 1), which is a convolutional layer with sigmoid
activation function that encodes the target parameters
ðAz

j; A
⊥
j Þ in a two-dimensional image.

For the training, validation, and testing of the neural
network, we generated two distinct datasets, one for the high
magnetic field scenario and the other for the low magnetic
field scenario, each comprising 3.6 × 106 samples. Each
sample within these datasets contains a random number of
nuclei ranging from1 to 20. Each nucleus is characterized by
random values of Az and A⊥, falling within the ranges
Az ∈ ½−100; 100' kHz and A⊥ ∈ ½2; 102' kHz, resulting in a
set of coupling constants ðAz

j; A
⊥
j Þ. Note that Eqs. (2), (4)

dictate that Px is symmetric with respect to the change
A⊥ → −A⊥. Consequently, we only consider positive values
for A⊥. The input data strings (Px) are generated with
N ¼ 32 π pulses, with τ varying in the range τ32 ∈ ½6; 50' μs,
and N ¼ 256 π pulses, with τ in the range τ256 ∈ ½10; 40' μs.
EachPx contains Np ¼ 1000 points, resulting in resolutions
of Δt32 ¼ 44 ns and Δt256 ¼ 30 ns. Thus, the employed
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(i) high accuracy in predicting hyperfine 

vectors over a wide range 

(ii) handles noisy signals

(iii) does not require prior knowledge, 

(iv) performs well in low-field conditions
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Bayesian Inference Assisted by Neural Networks

arXiv: 2212.12058.

Neural networks faithfully reproduce the dynamics of quantum many-body sensors, thus allowing for an 
efficient Bayesian analysis.
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Simulation of quantum many-body dynamics by neural networks

XXZ spin-1/2 chain
1D external magnetic field

Estimation on 2D, 3D external magnetic fields also work! 
arXiv: 2212.12058.
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Simulation of quantum many-body dynamics by neural networks

XXZ spin-1/2 chain Bayes’ theorem

Heisenberg limitStandard quantum limit

arXiv: 2212.12058.
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Summary on NN-assisted quantum sensing/metrology

ü Using NNs to decipher the information contained in the sensor responses.

ü Continuous data acquisition and precision.

ü Extending the working regime of quantum sensors with Robustness against noise.

ü Reproduction of microscopic modelling of the quantum many-body system by 
neural networks.
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Ø Neural Network assisted quantum sensing/metrology

Ø Quantum machine learning algorithms

ü Extending the sensing working regime beyond their standard harmonic behavior. 

ü Reducing computational cost for a quantum many-body magnetometer assisted by NNs. 

ü Characterizing target fields in the presence of large shot noise 

ü New algorithms for embedding quantum kernels.

ü Real-data application: Satellite image classification.

ü Quantum Active Learning implemented in EQNNs.



Quantum kernel and its application to real data

21

arXiv:2401.04642 

arXiv:2409.20356Satellite image classification with neural quantum kernels

Training embedding quantum kernels with data 
re-uploading quantum neural networks

3
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<latexit sha1_base64="XIyYImhnrrebw5o23/U8S18zPAc=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj5MERBC8JGgekCxhdjKbDJmdXWZ6hRDyCV48KOLVL/Lm3zhJ9qCJBQ1FVTfdXUEihUHX/XZWVtfWNzZzW/ntnd29/cLBYcPEqWa8zmIZ61ZADZdC8ToKlLyVaE6jQPJmMLyZ+s0nro2I1SOOEu5HtK9EKBhFKz3c1u67haJbcmcgy8TLSBEyVLuFr04vZmnEFTJJjWl7boL+mGoUTPJJvpManlA2pH3etlTRiBt/PDt1Qk6t0iNhrG0pJDP198SYRsaMosB2RhQHZtGbiv957RTDK38sVJIiV2y+KEwlwZhM/yY9oTlDObKEMi3srYQNqKYMbTp5G4K3+PIyaZRL3kXpvFYuVq6zOHJwDCdwBh5cQgXuoAp1YNCHZ3iFN0c6L8678zFvXXGymSP4A+fzB9F9jX0=</latexit>

EQK
<latexit sha1_base64="NOkHtHseJ6FoHbyrfvOVFjTPcSE=">AAAB6nicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj5MEvHgKCZoHJEuYnfQmQ2Znl5lZIYR8ghcPinj1i7z5N06SPWhiQUNR1U13V5AIro3rfjtr6xubW9u5nfzu3v7BYeHouKnjVDFssFjEqh1QjYJLbBhuBLYThTQKBLaC0d3Mbz2h0jyWj2acoB/RgeQhZ9RY6aFerfYKRbfkzkFWiZeRImSo9Qpf3X7M0gilYYJq3fHcxPgTqgxnAqf5bqoxoWxEB9ixVNIItT+Znzol51bpkzBWtqQhc/X3xIRGWo+jwHZG1Az1sjcT//M6qQlv/AmXSWpQssWiMBXExGT2N+lzhcyIsSWUKW5vJWxIFWXGppO3IXjLL6+SZrnkXZUu6+Vi5TaLIwencAYX4ME1VOAeatAABgN4hld4c4Tz4rw7H4vWNSebOYE/cD5/AOPCjYk=</latexit>

QNN

<latexit sha1_base64="o62AiMwg2THCExf486HP8LpFV9I=">AAACCXicbVC7SgNBFJ31GeNr1dJmMAhWYVd8NULQxjKCeUA2hLuT2c2QmdllZlaIS1obf8XGQhFb/8DOv3HyKDTxwIXDOfdy7z1hypk2nvftLCwuLa+sFtaK6xubW9vuzm5dJ5kitEYSnqhmCJpyJmnNMMNpM1UURMhpI+xfj/zGPVWaJfLODFLaFhBLFjECxkodFwccZMwpDnpg8kCzWMCw84ADNZYvvY5b8sreGHie+FNSQlNUO+5X0E1IJqg0hIPWLd9LTTsHZRjhdFgMMk1TIH2IactSCYLqdj7+ZIgPrdLFUaJsSYPH6u+JHITWAxHaTgGmp2e9kfif18pMdNHOmUwzQyWZLIoyjk2CR7HgLlOUGD6wBIhi9lZMeqCAGBte0Ybgz748T+rHZf+sfHp7UqpcTeMooH10gI6Qj85RBd2gKqohgh7RM3pFb86T8+K8Ox+T1gVnOrOH/sD5/AFXPZod</latexit>

��̂z� = 0

FIG. 2. An schematic illustration of how a single-qubit EQK, con-
structed from a single-qubit QNN, can enhance classification out-
comes. The QNN aims to group points of the same class while fix-
ing the decision plane (left Bloch sphere). The SVM, employing
the single-qubit EQK, fine-tunes the decision boundary parameters
to find the optimal hyperplane (right Bloch sphere). As a result, data
points that were previously misclassified can now be correctly as-
signed to their respective labels. We also provide an example demon-
strating a scenario in which the QNN accuracy plateaus out for a spe-
cific dataset. By using the corresponding EQK, we obtain however
an increase in accuracy, denoted as �Acc.

SU(2) unitary, and the vector ✓ = {✓1, ...,✓L} encompasses
the trainable parameters. To leverage this model to construct
a binary classifier, one must select two label states that are
maximally separated in Hilbert space. The training objective
involves instructing the model to collectively rotate points be-
longing to the same class, bringing them closer to their corre-
sponding label state.

Starting with the data re-uploading single-qubit QNN ar-
chitecture, we can naturally extend it to create multi-qubit
QNNs. The introduction of more qubits enhances the model’s
expressivity by increasing the number of trainable parameters
per layer and o↵ering the potential for entanglement between
qubits which enhances the expressivity of the model [51].

In this work, we propose an iterative training approach for
multi-qubit QNNs. In our construction, the n-qubit QNN is
defined as

QNN✓,'(x) =
LY

l=1

0
BBBBBB@

n�1Y

s=1

CUs
s+1('(s)

l )
0
BBBBB@

nO

r=1

U(✓(r)
l )
1
CCCCCA U(x)⌦n

1
CCCCCCA ,

(4)
where CUs

s+1 denotes the controlled version of the general
SU(2) unitary with control in the (s + 1)-th qubit and target in
the s-th qubit, and ✓ and ' refer to the trainable parameters of
single-qubit and two-qubit gates, respectively. The total num-
ber of trainable parameters in this architecture is 3(2n � 1)L.

For the training of the n-qubit QNN, we propose an iterative
construction starting from a single-qubit QNN. The initializa-

tion process is depicted in Figure 1. Initially, we train a single-
qubit QNN and utilize its parameters to initialize the two-qubit
QNN. During the initialization of the two-qubit QNN, we set
'(1)

l = 0 for all l 2 [1, L], initializing the parameters of the
first qubit with those obtained from the training of the single-
qubit step. Consequently, the entangling layers do not have
any action, ensuring that, with a local measurement on the
first qubit, we commence in the output state of the single-qubit
QNN training.

This process can be employed to scale up the QNN ar-
chitecture, allowing the construction of QNNs with up to
n = L + 1 qubits. When adding an extra qubit, the supple-
mentary entangling gates are initialized as identities, and the
training begins with the optimal parameters obtained from the
previous step. Essentially, this formalized approach signifies
a systematic and scalable improvement in the QNN’s perfor-
mance with the incorporation of each additional qubit.

Constructing EQKs from QNN training.— We propose a
method for constructing trained embedding quantum ker-
nels (EQK) using data re-uploading quantum neural networks
(QNN). The idea is to train the QNN for a classification task
and leverage its architecture to generate EQKs tailored to the
specific task, thereby enhancing performance on the given
dataset. The motivation for combining these two binary clas-
sification approaches, QNN and kernel methods, arises from
two perspectives.

Firstly, we investigate whether the QNN can e↵ectively se-
lect a suitable embedding kernel for a specific task. This ap-
proach may lead to more e�cient kernel training compared
to previous methods, as we only need to construct the kernel
matrix once. Secondly, the QNN’s performance is contingent
on its training. Utilizing the corresponding EQK construction
might produce superior results compared to relying solely on
the QNN, even in cases where the training process has not
been optimal. Numerical results illustrating this can be found
in the Supplemental Material [52].

The underlying concept of this method is formalized in the
Appendix and clarified in Figure 2, specifically for a single-
qubit scenario. Initially, the QNN rotates data points of the
same class near their label state while maintaining the deci-
sion hyperplane fixed. This hyperplane is taken as the equator
of the Bloch sphere, i.e., h�̂zi = 0. After training the QNN, the
resulting feature map is obtained by preserving the parameters
acquired during training. This feature map is then utilized to
construct an EQK. The subsequent application of the SVM
algorithm, using this kernel, aims to identify the optimal sep-
aration hyperplane in the feature space. In this context, the
optimization is equivalent to adjusting the optimal measure-
mentM(�) while keeping the data points fixed.

Building upon this insight, we propose constructing EQKs
using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,

Without PV panel With PV panel

4

……

|0�
QNN�*,�*(xj)

|0�
QNN�*,�*(xi)†

…

|0�
QNN�,�(x)

|0�

�(xj)

�(xi)†
U(xj)

E
…

…

E
U(xj)

U(xj)

U(xj)

U(�*1 )

U(�*1 )

U(�*L )

U(�*L )

kij = P0

…

|0�

|0�

… … … … …

kij = P0

…|0�
<latexit sha1_base64="6Bj40kqohjilFKmSD8OyDJVftgQ=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4CfhQWARsLiwjmA5Ij7G3mkiV7e8funnCE/AgbC0Vs/T12/hs3yRWa+GDg8d4MM/OCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOQDUKLrFpuBHYSRTSKBDYDsa3M7/9hErzWD6aLEE/okPJQ86osVL7nmaoiNcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NPqDKcCZyWeqnGhLIxHWLXUkkj1P5kfu6UnFllQMJY2ZKGzNXfExMaaZ1Fge2MqBnpZW8m/ud1UxNe+xMuk9SgZItFYSqIicnsdzLgCpkRmSWUKW5vJWxEFWXGJlSyIXjLL6+SVq3qXVYvHmqV+k0eRxFO4BTOwYMrqMMdNKAJDMbwDK/w5iTOi/PufCxaC04+cwx/4Hz+AJTZjxA=</latexit>

Layer 1

U(x) U(�L)
<latexit sha1_base64="4LI+OwQqtmtK1qCIRoKuKMk32sA=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhCswl3Aj8IiYGORIoL5gOQIe5u5ZMne3rG7JxwhP8LGQhFbf4+d/8ZNcoUmPhh4vDfDzLwgEVwb1/121tY3Nre2CzvF3b39g8PS0XFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+O7md9+QqV5LB9NlqAf0aHkIWfUWKldpxkqUu+Xym7FnYOsEi8nZcjR6Je+eoOYpRFKwwTVuuu5ifEnVBnOBE6LvVRjQtmYDrFrqaQRan8yP3dKzq0yIGGsbElD5urviQmNtM6iwHZG1Iz0sjcT//O6qQlv/AmXSWpQssWiMBXExGT2OxlwhcyIzBLKFLe3EjaiijJjEyraELzll1dJq1rxriqXD9Vy7TaPowCncAYX4ME11OAeGtAEBmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AL3Fjys=</latexit>

Layer L

QNN�(x)

U(�1)U(x)�*, �*

<latexit sha1_base64="kKNIJVhhGCUA4JVKdzyKsbCDips=">AAAB/HicbVDLSgNBEOz1GeMrmqOXwSDoJewGfBwDKgheEjAPSJYwO5lNhszOLDOzwhLir3jxoIhXP8Sbf+Mk2YMmFjQUVd10dwUxZ9q47rezsrq2vrGZ28pv7+zu7RcODptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bweh66rceqdJMigeTxtSP8ECwkBFsrNQrFCtn6LZ+j4gU2qiEzNWSW3ZnQMvEy0gJMtR6ha9uX5IkosIQjrXueG5s/DFWhhFOJ/luommMyQgPaMdSgSOq/fHs+Ak6sUofhVLZEgbN1N8TYxxpnUaB7YywGepFbyr+53USE175YybixFBB5ovChCMj0TQJ1GeKEsNTSzBRzN6KyBArTIzNK29D8BZfXibNStm7KJ/XK6XqTRZHDo7gGE7Bg0uowh3UoAEEUniGV3hznpwX5935mLeuONlMEf7A+fwBjTmUGg==</latexit>

2) EQK construction

<latexit sha1_base64="kM57VVRhRkLQmbCDvo4mSlXqmjc=">AAACB3icbVDLSgNBEJyNrxhfqx4FGQyCHgy7AR/HgB48hQTygmQJs5PZZMjs7DrTK4SQmxd/xYsHRbz6C978GyfJHjRa0FBUddPd5ceCa3CcLyuztLyyupZdz21sbm3v2Lt7DR0lirI6jUSkWj7RTHDJ6sBBsFasGAl9wZr+8HrqN++Z0jySNRjFzAtJX/KAUwJG6tqH7imuKcIll30cBThMBPCzu8TngKvlctfOOwVnBvyXuCnJoxSVrv3Z6UU0CZkEKojWbdeJwRsTBZwKNsl1Es1iQoekz9qGShIy7Y1nf0zwsVF6OIiUKQl4pv6cGJNQ61Hom86QwEAvelPxP6+dQHDljbmME2CSzhcFicAQ4WkouMcVoyBGhhCquLkV0wFRhIKJLmdCcBdf/ksaxYJ7UTivFvOlmzSOLDpAR+gEuegSldAtqqA6ougBPaEX9Go9Ws/Wm/U+b81Y6cw++gXr4xsZxZg2</latexit>

1) Training of multi-qubit QNN

<latexit sha1_base64="kKNIJVhhGCUA4JVKdzyKsbCDips=">AAAB/HicbVDLSgNBEOz1GeMrmqOXwSDoJewGfBwDKgheEjAPSJYwO5lNhszOLDOzwhLir3jxoIhXP8Sbf+Mk2YMmFjQUVd10dwUxZ9q47rezsrq2vrGZ28pv7+zu7RcODptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bweh66rceqdJMigeTxtSP8ECwkBFsrNQrFCtn6LZ+j4gU2qiEzNWSW3ZnQMvEy0gJMtR6ha9uX5IkosIQjrXueG5s/DFWhhFOJ/luommMyQgPaMdSgSOq/fHs+Ak6sUofhVLZEgbN1N8TYxxpnUaB7YywGepFbyr+53USE175YybixFBB5ovChCMj0TQJ1GeKEsNTSzBRzN6KyBArTIzNK29D8BZfXibNStm7KJ/XK6XqTRZHDo7gGE7Bg0uowh3UoAEEUniGV3hznpwX5935mLeuONlMEf7A+fwBjTmUGg==</latexit>

2) EQK construction

<latexit sha1_base64="1g5+b5ml9udR1RKV95HPx6IBspQ=">AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgZBC8NuwEcZ0MIqJJAXJEuYncwmQ2Zn15m7QggpbfwVGwtFbP0EO//GSbKFRg9c7uGce5m5x48F1+A4X1ZmaXlldS27ntvY3NresXf3GjpKFGV1GolItXyimeCS1YGDYK1YMRL6gjX94fXUb94zpXkkazCKmReSvuQBpwSM1LUP3VNcU4RLLvs4CrA2XbCzu8TngKvlctfOOwVnBvyXuCnJoxSVrv3Z6UU0CZkEKojWbdeJwRsTBZwKNsl1Es1iQoekz9qGShIy7Y1nh0zwsVF6OIiUKQl4pv7cGJNQ61Hom8mQwEAvelPxP6+dQHDljbmME2CSzh8KEoEhwtNUcI8rRkGMDCFUcfNXTAdEEQomu5wJwV08+S9pFAvuReG8WsyXbtI4sugAHaET5KJLVEK3qILqiKIH9IRe0Kv1aD1bb9b7fDRjpTv76Besj2/NF5iX</latexit>

1) Training of single-qubit QNN

<latexit sha1_base64="G3nqxmxg+8H6Z13cXbmZd8TsJkk=">AAAB8XicbVDLSsNAFL2pr1pfUZduBovgqiQFH8uCCoqbFuwD21Am00k7dDIJMxOhhP6FGxeKuPVv3Pk3TtMstPXAwOGce5l7jh9zprTjfFuFldW19Y3iZmlre2d3z94/aKkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH1/N/PYTlYpF4kFPYuqFeChYwAjWRnq8ZpISjW4a93277FScDGiZuDkpQ4563/7qDSKShFRowrFSXdeJtZdiqRnhdFrqJYrGmIzxkHYNFTikykuzi6foxCgDFETSPKFRpv7eSHGo1CT0zWSI9UgtejPxP6+b6ODSS5mIE00FmX8UJBzpCM3io0EWmE8MwUQycysiIywx0aakkinBXYy8TFrVinteOWtUy7W7vI4iHMExnIILF1CDW6hDEwgIeIZXeLOU9WK9Wx/z0YKV7xzCH1ifP6lMkEk=</latexit>

Direct EQK

�*

<latexit sha1_base64="JUhEnlNyj/j4YYhIiV2AN8owsyk=">AAAB8XicbVDLTgIxFO3gC/GFunTTCCZuIDMkPpYkbly4wEQeESakUzrQ0Gkn7R0TMuEv3LjQGLf+jTv/xgKzUPAkTU/OuTf33hPEghtw3W8nt7a+sbmV3y7s7O7tHxQPj1pGJZqyJlVC6U5ADBNcsiZwEKwTa0aiQLB2ML6Z+e0npg1X8gEmMfMjMpQ85JSAlR7LslwBVbFfv1hyq+4ceJV4GSmhDI1+8as3UDSJmAQqiDFdz43BT4kGTgWbFnqJYTGhYzJkXUsliZjx0/nGU3xmlQEOlbZPAp6rvztSEhkziQJbGREYmWVvJv7ndRMIr/2UyzgBJuliUJgIDArPzscDrhkFMbGEUM3trpiOiCYUbEgFG4K3fPIqadWq3mX14r5Wqt9lceTRCTpF58hDV6iOblEDNRFFEj2jV/TmGOfFeXc+FqU5J+s5Rn/gfP4AlrGPmQ==</latexit>

n-to-n
<latexit sha1_base64="D9hj2TgMa/jPvFIVeoPiiHO1Y7U=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBrOCl4TdgI9jwIsHDxHMA5MlzE4myZDZmWVmVghL/sKLB0W8+jfe/BsnyR40saChqOqmuyuMOdPG876d3Nr6xuZWfruws7u3f1A8PGpqmShCG0Ryqdoh1pQzQRuGGU7bsaI4CjltheObmd96okozKR7MJKZBhIeCDRjBxkqPru+WjSy7wu0VS17FmwOtEj8jJchQ7xW/un1JkogKQzjWuuN7sQlSrAwjnE4L3UTTGJMxHtKOpQJHVAfp/OIpOrNKHw2ksiUMmqu/J1IcaT2JQtsZYTPSy95M/M/rJGZwHaRMxImhgiwWDRKOjESz91GfKUoMn1iCiWL2VkRGWGFibEgFG4K//PIqaVYr/mXl4r5aqt1lceThBE7hHHy4ghrcQh0aQEDAM7zCm6OdF+fd+Vi05pxs5hj+wPn8AThVj1w=</latexit>

1-to-n

<latexit sha1_base64="/pL8HLyYKl2DWx8nMdFrKUZ1Pd0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiQFH8uiIC4r2Ae0oUwmk3bozCTMTIQS+gtuXCji1h9y5984abPQ1gMXDufcy733BAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsegHWlDNJ24YZTnuJolgEnHaDyW3ud5+o0iyWj2aaUF/gkWQRI9jk0h2T4bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qoms/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJp1L3L+sVDo9a8KeIowwmcwjl4cAVNuIcWtIHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w/rX44r</latexit>

Find
<latexit sha1_base64="/pL8HLyYKl2DWx8nMdFrKUZ1Pd0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiQFH8uiIC4r2Ae0oUwmk3bozCTMTIQS+gtuXCji1h9y5984abPQ1gMXDufcy733BAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsegHWlDNJ24YZTnuJolgEnHaDyW3ud5+o0iyWj2aaUF/gkWQRI9jk0h2T4bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qoms/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJp1L3L+sVDo9a8KeIowwmcwjl4cAVNuIcWtIHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w/rX44r</latexit>

Find

FIG. 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n.

acquired during training. This feature map is then utilized to
construct an EQK. The subsequent application of the SVM
algorithm, using this kernel, aims to identify the optimal sep-
aration hyperplane in the feature space. In this context, the
optimization is equivalent to adjusting the optimal measure-
mentM(�) while keeping the data points fixed.

Building upon this insight, we propose constructing EQKs
using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,
these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This method allows us to scale the QNN as much as possible
during training, and when it reaches a performance plateau,
we can utilize the trained feature map to construct an EQK.

In the 1-to-n construction, we train a single-qubit QNN✓

from Eq. 3, fixing the ✓⇤ and we leverage this training to con-
struct the kernel

ki j = |h0|
L�1Y

l=1

⇣
U(xi)†⌦n U(✓⇤l )†⌦n E

⌘
U(xi)†⌦n

U(x j)⌦n

0
BBBBBB@

L�1Y

l=1

E U(✓⇤l ) U(x j)

1
CCCCCCA |0i|

2,

(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we

will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and the 1-to-n
architectures and generalize it to n-to-m·n, where m represents
some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

V. NUMERICAL RESULTS

Let us now explore the practical implementation of our
approaches and evaluate their performance across various
datasets detailed in Appendix F. Both the training and test sets
consist of 500 data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as

E =
n�1Y

s=1

CNOTs+1
s , (7)
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Figure 2: Single-qubit classifier with data re-uploading. The

quantum circuit is divided into layer gates L(i), which con-

stitutes the classifier building blocks. In the upper circuit,

each of these layers is composed of a U(x̨) gate, which up-

loads the data, and a parametrized unitary gate U(„̨). We

apply this building block N times and finally compute a cost

function that is related to the fidelity of the final state of

the circuit with the corresponding target state of its class.

This cost function may be minimized by tunning the „̨i pa-

rameters. Eventually, data and tunable parameters can be

introduced with a single unitary gate, as illustrated in the

bottom circuit.

networks, where the size of the intermediate hidden
layer of neurons is critical to represent complex func-
tions.
There is a way to compactify the quantum circuit

into a shorter one. This can be done if we incorporate
data and processing angles in a single step. Then, a
layer would only need a single rotation to introduce
data and tunable parameters, i.e. L(i) = U(„̨, x̨). In
addition, each data point can be uploaded with some
weight wi. These weights will play a similar role as
weights in artificial neural networks, as we will see in
the next section. Altogether, each layer gate can be
taken as

L(i) = U
1

◊̨i + w̨i ¶ x̨
2

, (5)

where w̨i ¶ x̨ =
!
w1

i x1, w2
i x2, w3

i x3"
is the Hadamard

product of two vectors. In case the data points have
dimension lesser than three, the rest of x̨ components
are set to zero. Such an approach reduces the depth of
the circuit by half. Further combinations of layers into
fewer rotations are also possible, but the nonlinearity
inherent to subsequent rotations would be lost, and
the circuit would not be performing well.
Notice that data points are introduced linearly into

the rotational gate. Non-linearities will come from
the structure of these gates. We chose this encoding
function as we believe it is one of the lesser biased
ways to encode data with unknown properties. Due
to the structure of single-qubit unitary gates, we will
see that this encoding is particularly suited for data
with rotational symmetry. Still, it can also classify
other kinds of data structures. We can also apply

other encoding techniques, e.g. the ones proposed in
Ref. [10], but for the scope of this work, we have
just tested the linear encoding strategy as a proof of
concept of the performance of this quantum classifier.
It is also possible to enlarge the dimensionality of

the input space in the following way. Let us extend
the definition of i-th layer to

L(i) = U
1

◊̨(k)
i + w̨(k)

i ¶ x̨(k)
2

· · · U
1

◊̨(1)
i + w̨(1)

i ¶ x̨(1)
2

,

(6)

where each data point is divided into k vectors of di-
mension three. In general, each unitary U could ab-
sorb as many variables as freedom in an SU(2) uni-
tary. Each set of variables act at a time, and all of
them have been shown to the circuit after k iterations.
Then, the layer structure follows. The complexity of
the circuit only increases linearly with the size of the
input space.

2.3 Measurement
The quantum circuit characterized by a series of pro-
cessing angles {◊i} and weights {wi} delivers a final
state |ÂÍ, which needs to be measured. The results
of each measurement are used to compute a ‰2 that
quantifies the error made in the classification. The
minimization of this quantity in terms of the classical
parameters of the circuit can be organized using any
preferred supervised machine learning technique.
The critical point in the quantum measurement is

to find an optimal way to associate outputs from the
observations to target classes. The fundamental guid-
ing principle to be used is given by the idea of max-
imal orthogonality of outputs [16]. This is easily es-
tablished for a dichotomic classification, where one of
two classes A and B have to be assigned to the final
measurement of the single qubit. In such a case it
is possible to measure the output probabilities P (0)

for |0Í and P (1) for |1Í. A given pattern could be
classified into the A class if P (0) > P (1) and into B
otherwise. We may refine this criterium by introduc-
ing a bias. That is, the pattern is classified as A if
P (0) > ⁄, and as B otherwise. The ⁄ is chosen to op-
timize the success of classification on a training set.
Results are then checked on an independent validation
set.
The assignment of classes to the output reading of

a single qubit becomes an involved issue when many
classes are present. For the sake of simplicity, let us
mention two examples for the case of classification to
four distinct classes. One possible strategy consists on
comparing the probability P (0) to four sectors with
three thresholds: 0 Æ ⁄1 Æ ⁄2 Æ ⁄3 Æ 1. Then, the
value of P (0) will fall into one of them, and classifi-
cation is issued. A second, more robust assignment is
obtained by computing the overlap of the final state
to one of the states of a label states-set. This states-
set is to be chosen with maximal orthogonality among
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for kðx,xðmÞÞ= hϕðxÞ,ϕðxðmÞÞiF = Tr ½ρðxÞρðxðmÞÞ$ the kernel function
associated with the feature encoding Uϕ(x). By linearity of the trace,
however, we can express any such implicit model as a linear model in
F , defined by the observable:

Oα,D =
XM

m= 1

αmρðx
ðmÞÞ: ð4Þ

Therefore, both explicit and implicit quantum models belong to the
general family of linear models in the quantum feature space F .

Linear realizations of data re-uploading models
Data re-uploading models32 on the other hand do not naturally fit this
formulation. These models generalize explicit models by increasing
the number of encoding layers Uℓ(x), 1 ≤ ℓ ≤ L (which can be all dis-
tinct), and interlaying themwith variational unitaries Vℓ(θ). This results
in expectation-value functions of the form:

f θðxÞ= Tr ½ρθðxÞOθ$, ð5Þ

for a variational encoding ρθðxÞ = Uðx,θÞ∣0i 0h ∣Uyðx,θÞ, where
Uðx,θÞ=ULðxÞ

QL%1
‘= 1 V ‘ðθÞU‘ðxÞ, and a variational observable

Oθ = VL(θ)†OVL(θ). Given that the unitaries Uℓ(x) and V ‘0 ðθÞ do not
commute in general, one cannot straightforwardly gather all trainable
gates in a final variational observable O0

θ 2 F as to obtain a linear
model ~f θðxÞ= hϕðxÞ,O

0
θiF with a fixed quantum feature encoding ϕ(x).

Our first contribution is to show that, by augmenting the dimension of
the Hilbert space F (i.e., considering circuits that act on a larger
number of qubits), one can construct such explicit linear realizations
~f θ of data re-uploading models. That is, given a family of data re-
uploading models f f θð&Þ=Tr½ρθð&ÞOθ$gθ, we can construct an equiva-
lent family of explicit models f ~f θð&Þ =Tr½ρ0ð&ÞO0

θ$gθ that represents all
functions in the original family, along with an efficient procedure to
map the former models to the latter.

Before getting to the main result of this section (Theorem 1), we
first present an illustrative construction to convey intuition on how
mappings from data re-uploading to explicit models can be realized.
This construction, depicted in Fig. 3, leads to approximate mappings,
meaning that these only guarantee ∣ ~f θðxÞ % f θðxÞ∣≤ δ,∀ x, θ for some
(adjustable) error of approximation δ. More precisely, we have:

Proposition 1 Given an arbitrary data re-uploading model
fθ(x) = Tr[ρθ(x)Oθ] as specified by Eq. (5), and an approximation error
δ > 0, there exists a mapping that produces an explicit model
~f θðxÞ= Tr ½ρ0ðxÞO0

θ$ as specified by Eq. (2), such that:

∣Tr ½ρ0ðxÞO0
θ$ % Tr ½ρθðxÞOθ$∣≤ δ,8x,θ: ð6Þ

D the number of encoding gates used by the data re-uploading model
and ∣O∣1 the spectral norm of its observable, the explicit model uses
OðD logðD∣O∣1δ%1ÞÞ additional qubits and gates.

The general idea behind this construction is to encode the input
data x in ancilla qubits, to finite precision, which can then be used
repeatedly to approximate data-encoding gates using data-
independent unitaries. More precisely, all data components xi 2 R
of an input vector x = (x1,…, xd) are encoded as bit-strings
∣exi

!
= ∣b0b1 . . .bp%1i 2 f0,1gp, to some precision ε = 2−p (e.g., using

Rx(bj) rotations on ∣0i states). Now, using p fixed rotations, e.g., of the
form Rz(2−j), controlled by the bits ∣bji and acting on n “working”
qubits, one can encode every xi in arbitrary (multi-qubit) rotations
e%ixiH , e.g., Rz(xi), arbitrarily many times. Given that all these fixed
rotations are data-independent, the feature encoding of any such cir-
cuit hence reduces to the encoding of the classical bit-strings exi, prior
to all variational operations. By preserving the variational unitaries
appearing in a data re-uploading circuit and replacing its encoding
gates with such controlled rotations, we can then approximate any
data re-uploading model of the form of Eq. (5). The approximation
error δ of this mapping originates from the finite precision ε of
encoding x, which results in an imperfect implementation of the
encoding gates in the original circuit. But as ε→0, we also have δ→0,
and the scaling of ε (or the number of ancillas dp) as a function of δ is
detailed in Supplementary Section 2.

We now move to our main construction, resulting in exact map-
pings between data re-uploading and explicit models, i.e., that achieve
δ = 0 with finite resources. We rely here on a similar idea to our pre-
vious construction, inwhichweencode the input data on ancilla qubits
and later use data-independent operations to implement the encoding
gates on the working qubits. The difference here is that we use gate-
teleportation techniques, a form of measurement-based quantum
computation37, to directly implement the encoding gates on ancillary

Fig. 2 | The model families in quantum machine learning. a While data re-
uploading models are by definition a generalization of linear quantummodels, our
exactmappings demonstrate that any polynomial-size data re-uploadingmodel can
be realized by a polynomial-size explicit linear model. b Kernelizing an explicit
model corresponds to turning its observable into a linear combination of feature
states ρ(x), for x in a dataset D. The representer theorem guarantees that, for any

dataset D, the implicit model f *α,D minimizing the training loss associated with D
outperforms any explicit minimizer f *θ from the same Reproducing Kernel Hilbert
Space (RKHS) with respect to this same training loss. However, depending on the
feature encoding ρ(⋅) and the data distribution, a restricted datasetDmay cause the
implicit minimizer f *α,D to severely overfit on the dataset and have dramatically
worse generalization performance than f *θ.

⟩|0⟩|0 ( ) ( )

Fig. 3 | An illustrative explicit model approximating a data re-uploading cir-
cuit. The circuit acts n working qubits and dp encoding qubits. Pauli-X rotations
encode bit-string descriptions exi 2 f0,1gp of the d input components xi 2 R, which
constitutes the feature encoding of the explicitmodel. Fixed and data-independent
controlled rotations, interlaid with arbitrary variational unitaries, and a final mea-
surement of the working qubits can result in a good approximation of any para-
metrized quantum circuit acting on n qubits.
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+ 1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,

�(2) = � = 0
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+ 1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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Quantum kernel methods:
ü Embedding data into quantum states provides direct access to Hilbert space.

ü Representer Theorem ensures that kernels consistently achieve a training not higher than explicit models.

Construction of the kernel matrix K involves O(M2) evaluations. 

2

one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,
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<latexit sha1_base64="kFV1bHu3Bt4rh2NbBJJq4ryKSxw=">AAACI3icbVDLSgMxFM34tr6qLt0Ei+DGMlNQi6uCG92IRdsKtZRMeluDmWRMbpRa+i9u/BU3LhRx48J/MX0sfB24cDjnPrgnTqWwGIYfwcTk1PTM7Nx8ZmFxaXklu7pWtdoZDhWupTYXMbMghYIKCpRwkRpgSSyhFl8fDvzaLRgrtDrHbgqNhHWUaAvO0EvN7MEZQkoLB/RYCRRMinugeKd3blwskJZPTqizQnWoX3ortLM0ZYYlgH5lM5sL8+EQ9C+JxiRHxjhtZt8uW5q7BBRyyaytR2GKjR4zKLiEfubSWUgZv2YdqHuq/B3b6A1/7NMtr7RoWxtfCulQ/T7RY4m13ST2nQnDK/vbG4j/eXWH7WKjJ1TqEBQfHWo7SVHTQWC0JQxwlF1PGDc+JE75lQ+BDzLI+BCi3y//JdVCPtrL75YLuVJxHMcc2SCbZJtEZJ+UyBE5JRXCyQN5Ii/kNXgMnoO34H3UOhGMZ9bJDwSfX7E1pFc=</latexit>

Step 2: Initialize two-qubit QNN using previous parameters

<latexit sha1_base64="FAAWdVx2Uk9Az9l6hQjM84QggPg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQFH8uiG5cVTFtoQ5lMbtqhk0mYmSil9lPcuFDErV/izr9x0mahrQcGDuecy71zgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwrZJMUvBowhPZDYgCzgR4mmkO3VQCiQMOnWB8k/udB5CKJeJeT1LwYzIULGKUaCMN7KqXhkQDTokkMWiTHNg1p+7MgVeJW5AaKtAa2F/9MKFZDEJTTpTquU6q/SmRmlEOs0o/U5ASOiZD6BkqzB7lT+enz/CpUUIcJdI8ofFc/T0xJbFSkzgwyZjokVr2cvE/r5fp6MqfMpFmGgRdLIoyjnWC8x5wyCRQzSeGECqZuRXTkSmB5h1UTAnu8pdXSbtRdy/q53eNWvO6qKOMjtEJOkMuukRNdItayEMUPaJn9IrerCfrxXq3PhbRklXMHKE/sD5/AFwwlBQ=</latexit>

Update parameters

<latexit sha1_base64="FAAWdVx2Uk9Az9l6hQjM84QggPg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQFH8uiG5cVTFtoQ5lMbtqhk0mYmSil9lPcuFDErV/izr9x0mahrQcGDuecy71zgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwrZJMUvBowhPZDYgCzgR4mmkO3VQCiQMOnWB8k/udB5CKJeJeT1LwYzIULGKUaCMN7KqXhkQDTokkMWiTHNg1p+7MgVeJW5AaKtAa2F/9MKFZDEJTTpTquU6q/SmRmlEOs0o/U5ASOiZD6BkqzB7lT+enz/CpUUIcJdI8ofFc/T0xJbFSkzgwyZjokVr2cvE/r5fp6MqfMpFmGgRdLIoyjnWC8x5wyCRQzSeGECqZuRXTkSmB5h1UTAnu8pdXSbtRdy/q53eNWvO6qKOMjtEJOkMuukRNdItayEMUPaJn9IrerCfrxXq3PhbRklXMHKE/sD5/AFwwlBQ=</latexit>

Update parameters�(1) = �*

�* = arg min fcost(�(1))

FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic

A SVM incurs a time complexity of O(M3).

Challenges: 
ü Exponentially vanishing of kernel values 

ü Selecting the appropriate kernel Construction of the kernel matrix at each training step

Kernel target alignment

Multiple kernel learning
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Constructing an EQK from the training of a quantum neural network (QNN) [1]

[1] P. Rodriguez-Grasa, Y. Ban, and M. Sanz. “Training embedding quantum kernels with data re-uploading quantum neural networks”. arXiv:2401.04642.
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|0�

|1� <latexit sha1_base64="Z1FiiqW1KVJddSTJ84WyCjzCyeM=">AAACCXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIfSwLbtwIFewDmlJuppN26EwSZiZCCd268VfcuFDErX/gzr9x0mahrReGOZxzL/fc48ecKe0431ZhZXVtfaO4Wdra3tnds/cPWipKJKFNEvFIdnxQlLOQNjXTnHZiSUH4nLb98XWmtx+oVCwK7/Ukpj0Bw5AFjIA2VN/GngA9IsDT22nF8yM+UBNhvtQbghAwPe3bZafqzAovAzcHZZRXo29/eYOIJIKGmnBQqus6se6lIDUjnE5LXqJoDGQMQ9o1MARBVS+dXTLFJ4YZ4CCS5oUaz9jfEykIlRk0nZlvtahl5H9aN9HBVS9lYZxoGpL5oiDhWEc4iwUPmKRE84kBQCQzXjEZgQSiTXglE4K7ePIyaJ1V3Yvq+V2tXK/lcRTRETpGFeSiS1RHN6iBmoigR/SMXtGb9WS9WO/Wx7y1YOUzh+hPWZ8/L3GanQ==</latexit>M(�)
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FIG. 2. An schematic illustration of how a single-qubit EQK, con-
structed from a single-qubit QNN, can enhance classification out-
comes. The QNN aims to group points of the same class while fix-
ing the decision plane (left Bloch sphere). The SVM, employing
the single-qubit EQK, fine-tunes the decision boundary parameters
to find the optimal hyperplane (right Bloch sphere). As a result, data
points that were previously misclassified can now be correctly as-
signed to their respective labels. We also provide an example demon-
strating a scenario in which the QNN accuracy plateaus out for a spe-
cific dataset. By using the corresponding EQK, we obtain however
an increase in accuracy, denoted as �Acc.

SU(2) unitary, and the vector ✓ = {✓1, ...,✓L} encompasses
the trainable parameters. To leverage this model to construct
a binary classifier, one must select two label states that are
maximally separated in Hilbert space. The training objective
involves instructing the model to collectively rotate points be-
longing to the same class, bringing them closer to their corre-
sponding label state.

Starting with the data re-uploading single-qubit QNN ar-
chitecture, we can naturally extend it to create multi-qubit
QNNs. The introduction of more qubits enhances the model’s
expressivity by increasing the number of trainable parameters
per layer and o↵ering the potential for entanglement between
qubits which enhances the expressivity of the model [51].

In this work, we propose an iterative training approach for
multi-qubit QNNs. In our construction, the n-qubit QNN is
defined as

QNN✓,'(x) =
LY

l=1

0
BBBBBB@

n�1Y

s=1

CUs
s+1('(s)

l )
0
BBBBB@

nO

r=1

U(✓(r)
l )
1
CCCCCA U(x)⌦n

1
CCCCCCA ,

(4)
where CUs

s+1 denotes the controlled version of the general
SU(2) unitary with control in the (s + 1)-th qubit and target in
the s-th qubit, and ✓ and ' refer to the trainable parameters of
single-qubit and two-qubit gates, respectively. The total num-
ber of trainable parameters in this architecture is 3(2n � 1)L.

For the training of the n-qubit QNN, we propose an iterative
construction starting from a single-qubit QNN. The initializa-

tion process is depicted in Figure 1. Initially, we train a single-
qubit QNN and utilize its parameters to initialize the two-qubit
QNN. During the initialization of the two-qubit QNN, we set
'(1)

l = 0 for all l 2 [1, L], initializing the parameters of the
first qubit with those obtained from the training of the single-
qubit step. Consequently, the entangling layers do not have
any action, ensuring that, with a local measurement on the
first qubit, we commence in the output state of the single-qubit
QNN training.

This process can be employed to scale up the QNN ar-
chitecture, allowing the construction of QNNs with up to
n = L + 1 qubits. When adding an extra qubit, the supple-
mentary entangling gates are initialized as identities, and the
training begins with the optimal parameters obtained from the
previous step. Essentially, this formalized approach signifies
a systematic and scalable improvement in the QNN’s perfor-
mance with the incorporation of each additional qubit.

Constructing EQKs from QNN training.— We propose a
method for constructing trained embedding quantum ker-
nels (EQK) using data re-uploading quantum neural networks
(QNN). The idea is to train the QNN for a classification task
and leverage its architecture to generate EQKs tailored to the
specific task, thereby enhancing performance on the given
dataset. The motivation for combining these two binary clas-
sification approaches, QNN and kernel methods, arises from
two perspectives.

Firstly, we investigate whether the QNN can e↵ectively se-
lect a suitable embedding kernel for a specific task. This ap-
proach may lead to more e�cient kernel training compared
to previous methods, as we only need to construct the kernel
matrix once. Secondly, the QNN’s performance is contingent
on its training. Utilizing the corresponding EQK construction
might produce superior results compared to relying solely on
the QNN, even in cases where the training process has not
been optimal. Numerical results illustrating this can be found
in the Supplemental Material [52].

The underlying concept of this method is formalized in the
Appendix and clarified in Figure 2, specifically for a single-
qubit scenario. Initially, the QNN rotates data points of the
same class near their label state while maintaining the deci-
sion hyperplane fixed. This hyperplane is taken as the equator
of the Bloch sphere, i.e., h�̂zi = 0. After training the QNN, the
resulting feature map is obtained by preserving the parameters
acquired during training. This feature map is then utilized to
construct an EQK. The subsequent application of the SVM
algorithm, using this kernel, aims to identify the optimal sep-
aration hyperplane in the feature space. In this context, the
optimization is equivalent to adjusting the optimal measure-
mentM(�) while keeping the data points fixed.

Building upon this insight, we propose constructing EQKs
using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,

A single-qubit EQK A single-qubit QNN 
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,

�(2) = � = 0

U(x) U(�(1)
1 )|0� U(x) U(�(1)

L )
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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Appendix B: Data re-uploading

To construct a data re-uploading QNN for binary classification, each label is associated with a unique quantum state, aiming
to maximize the separation in the Bloch sphere. For the single qubit quantum classifier, the labels +1 and -1 are represented by
the computational basis states |0i and |1i, respectively. The objective is to appropriately tune the parameters {✓l}

L
l=1 that define

the state

|�✓(xi)i = U(✓L) U(x) . . .U(✓1) U(x)|0i, (B1)

to rotate the data points of the same class close to their corresponding label state. To achieve this, we use the fidelity cost function

fcost =
1
M

MX

i=1

⇣
1 � |h�i

l|�✓(xi)i|2
⌘
, (B2)

where |�i
li represents the correct label state for the data point xi. This optimization process occurs on a classical processor.

Once the model is trained, the quantum circuit is applied to a test data point xt, and the probability of obtaining one of the label
states is measured. If this probability surpasses a certain threshold (set as 1/2 in this case), the data point is classified into the
corresponding label state class. Formally, the decision rule can be expressed as

ŷ[xt] =

8>><
>>:
+1 if |h0|�(xt)i|2 � 1/2,
�1 if |h0|�(xt)i|2 < 1/2.

(B3)

When consider a multi-qubit architecture, the idea is the same but we need to properly choose the corresponding label states.
In this work, for a n-qubit QNN we consider as label states the ones defined by the projectors |0ih0| ⌦ 1(n�1) and |1ih1| ⌦ 1(n�1),
which corresponds to a local measurement in the first qubit.

Appendix C: Connection with the representer theorem

In this section, we aim to leverage the representer theorem to demonstrate that the kernels derived from the data re-uploading
Quantum Neural Network (QNN) will be at least as e↵ective as the corresponding QNN. In our construction, the n-qubit QNN is
defined in Eq. 4 in the main text. There, we can extract the last layer to separate it into a variational part, which will be absorbed
into the measurement when we define the corresponding quantum model, and the encoding part which will define the quantum
feature map for the construction of the kernel. This corresponds to

QNN✓,'(x) =
n�1Y

s=1

CUs
s+1(�(s))
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BBBBB@

nO

r=1

U(!(r))
1
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U(✓(r)
l )
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CCCCCA U(x)⌦n

1
CCCCCCA

|                                                     {z                                                     }
=S ✓,'(x)

, (C1)

where we defined � ⌘ 'L and ! ⌘ ✓L. This formulation aligns with the definition of a quantum model from Ref. [24],

f (x) = tr(⇢(x)M). (C2)

In our case, ⇢(x) := ⇢✓,'(x) = S ✓,'(x)|0ih0|⌦nS ✓,'(x)†, and the variational measurement M := M�,! = V(�,!) (�̂z ⌦

1(n�1)) V(�,!)†.
Once this model is trained over a dataset, we determine the parameters that minimize the fcost defined in the previous section,

fixing �⇤, ✓⇤, �⇤, and !⇤. If we now use the corresponding feature map S ✓⇤,'⇤ to construct an embedding quantum kernel, we are
e↵ectively replacing the measurement from the optimizationM�⇤,!⇤ by the optimal measurement

Mopt =

MX

m=1

↵m ⇢✓⇤,'⇤ (xm) (C3)

which, by the representer theorem, defines the optimal quantum model

fopt(x) =
MX

m=1

↵mtr
⇣
⇢✓⇤,'⇤ (x) ⇢✓⇤,'⇤ (xm)

⌘
(C4)

that minimizes the regularized empirical risk function. Thus, we proved that constructing the embedding quantum kernel from
QNN training will perform equally or better in terms of training loss than the QNN alone.
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Appendix B: Data re-uploading

To construct a data re-uploading QNN for binary classification, each label is associated with a unique quantum state, aiming
to maximize the separation in the Bloch sphere. For the single qubit quantum classifier, the labels +1 and -1 are represented by
the computational basis states |0i and |1i, respectively. The objective is to appropriately tune the parameters {✓l}

L
l=1 that define

the state

|�✓(xi)i = U(✓L) U(x) . . .U(✓1) U(x)|0i, (B1)

to rotate the data points of the same class close to their corresponding label state. To achieve this, we use the fidelity cost function

fcost =
1
M

MX

i=1

⇣
1 � |h�i

l|�✓(xi)i|2
⌘
, (B2)

where |�i
li represents the correct label state for the data point xi. This optimization process occurs on a classical processor.

Once the model is trained, the quantum circuit is applied to a test data point xt, and the probability of obtaining one of the label
states is measured. If this probability surpasses a certain threshold (set as 1/2 in this case), the data point is classified into the
corresponding label state class. Formally, the decision rule can be expressed as

ŷ[xt] =

8>><
>>:
+1 if |h0|�(xt)i|2 � 1/2,
�1 if |h0|�(xt)i|2 < 1/2.

(B3)

When consider a multi-qubit architecture, the idea is the same but we need to properly choose the corresponding label states.
In this work, for a n-qubit QNN we consider as label states the ones defined by the projectors |0ih0| ⌦ 1(n�1) and |1ih1| ⌦ 1(n�1),
which corresponds to a local measurement in the first qubit.

Appendix C: Connection with the representer theorem

In this section, we aim to leverage the representer theorem to demonstrate that the kernels derived from the data re-uploading
Quantum Neural Network (QNN) will be at least as e↵ective as the corresponding QNN. In our construction, the n-qubit QNN is
defined in Eq. 4 in the main text. There, we can extract the last layer to separate it into a variational part, which will be absorbed
into the measurement when we define the corresponding quantum model, and the encoding part which will define the quantum
feature map for the construction of the kernel. This corresponds to

QNN✓,'(x) =
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=S ✓,'(x)

, (C1)

where we defined � ⌘ 'L and ! ⌘ ✓L. This formulation aligns with the definition of a quantum model from Ref. [24],

f (x) = tr(⇢(x)M). (C2)

In our case, ⇢(x) := ⇢✓,'(x) = S ✓,'(x)|0ih0|⌦nS ✓,'(x)†, and the variational measurement M := M�,! = V(�,!) (�̂z ⌦

1(n�1)) V(�,!)†.
Once this model is trained over a dataset, we determine the parameters that minimize the fcost defined in the previous section,

fixing �⇤, ✓⇤, �⇤, and !⇤. If we now use the corresponding feature map S ✓⇤,'⇤ to construct an embedding quantum kernel, we are
e↵ectively replacing the measurement from the optimizationM�⇤,!⇤ by the optimal measurement

Mopt =

MX

m=1

↵m ⇢✓⇤,'⇤ (xm) (C3)

which, by the representer theorem, defines the optimal quantum model

fopt(x) =
MX

m=1

↵mtr
⇣
⇢✓⇤,'⇤ (x) ⇢✓⇤,'⇤ (xm)

⌘
(C4)

that minimizes the regularized empirical risk function. Thus, we proved that constructing the embedding quantum kernel from
QNN training will perform equally or better in terms of training loss than the QNN alone.
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Appendix D: Hyperplane defined in the Bloch sphere

The objective of the data re-uploading quantum neural network (QNN) is to map all points with label +1 to the |0i state on
the Bloch sphere, while mapping points with label -1 to the |1i state. In an ideal scenario, all +1 points would be rotated to the
|0i state and all -1 points to the |1i state. Using this feature map to construct the embedding quantum kernel, all points would
be support vectors associated to the same Lagrange multiplier ↵. The SVM generates a separating hyperplane defined by the
equation

X

i2SV

↵i yi k(xi, x) + b = 0. (D1)

In this scenario, assuming a balanced dataset translates to an equal number of support vectors, denoted as NSV, for each class,
and results in b = 0 due to symmetry. Working with this equation by considering the sum of support vectors separately for the
+1 class (SV+1) and -1 class (SV�1), we obtain

X

i2SV+1

↵i yi |h�(xi)|�(x)i|2 +
X

i2SV+1

↵i yi |h�(xi)|�(x)i|2 = NSV↵ |h0|�(xi|2 � NSV↵ |h1|�(xi|2 = 0, (D2)

which is equivalent to the hyperplane defined by

|h0|�(xi|2 = |h1|�(xi|2, (D3)

mirroring the decision boundary of the QNN part. Therefore, in the case of a perfect training, the SVM becomes redundant.
Even if the points are not perfectly mapped to their label states and the separating hyperplane of the SVM is not exactly the one
from Eq. D3, as long as all points are correctly classified by the QNN, the SVM will yield the same results. Thus, the SVM part
is only meaningful for the single-qubit QNN to construct a single-qubit EQK case when the QNN training is suboptimal and
requires to adjust the measurement of the decision boundary.

Appendix E: Noisy simulations

We have introduced a combined protocol for binary classification. It is worth noting that the kernel estimation part involves the
utilization of a quantum circuit with twice the depth of the QNN part. In practical implementations on current noisy intermediate-
scale quantum devices, the consideration of a larger circuit warrants careful attention. This is due to the susceptibility of larger
circuits to elevated noise levels, potentially a↵ecting the overall performance.

As previously mentioned, increasing the number of layers in the model enhances its expressivity. However, when constructing
the kernel using a high number of layers, noise can have a detrimental impact on the performance, resulting in poorer results for
the combined protocol compared to using only the QNN. Therefore, in this section, our objective is to perform simulations to
visualize the trade-o↵ between the number of layers in the QNN and using the combined protocol.

To characterize the noise incorporated into these simulations, we employ the operator sum representation of the noise channel
" acting on a quantum state ⇢,

"(⇢) =
X

k

Ek⇢E†k , (E1)

where Ek represents the respective Kraus operators. In our simulations, we account for two single-qubit noise channels that are
applied after each quantum gate. Firstly, we consider amplitude damping error which is described by the Kraus operators

K0 =

 
1 0
0

p
1 � �

!
, (E2)

K1 =

 
0 p�
0 0

!
, (E3)

Here, � 2 [0, 1] is the amplitude damping probability, which can be defined as p = 1 � e��t/T1 , with T1 representing the thermal
relaxation time and �t denoting the duration of application of a quantum gate. The second noise source under consideration is
the phase flip error, which can be described by the following Kraus operators

K0 =
p

1 � ↵
 
1 0
0 1

!
, (E4)

K1 =
p
↵

 
1 0
0 �1

!
. (E5)
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FIG. 2. An schematic illustration of how a single-qubit EQK, con-
structed from a single-qubit QNN, can enhance classification out-
comes. The QNN aims to group points of the same class while fix-
ing the decision plane (left Bloch sphere). The SVM, employing
the single-qubit EQK, fine-tunes the decision boundary parameters
to find the optimal hyperplane (right Bloch sphere). As a result, data
points that were previously misclassified can now be correctly as-
signed to their respective labels. We also provide an example demon-
strating a scenario in which the QNN accuracy plateaus out for a spe-
cific dataset. By using the corresponding EQK, we obtain however
an increase in accuracy, denoted as �Acc.

SU(2) unitary, and the vector ✓ = {✓1, ...,✓L} encompasses
the trainable parameters. To leverage this model to construct
a binary classifier, one must select two label states that are
maximally separated in Hilbert space. The training objective
involves instructing the model to collectively rotate points be-
longing to the same class, bringing them closer to their corre-
sponding label state.

Starting with the data re-uploading single-qubit QNN ar-
chitecture, we can naturally extend it to create multi-qubit
QNNs. The introduction of more qubits enhances the model’s
expressivity by increasing the number of trainable parameters
per layer and o↵ering the potential for entanglement between
qubits which enhances the expressivity of the model [51].

In this work, we propose an iterative training approach for
multi-qubit QNNs. In our construction, the n-qubit QNN is
defined as

QNN✓,'(x) =
LY

l=1

0
BBBBBB@

n�1Y

s=1

CUs
s+1('(s)

l )
0
BBBBB@

nO

r=1

U(✓(r)
l )
1
CCCCCA U(x)⌦n

1
CCCCCCA ,

(4)
where CUs

s+1 denotes the controlled version of the general
SU(2) unitary with control in the (s + 1)-th qubit and target in
the s-th qubit, and ✓ and ' refer to the trainable parameters of
single-qubit and two-qubit gates, respectively. The total num-
ber of trainable parameters in this architecture is 3(2n � 1)L.

For the training of the n-qubit QNN, we propose an iterative
construction starting from a single-qubit QNN. The initializa-

tion process is depicted in Figure 1. Initially, we train a single-
qubit QNN and utilize its parameters to initialize the two-qubit
QNN. During the initialization of the two-qubit QNN, we set
'(1)

l = 0 for all l 2 [1, L], initializing the parameters of the
first qubit with those obtained from the training of the single-
qubit step. Consequently, the entangling layers do not have
any action, ensuring that, with a local measurement on the
first qubit, we commence in the output state of the single-qubit
QNN training.

This process can be employed to scale up the QNN ar-
chitecture, allowing the construction of QNNs with up to
n = L + 1 qubits. When adding an extra qubit, the supple-
mentary entangling gates are initialized as identities, and the
training begins with the optimal parameters obtained from the
previous step. Essentially, this formalized approach signifies
a systematic and scalable improvement in the QNN’s perfor-
mance with the incorporation of each additional qubit.

Constructing EQKs from QNN training.— We propose a
method for constructing trained embedding quantum ker-
nels (EQK) using data re-uploading quantum neural networks
(QNN). The idea is to train the QNN for a classification task
and leverage its architecture to generate EQKs tailored to the
specific task, thereby enhancing performance on the given
dataset. The motivation for combining these two binary clas-
sification approaches, QNN and kernel methods, arises from
two perspectives.

Firstly, we investigate whether the QNN can e↵ectively se-
lect a suitable embedding kernel for a specific task. This ap-
proach may lead to more e�cient kernel training compared
to previous methods, as we only need to construct the kernel
matrix once. Secondly, the QNN’s performance is contingent
on its training. Utilizing the corresponding EQK construction
might produce superior results compared to relying solely on
the QNN, even in cases where the training process has not
been optimal. Numerical results illustrating this can be found
in the Supplemental Material [52].

The underlying concept of this method is formalized in the
Appendix and clarified in Figure 2, specifically for a single-
qubit scenario. Initially, the QNN rotates data points of the
same class near their label state while maintaining the deci-
sion hyperplane fixed. This hyperplane is taken as the equator
of the Bloch sphere, i.e., h�̂zi = 0. After training the QNN, the
resulting feature map is obtained by preserving the parameters
acquired during training. This feature map is then utilized to
construct an EQK. The subsequent application of the SVM
algorithm, using this kernel, aims to identify the optimal sep-
aration hyperplane in the feature space. In this context, the
optimization is equivalent to adjusting the optimal measure-
mentM(�) while keeping the data points fixed.

Building upon this insight, we propose constructing EQKs
using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,
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circuits.
The article is organized into the following sections. We

begin by introducing quantum kernel methods and EQKs.
Following that, we present the data re-uploading architecture
and our approach to scaling it up to an n-qubit QNN. Subse-
quently, we detail the construction of EQKs derived from the
training of these QNNs. Finally, we present numerical results
that demonstrate the e↵ectiveness of our proposed approach.

II. QUANTUM KERNEL METHODS

Quantum machine learning models can be categorized into
explicit and implicit models, as discussed in Refs. [13, 14].
Explicit models are based on parametrized quantum circuits
[5, 31–33], which are tailored to process classical information
x encoded into a quantum state as ⇢(x) = S (x)|0ih0|⌦nS †(x),
where S refers to some quantum embedding. These models
have proven resilient to noise [34], making them attractive
for seeking quantum advantages in near-term quantum pro-
cessors. However, they face scalability challenges due to the
barren plateau problem during training [32, 35–38]. Implicit
or kernel models, on the other hand, are defined by the linear
combination

f↵,X =
MX

i=1

↵i k(x, xi), (1)

where k(x, xi) = tr(⇢(x)⇢(xi)) is the kernel function and {xi}
M
i=1

denotes training points from a training set X. An important in-
sight from classical machine learning theory is captured by the
representer theorem. This theorem asserts that, when provided
with a feature encoding and a training set, implicit models in
the form of Eq. 1 consistently attain training losses that are ei-
ther equal to or lower than those of explicit quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi, x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi, x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,

�(2) = � = 0

U(x) U(�(1)
1 )|0� U(x) U(�(1)

L )

fcost(�)

<latexit sha1_base64="SyPkBWIv+Fap/JSF6oIxdJ9BOMc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDhwjmAckSZie9yZDZ2WVmVlhCPsKLB0W8+j3e/BsnyR40saChqOqmuytIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw789tPqDSP5aPJEvQjOpQ85IwaK7XvaYaKeP1yxa26c5BV4uWkAjka/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/m507JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeG1P+EySQ1KtlgUpoKYmMx+JwOukBmRWUKZ4vZWwkZUUWZsQiUbgrf88ipp1areZfXioVap3+RxFOEETuEcPLiCOtxBA5rAYAzP8ApvTuK8OO/Ox6K14OQzx/AHzucPlXOPEg==</latexit>

Layer 1
<latexit sha1_base64="JafE1/Z16642EKl4yN7wshNM/e4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj5MEvHjIIYJ5QLKE2UlvMmR2dpmZFZaQj/DiQRGvfo83/8ZJsgdNLGgoqrrp7goSwbVx3W9nbX1jc2u7sFPc3ds/OCwdHbd0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b+e0nVJrH8tFkCfoRHUoeckaNldp1mqEi9X6p7FbcOcgq8XJShhyNfumrN4hZGqE0TFCtu56bGH9CleFM4LTYSzUmlI3pELuWShqh9ifzc6fk3CoDEsbKljRkrv6emNBI6ywKbGdEzUgvezPxP6+bmvDGn3CZpAYlWywKU0FMTGa/kwFXyIzILKFMcXsrYSOqKDM2oaINwVt+eZW0qhXvqnL5UC3XbvM4CnAKZ3ABHlxDDe6hAU1gMIZneIU3J3FenHfnY9G65uQzJ/AHzucPvl+PLQ==</latexit>

Layer L

…

U(x)

U(x)

U(�(1)
1 )

U(�(2)
1 )

|0�
|0�

U(�1) U(x)

U(x)

U(�(1)
L )

U(�(2)
L )

U(�L)

…

fcost(�(1), �(2), �)

<latexit sha1_base64="SyPkBWIv+Fap/JSF6oIxdJ9BOMc=">AAAB7nicbVDLSgNBEOyNrxhfUY9eBoPgKewGfJwk4MWDhwjmAckSZie9yZDZ2WVmVlhCPsKLB0W8+j3e/BsnyR40saChqOqmuytIBNfGdb+dwtr6xuZWcbu0s7u3f1A+PGrpOFUMmywWseoEVKPgEpuGG4GdRCGNAoHtYHw789tPqDSP5aPJEvQjOpQ85IwaK7XvaYaKeP1yxa26c5BV4uWkAjka/fJXbxCzNEJpmKBadz03Mf6EKsOZwGmpl2pMKBvTIXYtlTRC7U/m507JmVUGJIyVLWnIXP09MaGR1lkU2M6ImpFe9mbif143NeG1P+EySQ1KtlgUpoKYmMx+JwOukBmRWUKZ4vZWwkZUUWZsQiUbgrf88ipp1areZfXioVap3+RxFOEETuEcPLiCOtxBA5rAYAzP8ApvTuK8OO/Ox6K14OQzx/AHzucPlXOPEg==</latexit>

Layer 1
<latexit sha1_base64="JafE1/Z16642EKl4yN7wshNM/e4=">AAAB7nicbVDLSgNBEOz1GeMr6tHLYBA8hd2Aj5MEvHjIIYJ5QLKE2UlvMmR2dpmZFZaQj/DiQRGvfo83/8ZJsgdNLGgoqrrp7goSwbVx3W9nbX1jc2u7sFPc3ds/OCwdHbd0nCqGTRaLWHUCqlFwiU3DjcBOopBGgcB2ML6b+e0nVJrH8tFkCfoRHUoeckaNldp1mqEi9X6p7FbcOcgq8XJShhyNfumrN4hZGqE0TFCtu56bGH9CleFM4LTYSzUmlI3pELuWShqh9ifzc6fk3CoDEsbKljRkrv6emNBI6ywKbGdEzUgvezPxP6+bmvDGn3CZpAYlWywKU0FMTGa/kwFXyIzILKFMcXsrYSOqKDM2oaINwVt+eZW0qhXvqnL5UC3XbvM4CnAKZ3ABHlxDDe6hAU1gMIZneIU3J3FenHfnY9G65uQzJ/AHzucPvl+PLQ==</latexit>

Layer L

…

<latexit sha1_base64="tI0dtqXoAuKTiWJEkQDYP1HLTM4=">AAAB8XicbVDLSgMxFL1TX7W+qi7dBIvgqswU1C4LbnRXwT6wHUomvdOGZjJDkhFq6V+4caGIW//GnX9j2s5CWw8EDufcy805QSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj65nfekSleSzvzThBP6IDyUPOqLHSw63khlPBn7BXLLlldw6ySryMlCBDvVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/MdTcmaVPgljZZ80ZK7+3pjQSOtxFNjJiJqhXvZm4n9eJzVh1Z9wmaQGJVscClNBTExm8UmfK2RGjC2hTNnwjLAhVZQZW1LBluAtR14lzUrZuyxf3FVKtWpWRx5O4BTOwYMrqMEN1KEBDCQ8wyu8Odp5cd6dj8Vozsl2juEPnM8fua2Q7g==</latexit>

Initialize

At step , you start from the configuration of -1n n

Up to

 n � L + 1

<latexit sha1_base64="fr2stnXj1AT3H8teqjNPFjOX7rI=">AAACB3icbVA9SwNBEN2LXzF+nVoKshgEG8NdQA1WARurENEYITnC3mYSl+ztnbtzQjjS2fhXbCwUsfUv2Plv3MQUfj0YeLw3w8y8MJHCoOd9OLmZ2bn5hfxiYWl5ZXXNXd+4NHGqOTR4LGN9FTIDUihooEAJV4kGFoUSmuHgZOw3b0EbEasLHCYQRKyvRE9whlbquNvnCAn1j+mFZkJRI1Rfwv5NGgqkZ7Vaxy16JW8C+pf4U1IkU9Q77nu7G/M0AoVcMmNavpdgkDGNgksYFdqpgYTxAetDy1LFIjBBNvljRHet0qW9WNtSSCfq94mMRcYMo9B2RgyvzW9vLP7ntVLsVYJMqCRFUPxrUS+VFGM6DoV2hQaOcmgJ41rYWym/ZppxtNEVbAj+75f/kstyyT8sHZyVi9XKNI482SI7ZI/45IhUySmpkwbh5I48kCfy7Nw7j86L8/rVmnOmM5vkB5y3TwCPmBs=</latexit>

Step 1: Train single-qubit QNN

<latexit sha1_base64="kFV1bHu3Bt4rh2NbBJJq4ryKSxw=">AAACI3icbVDLSgMxFM34tr6qLt0Ei+DGMlNQi6uCG92IRdsKtZRMeluDmWRMbpRa+i9u/BU3LhRx48J/MX0sfB24cDjnPrgnTqWwGIYfwcTk1PTM7Nx8ZmFxaXklu7pWtdoZDhWupTYXMbMghYIKCpRwkRpgSSyhFl8fDvzaLRgrtDrHbgqNhHWUaAvO0EvN7MEZQkoLB/RYCRRMinugeKd3blwskJZPTqizQnWoX3ortLM0ZYYlgH5lM5sL8+EQ9C+JxiRHxjhtZt8uW5q7BBRyyaytR2GKjR4zKLiEfubSWUgZv2YdqHuq/B3b6A1/7NMtr7RoWxtfCulQ/T7RY4m13ST2nQnDK/vbG4j/eXWH7WKjJ1TqEBQfHWo7SVHTQWC0JQxwlF1PGDc+JE75lQ+BDzLI+BCi3y//JdVCPtrL75YLuVJxHMcc2SCbZJtEZJ+UyBE5JRXCyQN5Ii/kNXgMnoO34H3UOhGMZ9bJDwSfX7E1pFc=</latexit>

Step 2: Initialize two-qubit QNN using previous parameters

<latexit sha1_base64="FAAWdVx2Uk9Az9l6hQjM84QggPg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQFH8uiG5cVTFtoQ5lMbtqhk0mYmSil9lPcuFDErV/izr9x0mahrQcGDuecy71zgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwrZJMUvBowhPZDYgCzgR4mmkO3VQCiQMOnWB8k/udB5CKJeJeT1LwYzIULGKUaCMN7KqXhkQDTokkMWiTHNg1p+7MgVeJW5AaKtAa2F/9MKFZDEJTTpTquU6q/SmRmlEOs0o/U5ASOiZD6BkqzB7lT+enz/CpUUIcJdI8ofFc/T0xJbFSkzgwyZjokVr2cvE/r5fp6MqfMpFmGgRdLIoyjnWC8x5wyCRQzSeGECqZuRXTkSmB5h1UTAnu8pdXSbtRdy/q53eNWvO6qKOMjtEJOkMuukRNdItayEMUPaJn9IrerCfrxXq3PhbRklXMHKE/sD5/AFwwlBQ=</latexit>

Update parameters

<latexit sha1_base64="FAAWdVx2Uk9Az9l6hQjM84QggPg=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovgqiQFH8uiG5cVTFtoQ5lMbtqhk0mYmSil9lPcuFDErV/izr9x0mahrQcGDuecy71zgpQzpR3n2yqtrW9sbpW3Kzu7e/sHdvWwrZJMUvBowhPZDYgCzgR4mmkO3VQCiQMOnWB8k/udB5CKJeJeT1LwYzIULGKUaCMN7KqXhkQDTokkMWiTHNg1p+7MgVeJW5AaKtAa2F/9MKFZDEJTTpTquU6q/SmRmlEOs0o/U5ASOiZD6BkqzB7lT+enz/CpUUIcJdI8ofFc/T0xJbFSkzgwyZjokVr2cvE/r5fp6MqfMpFmGgRdLIoyjnWC8x5wyCRQzSeGECqZuRXTkSmB5h1UTAnu8pdXSbtRdy/q53eNWvO6qKOMjtEJOkMuukRNdItayEMUPaJn9IrerCfrxXq3PhbRklXMHKE/sD5/AFwwlBQ=</latexit>

Update parameters�(1) = �*

�* = arg min fcost(�(1))

Figure 1. Iterative training of a two-qubit data re-uploading QNN.
In Step 1, a single-qubit QNN is trained to obtain optimal model
parameters denoted as ✓⇤. Moving to Step 2, training for the two-
qubit QNN is initiated, initializing new extra parameters to 0, while
the parameters of the first qubit are set to ✓⇤. This iterative approach
can scale the QNN up to n  L + 1 qubits, ensuring that the n-qubit
QNN performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

III. SCALING DATA RE-UPLOADING FOR n�QUBIT QNN

As reported by Perez et al. in Ref. [15], the data
re-uploading model incorporates layers composed of data-
encoding and training unitaries. As studied in Refs. [16, 17,
48, 49], this approach e↵ectively introduces non-linearities to
the model allowing to capture complex patterns on data. In
fact, it has been demonstrated that a single qubit quantum clas-
sifier possesses universal capabilities [50].

While various encoding strategies could be considered for
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one of the QNN, as expected, but also that it does not decrease
with n. We also propose the use of the training of a single-
qubit QNN to create an n-qubit EQK with entanglement, re-
ferred to as the 1-to-n approach. We substantiate our proposals
with numerical evidence, demonstrating that the training of
a small-sized QNN, potentially even simulatable classically,
adeptly selects parameters to form a potent EQK tailored for
a specific task. Our results consider up to 10 qubits, show-
ing that our approach circumvents typical training challenges
associated with scaling parametrized quantum circuits.

Quantum kernel methods.— Quantum machine learning
models can be categorized into explicit and implicit models,
as discussed in Refs. [13, 14]. Explicit models are based on
parametrized quantum circuits [5, 31–33], which are tailored
to process classical information x encoded into a quantum
state as ⇢(x) = S (x)|0ih0|⌦nS †(x), where S refers to some
quantum embedding. These models have proven resilient to
noise [34], making them attractive for seeking quantum ad-
vantages in near-term quantum processors. However, they
face scalability challenges due to the barren plateau problem
during training [32, 35–38]. Implicit or kernel models, on the
other hand, are defined by the linear combination

f↵,X =
MX

i=1

↵i k(x,xi), (1)

where k(x,xi) = tr(⇢(x)⇢(xi)) is the kernel function and
{xi}

M
i=1 denotes training points from a training set X. An im-

portant insight from classical machine learning theory is cap-
tured by the representer theorem. This theorem asserts that,
when provided with a feature encoding and a training set, im-
plicit models in the form of Eq. 1 consistently attain training
losses that are either equal to or lower than those of explicit
quantum models.

Determining the optimal ↵ parameters for implicit mod-
els involves solving a convex optimization problem, neces-
sitating the construction of the kernel matrix K with entries
ki j = k(xi,x j). To accomplish this, inner products between
all training points must be evaluated on a quantum computer
[39–41], involving O(M2) evaluations. Although there are
instances where these inner products can be computed with-
out explicitly constructing the feature map, our primary focus
here is on embedding quantum kernels (EQKs). EQKs, preva-
lent in quantum kernel literature and proven to be universal in
Ref. [42], are constructed as follows:

k(xi,x j) = |h�(xi)|�(x j)i|2 = |h0|S †(xi)S (x j)|0i|2, (2)

where |0i := |0i⌦n. These overlap evaluations serve as in-
put for a support vector machine (SVM) algorithm. Although
quantum SVM approaches have been explored [43, 44], we
assume classical computation for this step in this work, incur-
ring a time complexity of O(M3).

Given the representer theorem and the inherent capability of
quantum devices to access exponentially large feature spaces,
quantum kernel methods emerge as promising candidates for
optimal quantum machine learning models [24]. However,
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FIG. 1. Iterative training of a two-qubit data re-uploading QNN. In
Step 1, a single-qubit QNN is trained to obtain optimal model pa-
rameters denoted as ✓⇤. Moving to Step 2, training for the two-qubit
QNN is initiated, initializing new extra parameters to 0, while the
parameters of the first qubit are set to ✓⇤. This iterative approach can
scale the QNN up to n  L+1 qubits, ensuring that the n-qubit QNN
performs at least as e↵ectively as the n � 1 version.

they come with their challenges, such as the exponentially
vanishing of kernel values [45, 46], and, as addressed in this
work, the critical issue of selecting the appropriate kernel for
a specific task.

To identify the optimal kernel, the common strategy in-
volves employing a parametrized quantum embedding S ✓(x)
[47], where ✓ represents the trainable parameters. This em-
bedding defines a trainable quantum kernel k✓(x), which is
then optimized based on a specific figure of merit. In the study
by Hubregtsen et al. [30], the optimization problem is formu-
lated using kernel target alignment. Another avenue explored
in works such as [28, 29] involves multiple kernel learning,
where the goal is to determine the optimal combination of dif-
ferent kernels for a specific task. However, these approaches
require constructing the kernel matrix at each training step,
which implies a high computational cost. In our work, we pro-
pose a novel method for training embedding quantum kernels
that only necessitates constructing the kernel matrix once.

Scaling data re-uploading for n�qubit QNN.— As reported
by Pérez-Salinas et al. in Ref. [15], the data re-uploading
model incorporates layers composed of data-encoding and
training unitaries. This approach e↵ectively introduces non-
linearities to the model allowing to capture complex patterns
on data [16, 17, 48, 49]. In fact, it has been demonstrated that
a single qubit quantum classifier possesses universal capabili-
ties [50].

While various encoding strategies could be considered for
this architecture, we specifically adopt the easiest one defining

QNN✓(x) ⌘
LY

l=1

U(✓l) U(x) = U(✓L) U(x) . . .U(✓1) U(x).

(3)
Here, L denotes the number of layers, U represents a generic
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Figure 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n. Despite that the explicit construction is shown, the entanglement and variational unitaries
from the last layer will cancel with the conjugate transpose.

using QNN training in two ways: the n-to-n approach and
the 1-to-n. In the first one, an n-qubit QNN is trained using
the iterative method proposed earlier to directly construct the
corresponding EQK of n qubits. As depicted in Figure 3, a
multi-qubit QNN of the form of Eq. 4 is trained while fixing
the trainable parameters of the embedding ✓⇤ and '⇤. Then,
these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This methodology allows us to scale the QNN as much as
possible during training, and when it reaches a performance
plateau, we can utilize the trained feature map to construct an
EQK.

In 1-to-n construction, we train a single-qubit QNN✓ from
Eq. 3 fixing the ✓⇤ and we leverage this training to construct
the kernel

ki j = |h0|
L�1Y

l=1

⇣
U(xi)†⌦n U(✓⇤l )†⌦n E

⌘
U(xi)†⌦n

U(x j)⌦n

0
BBBBBB@

L�1Y

l=1

E U(✓⇤l ) U(x j)

1
CCCCCCA |0i|

2.

(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we
will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and 1-to-n ar-
chitectures and generalize it to n-to-m · n, where m represents

some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

V. NUMERICAL RESULTS

Let us now explore the practical implementation of our
approaches and evaluate their performance across various
datasets detailed in Appendix F. Both the training and test sets
consist of 500 data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as:

E =
n�1Y

s=1

CNOTs+1
s , (7)

where the subscript refers to the control qubit, and the super-
script refers to the target qubit.

The numerical experiments illustrate a consistent improve-
ment in the performance of the n-qubit QNN as more qubits
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FIG. 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n.

these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This method allows us to scale the QNN as much as possible
during training, and when it reaches a performance plateau,
we can utilize the trained feature map to construct an EQK.

In the 1-to-n construction, we train a single-qubit QNN✓

from Eq. 3, fixing the ✓⇤ and we leverage this training to con-
struct the kernel

ki j = |h0|
L�1Y

l=1
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(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we
will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and the 1-to-n
architectures and generalize it to n-to-m·n, where m represents
some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

Numerical results.— Let us now explore the practical im-
plementation of our approaches and evaluate their perfor-
mance across various datasets detailed in the Supplemental

Material [52]. Both the training and test sets consist of 500
data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as

E =
n�1Y

s=1

CNOTs+1
s , (7)

where the subscript refers to the control qubit, and the super-
script refers to the target qubit.

The numerical experiments illustrate a consistent improve-
ment in the performance of the n-qubit QNN as more qubits
are introduced for both datasets. Additionally, the correspond-
ing kernel, represented by the n-to-n construction, exhibits
enhanced performance compared to the QNN alone. Inter-
estingly, the 1-to-n construction performs remarkably well,
showing a rapid increase in performance with a small num-
ber of qubits, although it eventually plateaus. While the im-
provement in the n-to-n scenario is slower, its performance
consistently surpasses that of the QNN, and the scaling of this
model is consistent and rigorous. For additional numerical
experiments, refer to the Supplemental Material [52].

These results demonstrate, on one hand, the scalability
of a data re-uploading QNN and the improved performance

n-to-n approach:   an n-qubit QNN EQK of n qubits

ü Scale the QNN as much as possible during training

ü Utilize the trained feature map to construct an EQK 

kernel matrix element 𝑘!" is defined as the

probability of measuring all qubits in the state |0⟩.
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Constructing Embedded Quantum Kernel (EQK) from QNN training 

1-to-n approach:   an 1-qubit QNN EQK of n qubits4

……

|0�
QNN�*,�*(xj)

|0�
QNN�*,�*(xi)†

…

|0�
QNN�,�(x)

|0�

�(xj)

�(xi)†
U(xj)

E
…

…

E
U(xj)

U(xj)

U(xj)

U(�*1 )

U(�*1 )

U(�*L )

U(�*L )

kij = P0

…

|0�

|0�

… … … … …
kij = P0

…|0�
<latexit sha1_base64="6Bj40kqohjilFKmSD8OyDJVftgQ=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe4CfhQWARsLiwjmA5Ij7G3mkiV7e8funnCE/AgbC0Vs/T12/hs3yRWa+GDg8d4MM/OCRHBtXPfbKaytb2xuFbdLO7t7+wflw6OWjlPFsMliEatOQDUKLrFpuBHYSRTSKBDYDsa3M7/9hErzWD6aLEE/okPJQ86osVL7nmaoiNcvV9yqOwdZJV5OKpCj0S9/9QYxSyOUhgmqdddzE+NPqDKcCZyWeqnGhLIxHWLXUkkj1P5kfu6UnFllQMJY2ZKGzNXfExMaaZ1Fge2MqBnpZW8m/ud1UxNe+xMuk9SgZItFYSqIicnsdzLgCpkRmSWUKW5vJWxEFWXGJlSyIXjLL6+SVq3qXVYvHmqV+k0eRxFO4BTOwYMrqMMdNKAJDMbwDK/w5iTOi/PufCxaC04+cwx/4Hz+AJTZjxA=</latexit>

Layer 1

U(x) U(�L)
<latexit sha1_base64="4LI+OwQqtmtK1qCIRoKuKMk32sA=">AAAB7nicbVA9SwNBEJ3zM8avqKXNYhCswl3Aj8IiYGORIoL5gOQIe5u5ZMne3rG7JxwhP8LGQhFbf4+d/8ZNcoUmPhh4vDfDzLwgEVwb1/121tY3Nre2CzvF3b39g8PS0XFLx6li2GSxiFUnoBoFl9g03AjsJAppFAhsB+O7md9+QqV5LB9NlqAf0aHkIWfUWKldpxkqUu+Xym7FnYOsEi8nZcjR6Je+eoOYpRFKwwTVuuu5ifEnVBnOBE6LvVRjQtmYDrFrqaQRan8yP3dKzq0yIGGsbElD5urviQmNtM6iwHZG1Iz0sjcT//O6qQlv/AmXSWpQssWiMBXExGT2OxlwhcyIzBLKFLe3EjaiijJjEyraELzll1dJq1rxriqXD9Vy7TaPowCncAYX4ME11OAeGtAEBmN4hld4cxLnxXl3Phata04+cwJ/4Hz+AL3Fjys=</latexit>

Layer L

QNN�(x)

U(�1)U(x)�*, �*

<latexit sha1_base64="kKNIJVhhGCUA4JVKdzyKsbCDips=">AAAB/HicbVDLSgNBEOz1GeMrmqOXwSDoJewGfBwDKgheEjAPSJYwO5lNhszOLDOzwhLir3jxoIhXP8Sbf+Mk2YMmFjQUVd10dwUxZ9q47rezsrq2vrGZ28pv7+zu7RcODptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bweh66rceqdJMigeTxtSP8ECwkBFsrNQrFCtn6LZ+j4gU2qiEzNWSW3ZnQMvEy0gJMtR6ha9uX5IkosIQjrXueG5s/DFWhhFOJ/luommMyQgPaMdSgSOq/fHs+Ak6sUofhVLZEgbN1N8TYxxpnUaB7YywGepFbyr+53USE175YybixFBB5ovChCMj0TQJ1GeKEsNTSzBRzN6KyBArTIzNK29D8BZfXibNStm7KJ/XK6XqTRZHDo7gGE7Bg0uowh3UoAEEUniGV3hznpwX5935mLeuONlMEf7A+fwBjTmUGg==</latexit>

2) EQK construction

<latexit sha1_base64="kM57VVRhRkLQmbCDvo4mSlXqmjc=">AAACB3icbVDLSgNBEJyNrxhfqx4FGQyCHgy7AR/HgB48hQTygmQJs5PZZMjs7DrTK4SQmxd/xYsHRbz6C978GyfJHjRa0FBUddPd5ceCa3CcLyuztLyyupZdz21sbm3v2Lt7DR0lirI6jUSkWj7RTHDJ6sBBsFasGAl9wZr+8HrqN++Z0jySNRjFzAtJX/KAUwJG6tqH7imuKcIll30cBThMBPCzu8TngKvlctfOOwVnBvyXuCnJoxSVrv3Z6UU0CZkEKojWbdeJwRsTBZwKNsl1Es1iQoekz9qGShIy7Y1nf0zwsVF6OIiUKQl4pv6cGJNQ61Hom86QwEAvelPxP6+dQHDljbmME2CSzhcFicAQ4WkouMcVoyBGhhCquLkV0wFRhIKJLmdCcBdf/ksaxYJ7UTivFvOlmzSOLDpAR+gEuegSldAtqqA6ougBPaEX9Go9Ws/Wm/U+b81Y6cw++gXr4xsZxZg2</latexit>

1) Training of multi-qubit QNN

<latexit sha1_base64="kKNIJVhhGCUA4JVKdzyKsbCDips=">AAAB/HicbVDLSgNBEOz1GeMrmqOXwSDoJewGfBwDKgheEjAPSJYwO5lNhszOLDOzwhLir3jxoIhXP8Sbf+Mk2YMmFjQUVd10dwUxZ9q47rezsrq2vrGZ28pv7+zu7RcODptaJorQBpFcqnaANeVM0IZhhtN2rCiOAk5bweh66rceqdJMigeTxtSP8ECwkBFsrNQrFCtn6LZ+j4gU2qiEzNWSW3ZnQMvEy0gJMtR6ha9uX5IkosIQjrXueG5s/DFWhhFOJ/luommMyQgPaMdSgSOq/fHs+Ak6sUofhVLZEgbN1N8TYxxpnUaB7YywGepFbyr+53USE175YybixFBB5ovChCMj0TQJ1GeKEsNTSzBRzN6KyBArTIzNK29D8BZfXibNStm7KJ/XK6XqTRZHDo7gGE7Bg0uowh3UoAEEUniGV3hznpwX5935mLeuONlMEf7A+fwBjTmUGg==</latexit>

2) EQK construction

<latexit sha1_base64="1g5+b5ml9udR1RKV95HPx6IBspQ=">AAACCHicbVC7SgNBFJ2Nrxhfq5YWDgZBC8NuwEcZ0MIqJJAXJEuYncwmQ2Zn15m7QggpbfwVGwtFbP0EO//GSbKFRg9c7uGce5m5x48F1+A4X1ZmaXlldS27ntvY3NresXf3GjpKFGV1GolItXyimeCS1YGDYK1YMRL6gjX94fXUb94zpXkkazCKmReSvuQBpwSM1LUP3VNcU4RLLvs4CrA2XbCzu8TngKvlctfOOwVnBvyXuCnJoxSVrv3Z6UU0CZkEKojWbdeJwRsTBZwKNsl1Es1iQoekz9qGShIy7Y1nh0zwsVF6OIiUKQl4pv7cGJNQ61Hom8mQwEAvelPxP6+dQHDljbmME2CSzh8KEoEhwtNUcI8rRkGMDCFUcfNXTAdEEQomu5wJwV08+S9pFAvuReG8WsyXbtI4sugAHaET5KJLVEK3qILqiKIH9IRe0Kv1aD1bb9b7fDRjpTv76Besj2/NF5iX</latexit>

1) Training of single-qubit QNN

<latexit sha1_base64="G3nqxmxg+8H6Z13cXbmZd8TsJkk=">AAAB8XicbVDLSsNAFL2pr1pfUZduBovgqiQFH8uCCoqbFuwD21Am00k7dDIJMxOhhP6FGxeKuPVv3Pk3TtMstPXAwOGce5l7jh9zprTjfFuFldW19Y3iZmlre2d3z94/aKkokYQ2ScQj2fGxopwJ2tRMc9qJJcWhz2nbH1/N/PYTlYpF4kFPYuqFeChYwAjWRnq8ZpISjW4a93277FScDGiZuDkpQ4563/7qDSKShFRowrFSXdeJtZdiqRnhdFrqJYrGmIzxkHYNFTikykuzi6foxCgDFETSPKFRpv7eSHGo1CT0zWSI9UgtejPxP6+b6ODSS5mIE00FmX8UJBzpCM3io0EWmE8MwUQycysiIywx0aakkinBXYy8TFrVinteOWtUy7W7vI4iHMExnIILF1CDW6hDEwgIeIZXeLOU9WK9Wx/z0YKV7xzCH1ifP6lMkEk=</latexit>

Direct EQK

�*

<latexit sha1_base64="JUhEnlNyj/j4YYhIiV2AN8owsyk=">AAAB8XicbVDLTgIxFO3gC/GFunTTCCZuIDMkPpYkbly4wEQeESakUzrQ0Gkn7R0TMuEv3LjQGLf+jTv/xgKzUPAkTU/OuTf33hPEghtw3W8nt7a+sbmV3y7s7O7tHxQPj1pGJZqyJlVC6U5ADBNcsiZwEKwTa0aiQLB2ML6Z+e0npg1X8gEmMfMjMpQ85JSAlR7LslwBVbFfv1hyq+4ceJV4GSmhDI1+8as3UDSJmAQqiDFdz43BT4kGTgWbFnqJYTGhYzJkXUsliZjx0/nGU3xmlQEOlbZPAp6rvztSEhkziQJbGREYmWVvJv7ndRMIr/2UyzgBJuliUJgIDArPzscDrhkFMbGEUM3trpiOiCYUbEgFG4K3fPIqadWq3mX14r5Wqt9lceTRCTpF58hDV6iOblEDNRFFEj2jV/TmGOfFeXc+FqU5J+s5Rn/gfP4AlrGPmQ==</latexit>

n-to-n
<latexit sha1_base64="D9hj2TgMa/jPvFIVeoPiiHO1Y7U=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBrOCl4TdgI9jwIsHDxHMA5MlzE4myZDZmWVmVghL/sKLB0W8+jfe/BsnyR40saChqOqmuyuMOdPG876d3Nr6xuZWfruws7u3f1A8PGpqmShCG0Ryqdoh1pQzQRuGGU7bsaI4CjltheObmd96okozKR7MJKZBhIeCDRjBxkqPru+WjSy7wu0VS17FmwOtEj8jJchQ7xW/un1JkogKQzjWuuN7sQlSrAwjnE4L3UTTGJMxHtKOpQJHVAfp/OIpOrNKHw2ksiUMmqu/J1IcaT2JQtsZYTPSy95M/M/rJGZwHaRMxImhgiwWDRKOjESz91GfKUoMn1iCiWL2VkRGWGFibEgFG4K//PIqaVYr/mXl4r5aqt1lceThBE7hHHy4ghrcQh0aQEDAM7zCm6OdF+fd+Vi05pxs5hj+wPn8AThVj1w=</latexit>

1-to-n

<latexit sha1_base64="/pL8HLyYKl2DWx8nMdFrKUZ1Pd0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiQFH8uiIC4r2Ae0oUwmk3bozCTMTIQS+gtuXCji1h9y5984abPQ1gMXDufcy733BAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsegHWlDNJ24YZTnuJolgEnHaDyW3ud5+o0iyWj2aaUF/gkWQRI9jk0h2T4bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qoms/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJp1L3L+sVDo9a8KeIowwmcwjl4cAVNuIcWtIHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w/rX44r</latexit>

Find
<latexit sha1_base64="/pL8HLyYKl2DWx8nMdFrKUZ1Pd0=">AAAB63icbVDLSsNAFL2pr1pfVZduBovgqiQFH8uiIC4r2Ae0oUwmk3bozCTMTIQS+gtuXCji1h9y5984abPQ1gMXDufcy733BAln2rjut1NaW9/Y3CpvV3Z29/YPqodHHR2nitA2iXmsegHWlDNJ24YZTnuJolgEnHaDyW3ud5+o0iyWj2aaUF/gkWQRI9jk0h2T4bBac+vuHGiVeAWpQYHWsPo1CGOSCioN4Vjrvucmxs+wMoxwOqsMUk0TTCZ4RPuWSiyo9rP5rTN0ZpUQRbGyJQ2aq78nMiy0norAdgpsxnrZy8X/vH5qoms/YzJJDZVksShKOTIxyh9HIVOUGD61BBPF7K2IjLHCxNh4KjYEb/nlVdJp1L3L+sVDo9a8KeIowwmcwjl4cAVNuIcWtIHAGJ7hFd4c4bw4787HorXkFDPH8AfO5w/rX44r</latexit>

Find

FIG. 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n.

these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This method allows us to scale the QNN as much as possible
during training, and when it reaches a performance plateau,
we can utilize the trained feature map to construct an EQK.

In the 1-to-n construction, we train a single-qubit QNN✓

from Eq. 3, fixing the ✓⇤ and we leverage this training to con-
struct the kernel

ki j = |h0|
L�1Y

l=1

⇣
U(xi)†⌦n U(✓⇤l )†⌦n E

⌘
U(xi)†⌦n

U(x j)⌦n

0
BBBBBB@

L�1Y

l=1

E U(✓⇤l ) U(x j)

1
CCCCCCA |0i|

2,

(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we
will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and the 1-to-n
architectures and generalize it to n-to-m·n, where m represents
some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

Numerical results.— Let us now explore the practical im-
plementation of our approaches and evaluate their perfor-
mance across various datasets detailed in the Supplemental

Material [52]. Both the training and test sets consist of 500
data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as

E =
n�1Y

s=1

CNOTs+1
s , (7)

where the subscript refers to the control qubit, and the super-
script refers to the target qubit.

The numerical experiments illustrate a consistent improve-
ment in the performance of the n-qubit QNN as more qubits
are introduced for both datasets. Additionally, the correspond-
ing kernel, represented by the n-to-n construction, exhibits
enhanced performance compared to the QNN alone. Inter-
estingly, the 1-to-n construction performs remarkably well,
showing a rapid increase in performance with a small num-
ber of qubits, although it eventually plateaus. While the im-
provement in the n-to-n scenario is slower, its performance
consistently surpasses that of the QNN, and the scaling of this
model is consistent and rigorous. For additional numerical
experiments, refer to the Supplemental Material [52].

These results demonstrate, on one hand, the scalability
of a data re-uploading QNN and the improved performance
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FIG. 3. Embedding quantum kernels generated from quantum neural networks training. The kernel matrix element ki j is defined as the
probability of measuring all qubits in the state |0i, denoted as P0. On the left, we have the n-to-n proposal, constructed by directly utilizing
the trained data re-uploading n-qubit QNN as a quantum feature map. On the right, we show the construction of an Embedded EQK from the
training of a single-qubit QNN, named as 1-to-n.

these parameters are subsequently used to construct an EQK
which is defined by

ki j = |h0|QNN✓⇤,'⇤ (xi)† QNN✓⇤,'⇤ (x j)|0i|2. (5)

This method allows us to scale the QNN as much as possible
during training, and when it reaches a performance plateau,
we can utilize the trained feature map to construct an EQK.

In the 1-to-n construction, we train a single-qubit QNN✓

from Eq. 3, fixing the ✓⇤ and we leverage this training to con-
struct the kernel

ki j = |h0|
L�1Y

l=1

⇣
U(xi)†⌦n U(✓⇤l )†⌦n E

⌘
U(xi)†⌦n

U(x j)⌦n

0
BBBBBB@

L�1Y

l=1

E U(✓⇤l ) U(x j)

1
CCCCCCA |0i|

2,

(6)

where E denotes an entangling operation, such as a cascade of
CNOT or CZ gates, among other possibilities. It is worth not-
ing that the training is conducted for a single-qubit QNN and
does not explicitly consider entanglement. Nevertheless, we
will present numerical results demonstrating that this training
alone is su�cient to select parameters for constructing a cus-
tomized multi-qubit kernel tailored to a specific task.

Certainly, one can combine both the n-to-n and the 1-to-n
architectures and generalize it to n-to-m·n, where m represents
some integer. In this scenario, an n-qubit QNN is trained and
utilized to implement the same design as in the 1-to-n con-
struction. However, in this case, each qubit of the QNN is
embedded into m qubits, introducing entanglement between
layers.

Numerical results.— Let us now explore the practical im-
plementation of our approaches and evaluate their perfor-
mance across various datasets detailed in the Supplemental

Material [52]. Both the training and test sets consist of 500
data points each.

For the QNN training in this section, we employ the Adam
optimizer with a batch size of 24. In the initial step for the
QNN training (n = 1), we use a learning rate of 0.05 and
consider 30 epochs. For n > 1, we use a learning rate of 0.005
and 10 epochs.

The results presented in Figure 4 demonstrate the test ac-
curacies for two distinct datasets—the corners dataset and the
circles dataset—for the 1-to-n and the n-to-n constructions as
functions of the number of qubits n. These experiments con-
sider L = 7 layers, scaling up the QNN to n = L + 1 = 8. In
the 1-to-n construction, we introduce entanglement between
layers using a cascade of CNOT gates, defined as

E =
n�1Y

s=1

CNOTs+1
s , (7)

where the subscript refers to the control qubit, and the super-
script refers to the target qubit.

The numerical experiments illustrate a consistent improve-
ment in the performance of the n-qubit QNN as more qubits
are introduced for both datasets. Additionally, the correspond-
ing kernel, represented by the n-to-n construction, exhibits
enhanced performance compared to the QNN alone. Inter-
estingly, the 1-to-n construction performs remarkably well,
showing a rapid increase in performance with a small num-
ber of qubits, although it eventually plateaus. While the im-
provement in the n-to-n scenario is slower, its performance
consistently surpasses that of the QNN, and the scaling of this
model is consistent and rigorous. For additional numerical
experiments, refer to the Supplemental Material [52].

These results demonstrate, on one hand, the scalability
of a data re-uploading QNN and the improved performance

𝐸 denotes an entangling operation 

ü the training is conducted in a single-qubit QNN 

and does not explicitly consider entanglement.

ü combine both the n-to-n and 1-to-n architectures 

to generalize it to n-to-m*n.
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Figure 6. Numerical results for the n-to-n architecture, tested using datasets with 500 training points and 200 test points. Experiments were
conducted using 2 and 3 features, with results averaged over five independent trials. The “scale QNN set” was utilized for these experiments,
as described in the main text. The figure displays the average training and test accuracies for both the QNN and the corresponding n-to-n NQK.

k = 10 to obtain robust and reliable evaluation metrics. On
each of the 10 iterations, 9 folds of the dataset were used for
training (1800 images), and 1 fold was used for testing (200
images). This approach yields the results illustrated in Fig-
ure 5, which depicts the training and test accuracies for the
single-qubit QNN and the obtained NQK. This visualization
highlights that models with fewer or no outliers and narrower
boxes are more robust, as their performance remains more
consistent across di↵erent evaluation folds.

We examine both p = 2 and p = 3 features but primarily
focused on p = 2, as using three features performs less e↵ec-
tively for this classification problem. The results for p = 3
are presented in Appendix C. For the number of qubits in the
EQK, we considered n = 2 and n = 3, corresponding to 1-to-2
and 1-to-3 NQKs, respectively. For this classification task, in-
creasing the number of qubits does not enhance performance.
Notably, we achieved high classification accuracies even with
a small number of qubits.

We distinguish between optimal and sub-optimal QNN
training scenarios, both employing an Adam optimizer. For
optimal QNN training, the QNN is allowed to converge over
10 epochs with a learning rate of 0.01. In contrast, for
sub-optimal QNN training, the process is truncated after 2
epochs to prevent convergence of the loss function, and a
lower learning rate of 0.001 was used. This di↵erentiation
aims to demonstrate the robustness of NQKs. We observe that
while better trained QNNs show minimal improvement from
introducing NQK, the NQK’s performance remains high even
when the QNN training is suboptimal. This indicates that only
a few training iterations are su�cient to select a suitable em-
bedding for constructing a robust NQK. While optimal QNN
training is straightforward for systems with few qubits, the
robustness of NQK becomes crucial for larger QML mod-
els where optimal training is not guaranteed. In such cases,
NQKs could be a candidate to circumvent QNN trainability
problems.

In analyzing Figure 5, we observe that the best results
across the three plots reach close to 90% accuracy, with me-
dians around 86%. In Figure 5 (a), where the single-qubit
QNN is optimally trained, constructing the 2-qubit NQK of-
fers minimal improvement, although the results with NQK are

more concentrated. In Figure 5 (b), with sub-optimal QNN
training, QNN accuracies drop to around 75-80%, while the
2-qubit NQK performs nearly as well as in the optimal train-
ing scenario. Additionally, the wider boxes of the QNN indi-
cate a strong dependency on parameter initialization and the
image set used, whereas the narrow NQK boxes demonstrate
its robustness. Figure 5 (c), corresponding to the sub-optimal
scenario with a 3-qubit EQK, shows results similar to the 2-
qubit case but more concentrated around the median. This
may be due to the larger Hilbert space enhancing the linear
separation.

B. n-to-n NQK

In our second approach, instead of constructing an EQK
after training a single-qubit QNN, we scale the model up to an
n-qubit QNN and then derive an n-qubit NQK. This scaling is
performed iteratively, ensuring that the cost function does not
increase when adding qubits, allowing for progressive model
improvement.

The results are presented in Figure 6, which shows the mean
training and test accuracies along with the standard deviation
across 5 independent runs, each using distinct training and test
sets. For this analysis, we employed a 6-layer QNN, the Adam
optimizer with a learning rate of 0.005, and 10 epochs, scaling
the model up to n = 8 qubits.

The four plots in the figure reveal that accuracies generally
increase with the number of qubits, with a more pronounced
improvement in training accuracy due to its direct link to the
cost function. The standard deviation of test accuracies is nat-
urally larger, reflecting the variability across di↵erent subsets.

In Figures 6 (a) and (b), results with p = 2 features are
shown, while Figures 6 (c) and (d) depict the outcomes with
p = 3 features. Overall, the NQK approach consistently
outperforms the QNN architecture across all configurations.
Specifically, with p = 3 features, the average training accu-
racy nears 90%, and the mean test accuracy exceeds 86%. In
contrast, with p = 2 features, the NQK approach achieves
average training and test accuracies of over 88% and 84%,
respectively. However, slight overfitting is observed, as indi-
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FIG. 3. Donut-like dataset with Z2 label symmetry. We generate
500 samples by mapping the polar coordinates (ri, ✓i) to xi = (x0, x1),
where the radius and polar angle follow Gaussian distributions G(µ =
0.5,� = 0.15) and uniform distribution [0, 2⇡], respectively. To en-
sure Z2 label symmetry, we calculate cos(2✓i + 0.58) and label the
sample as class 0/1 if the value is negative/positive. Later, the dataset
is randomly separated by a ratio of 3 : 1 : 1 as a training pool, vali-
dation set, and test set for the game between Alice and Bob.

Z2 group. The full dataset (see Fig. 3) is randomly separated
into the training pool, validation set, and test set according to
a ratio of 3 : 1 : 1 for further processing. Alice invites Bob
to train a QML model that slices the donut for binary classi-
fication, but with limited samples from the training pool for
labeling. Bob knows the locations of the samples in the pa-
rameter space but has no information on the labels. However,
Bob can query the labels of selected samples from Alice for
supervised learning.

B. QML model

Now we introduce the QML model Bob used in numerical
experiments. To combine QAL with GQML, Bob chooses the
state-of-the-art equivariant network called EQNN-Z, as shown
in Fig. 4(a), which was initially proposed in preliminary work
for a di↵erent dataset [37]. To encode the classical data into a
quantum state, the model starts from the encoding layer with
rotation gates RX and RY . We highlight that here, the orders of
RX and RY are di↵erent on the first and second qubits to break
an undesired pseudo-symmetry at the encoding level. Spe-
cially, if RX and RY are applied in the same order, there exists
the SWAP pseudo-symmetry x

0
i
$ x

1
i

in the wave function
after data encoding. This would result in the same expecta-
tion if we choose hÔi = hẐ0 + Ẑ1i/2 as the observable to be
measured.

(a)

(b)
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FIG. 4. (a) QNN structure of EQNN-Z designed with geometric
priors for QML and (b) HEA designed with pseudo-symmetry as the
baseline. Both QNNs load classical data only once with the encoder
at the beginning. After repeating d layers of the ansatz, the expecta-
tion of the equivariant operator hÔi = (Ẑ0 + Ẑ1)/2 is measured as the
output of the model.

Once the data encoding is chosen, it spontaneously induces
the unitary representation of group element �. We denote the
encoder  (xi) : xi ! ⇢xi

by unitary operator U(x
0
i
, x1

i
) =

[RY (x
0
i
· ⇡/2) ⌦ RX(x

1
i
· ⇡/2)][RX(x

0
i
· ⇡/2) ⌦ RY (x

1
i
· ⇡/2)]. Ac-

cordingly, we notice the following equation

U(�x
0
i
,�x

1
i
) = (Ẑ ⌦ Ẑ)U(x

0
i
, x1

i
)(Ẑ ⌦ Ẑ), (16)

where Ẑ ⌦ Ẑ = Rq(�) is the encoding-induced unitary rep-
resentation of non-identical group element �, satisfying the
condition for equivariant encoding (12).

To construct the equivariant ansatz, we choose three gener-
ators G 2 Ẑ ⌦ I, I ⌦ Ẑ, X̂ ⌦ X̂ that commute with the unitary
representation Rq(�) = Ẑ ⌦ Ẑ, since if [G,Rq(g)] = 0, then all
powers of G commute with Rq(g), satisfying Definition 7, see
Eq. (14) for gate invariance. One can also verify this using
the twirling formula (15), yielding

TR[G] =
1
2

h
I4⇥4GI4⇥4 + (Ẑ ⌦ Ẑ)G(Ẑ ⌦ Ẑ)

i
= G, (17)

where the twirled generator TR[G] is not changed. Thus, we
have single-qubit and two-qubit gates, see Eq. (13),

RZ(✓) = exp(�i✓Ẑ),
RXX(✓) = exp[�i✓(X̂ ⌦ X̂)], (18)

leading us to the d-time repeated ansatz layers with 3d inde-
pendent parameters

UEQNN(✓(d)) = [RZ(✓(d)
1 ) ⌦ RZ(✓(d)

2 )]RXX(✓(d)
0 ). (19)

With the equivariant operator to be measured, i.e., (Ẑ⌦Ẑ)(Ẑ0+
Ẑ1)(Ẑ⌦ Ẑ)/2 = (Ẑ0+ Ẑ1)/2, we ensure that EQNN-Z preserves
label symmetry by leveraging the geometric prior in the net-
work structure.

At the same time, we need to construct a model without
geometric prior that maximizes expressivity by employing a
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FIG. 2. (a) Equivariant QNN h✓ with geometric priors reduces the
search space for approximating the label mapping function f by ex-
ploiting the symmetry of the quantum data. (b) To design equivariant
QNNs, the quantum data (or classical data after encoding) preserve
the properties that determine the label after transformations.

group such that 8U 2 G, some properties of U⇢U† remain
unchanged. The group introduces label invariance if

f (U⇢iU
†) = f (⇢i) = yi, (8)

for all ⇢i that belong to label yi.
Definition 6: (Label invariance in classical data). S is a

symmetry group with representation R. Label invariance is
introduced if

f (⇢R(g)·xi
) = f (⇢xi

) = yi, 8g 2 S, (9)

where ⇢xi
is the result of the encoding of classical data  (xi) :

xi ! ⇢xi
.

For example, the winner of a chess-like game is not
changed if the chessboard is rotated or flipped. In quantum
mechanics, the purity of a quantum state in a d-dimensional
Hilbert space is preserved under a unitary operation U(d).
Similarly, the degree of entanglement, such as entangling en-
tropy, remains unchanged after a local operation or SWAP. In
other words, if the label of a sample depends on these proper-
ties, we can construct a QML model h✓ that guarantees label
invariance under any action of group elements.

In k-copy quantum experiments, equivariance conditions
should be satisfied to ensure that h✓ is invariant under G:

W✓


U
⌦k⇢⌦k

i
(U†)⌦k

�
= U

⌦k
W✓

h
⇢⌦k

i

i
(U†)⌦k

, 8U 2 G, (10)

[Ô,U⌦k] = 0, 8U 2 G. (11)

Such equivarance can be linked to the classical data with
equivariant encoding  with respect to the group element g

if and only if there exists an encoding-induced unitary repre-
sentation Rq(g) satisfying

⇢R(g)·xi
= Rq(g)⇢xR

†

q
(g). (12)

Thus, in the classical realm, one can capture the encoding-
induced symmetry by equivariant quantum gates. We assume

that the quantum gates generated by a Hermitian generator G

satisfies

UG(✓) = exp(�i✓G), G 2 G, (13)

leading us to the equivariance condition as follows.
Definition 7: (Gate invariance). The gate UG(✓) generated

by G is equivariant with respect to symmetry S, i↵

[UG(✓),Rq(g)] = 0, 8✓ 2 R, 8g 2 S. (14)

One of the most practical methods for constructing the equiv-
ariant gateset is the so-called Twirling formula, given in the
following definition.

Definition 8: (Twirling formula). Let S be the symmetry
and R be a representation of S.

TR[G] =
1
S

X

g2S

R(g)GR
†(g), (15)

defines a twirl onto the set of operators [TR[G],R(g)] = 0, 8X

and g 2 S.
In this manner, we move from the gate UG(✓) = exp(�i✓G)

to the twirled U
0 = exp(�i✓TR[G]), ensuring that a genera-

tor commutes with a given representation. While this subsec-
tion provides a brief introduction to the critical background
of GQML, interested readers can explore additional details on
invariances, equivariance, proofs, and other methodologies of
this field in pedagogical literature [31, 32, 36].

III. SLICING A DONUT:Z2 SYMMETRY

Starting from this section, we employ QAL with equivari-
ant QNN as models to demonstrate optimal training strate-
gies with limited labels. The standard workflow begins with
problem formulation, aiming to approximate the mapping
f : X ! Y with a QNN h✓. Designing the network structure
requires studying the label symmetry to derive the equivariant
gate set and corresponding measurements. Once the equiv-
ariant QNN is constructed, the model can evaluate the uncer-
tainty of all unlabeled samples in the training pool by map-
ping the output to a probabilistic distribution over all classes.
The most informative sample is then queried using sampling
strategies, labeled by annotators, and added to the training set
to update the model parameters ✓. This iterative process al-
lows training the QNN with a smaller training set, achieving
satisfactory model performance at a lower cost by avoiding
the need to label all samples in the training pool. To illustrate
the proposal, we begin by considering a toy model, which is
the game between Alice and Bob called slicing-a-donut.

A. Problem formulation

Alice creates an ad-hoc dataset of samples, where the spa-
tial distribution in parameter space resembles a donut. The
labels of the samples follow Z2 symmetry, i.e., yi = f (xi) =
f [R(�)·xi] = f (�xi), where� is a non-identical element of the

symmetry
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FIG. 2. (a) Equivariant QNN h✓ with geometric priors reduces the
search space for approximating the label mapping function f by ex-
ploiting the symmetry of the quantum data. (b) To design equivariant
QNNs, the quantum data (or classical data after encoding) preserve
the properties that determine the label after transformations.

group such that 8U 2 G, some properties of U⇢U† remain
unchanged. The group introduces label invariance if

f (U⇢iU
†) = f (⇢i) = yi, (8)

for all ⇢i that belong to label yi.
Definition 6: (Label invariance in classical data). S is a

symmetry group with representation R. Label invariance is
introduced if

f (⇢R(g)·xi
) = f (⇢xi

) = yi, 8g 2 S, (9)

where ⇢xi
is the result of the encoding of classical data  (xi) :

xi ! ⇢xi
.

For example, the winner of a chess-like game is not
changed if the chessboard is rotated or flipped. In quantum
mechanics, the purity of a quantum state in a d-dimensional
Hilbert space is preserved under a unitary operation U(d).
Similarly, the degree of entanglement, such as entangling en-
tropy, remains unchanged after a local operation or SWAP. In
other words, if the label of a sample depends on these proper-
ties, we can construct a QML model h✓ that guarantees label
invariance under any action of group elements.

In k-copy quantum experiments, equivariance conditions
should be satisfied to ensure that h✓ is invariant under G:
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[Ô,U⌦k] = 0, 8U 2 G. (11)

Such equivarance can be linked to the classical data with
equivariant encoding  with respect to the group element g

if and only if there exists an encoding-induced unitary repre-
sentation Rq(g) satisfying

⇢R(g)·xi
= Rq(g)⇢xR

†

q
(g). (12)

Thus, in the classical realm, one can capture the encoding-
induced symmetry by equivariant quantum gates. We assume

that the quantum gates generated by a Hermitian generator G

satisfies

UG(✓) = exp(�i✓G), G 2 G, (13)

leading us to the equivariance condition as follows.
Definition 7: (Gate invariance). The gate UG(✓) generated

by G is equivariant with respect to symmetry S, i↵

[UG(✓),Rq(g)] = 0, 8✓ 2 R, 8g 2 S. (14)

One of the most practical methods for constructing the equiv-
ariant gateset is the so-called Twirling formula, given in the
following definition.

Definition 8: (Twirling formula). Let S be the symmetry
and R be a representation of S.

TR[G] =
1
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g2S
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†(g), (15)

defines a twirl onto the set of operators [TR[G],R(g)] = 0, 8X

and g 2 S.
In this manner, we move from the gate UG(✓) = exp(�i✓G)

to the twirled U
0 = exp(�i✓TR[G]), ensuring that a genera-

tor commutes with a given representation. While this subsec-
tion provides a brief introduction to the critical background
of GQML, interested readers can explore additional details on
invariances, equivariance, proofs, and other methodologies of
this field in pedagogical literature [31, 32, 36].

III. SLICING A DONUT:Z2 SYMMETRY

Starting from this section, we employ QAL with equivari-
ant QNN as models to demonstrate optimal training strate-
gies with limited labels. The standard workflow begins with
problem formulation, aiming to approximate the mapping
f : X ! Y with a QNN h✓. Designing the network structure
requires studying the label symmetry to derive the equivariant
gate set and corresponding measurements. Once the equiv-
ariant QNN is constructed, the model can evaluate the uncer-
tainty of all unlabeled samples in the training pool by map-
ping the output to a probabilistic distribution over all classes.
The most informative sample is then queried using sampling
strategies, labeled by annotators, and added to the training set
to update the model parameters ✓. This iterative process al-
lows training the QNN with a smaller training set, achieving
satisfactory model performance at a lower cost by avoiding
the need to label all samples in the training pool. To illustrate
the proposal, we begin by considering a toy model, which is
the game between Alice and Bob called slicing-a-donut.

A. Problem formulation

Alice creates an ad-hoc dataset of samples, where the spa-
tial distribution in parameter space resembles a donut. The
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FIG. 3. Donut-like dataset with Z2 label symmetry. We generate
500 samples by mapping the polar coordinates (ri, ✓i) to xi = (x0, x1),
where the radius and polar angle follow Gaussian distributions G(µ =
0.5,� = 0.15) and uniform distribution [0, 2⇡], respectively. To en-
sure Z2 label symmetry, we calculate cos(2✓i + 0.58) and label the
sample as class 0/1 if the value is negative/positive. Later, the dataset
is randomly separated by a ratio of 3 : 1 : 1 as a training pool, vali-
dation set, and test set for the game between Alice and Bob.

Z2 group. The full dataset (see Fig. 3) is randomly separated
into the training pool, validation set, and test set according to
a ratio of 3 : 1 : 1 for further processing. Alice invites Bob
to train a QML model that slices the donut for binary classi-
fication, but with limited samples from the training pool for
labeling. Bob knows the locations of the samples in the pa-
rameter space but has no information on the labels. However,
Bob can query the labels of selected samples from Alice for
supervised learning.

B. QML model

Now we introduce the QML model Bob used in numerical
experiments. To combine QAL with GQML, Bob chooses the
state-of-the-art equivariant network called EQNN-Z, as shown
in Fig. 4(a), which was initially proposed in preliminary work
for a di↵erent dataset [37]. To encode the classical data into a
quantum state, the model starts from the encoding layer with
rotation gates RX and RY . We highlight that here, the orders of
RX and RY are di↵erent on the first and second qubits to break
an undesired pseudo-symmetry at the encoding level. Spe-
cially, if RX and RY are applied in the same order, there exists
the SWAP pseudo-symmetry x

0
i
$ x

1
i

in the wave function
after data encoding. This would result in the same expecta-
tion if we choose hÔi = hẐ0 + Ẑ1i/2 as the observable to be
measured.
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FIG. 4. (a) QNN structure of EQNN-Z designed with geometric
priors for QML and (b) HEA designed with pseudo-symmetry as the
baseline. Both QNNs load classical data only once with the encoder
at the beginning. After repeating d layers of the ansatz, the expecta-
tion of the equivariant operator hÔi = (Ẑ0 + Ẑ1)/2 is measured as the
output of the model.

Once the data encoding is chosen, it spontaneously induces
the unitary representation of group element �. We denote the
encoder  (xi) : xi ! ⇢xi

by unitary operator U(x
0
i
, x1

i
) =

[RY (x
0
i
· ⇡/2) ⌦ RX(x

1
i
· ⇡/2)][RX(x

0
i
· ⇡/2) ⌦ RY (x

1
i
· ⇡/2)]. Ac-

cordingly, we notice the following equation

U(�x
0
i
,�x

1
i
) = (Ẑ ⌦ Ẑ)U(x

0
i
, x1

i
)(Ẑ ⌦ Ẑ), (16)

where Ẑ ⌦ Ẑ = Rq(�) is the encoding-induced unitary rep-
resentation of non-identical group element �, satisfying the
condition for equivariant encoding (12).

To construct the equivariant ansatz, we choose three gener-
ators G 2 Ẑ ⌦ I, I ⌦ Ẑ, X̂ ⌦ X̂ that commute with the unitary
representation Rq(�) = Ẑ ⌦ Ẑ, since if [G,Rq(g)] = 0, then all
powers of G commute with Rq(g), satisfying Definition 7, see
Eq. (14) for gate invariance. One can also verify this using
the twirling formula (15), yielding

TR[G] =
1
2

h
I4⇥4GI4⇥4 + (Ẑ ⌦ Ẑ)G(Ẑ ⌦ Ẑ)

i
= G, (17)

where the twirled generator TR[G] is not changed. Thus, we
have single-qubit and two-qubit gates, see Eq. (13),

RZ(✓) = exp(�i✓Ẑ),
RXX(✓) = exp[�i✓(X̂ ⌦ X̂)], (18)

leading us to the d-time repeated ansatz layers with 3d inde-
pendent parameters

UEQNN(✓(d)) = [RZ(✓(d)
1 ) ⌦ RZ(✓(d)

2 )]RXX(✓(d)
0 ). (19)

With the equivariant operator to be measured, i.e., (Ẑ⌦Ẑ)(Ẑ0+
Ẑ1)(Ẑ⌦ Ẑ)/2 = (Ẑ0+ Ẑ1)/2, we ensure that EQNN-Z preserves
label symmetry by leveraging the geometric prior in the net-
work structure.

At the same time, we need to construct a model without
geometric prior that maximizes expressivity by employing a
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FIG. 5. Model estimation over parameter space and decision bound-
aries of (a) EQNN-Z with geometric priors and (b) HEA as the base-
line QNN. These models are trained with full labels of all samples
in the training pool. Correct and incorrectly classified samples in the
test set are plotted as dots and crosses, respectively. Dashed curves
characterize the decision boundaries for slicing the donut.

hardware-e�cient ansatz (HEA). We introduce the undesired
pseudo-symmetry by ordering the RX and RY gates in the same
manner on two qubits. The HEA consists of two independent
parameterized RX gates that do not belong to the equivariant
gate set, and a CNOT gate for entangling two qubits.

UHAE(✓(d)) = CNOT[RX(✓(d)
0 ) ⌦ RX(✓(d)

1 )]. (20)

The operator to be measured is the same as those in EQNN-Z.
This QNN, see Fig. 4(b), should also be trained as a baseline
to validate GQML and study the choice for models in QAL.

C. Training of the model

The assumption of QAL is that one can achieve satisfactory
model performance by labeling the most informative samples
estimated by QNNs for few-shot learning. Before implement-
ing QAL, we need to verify if the model can classify two
classes with full information, meaning that all samples in the
training pool are labeled and used for model training. All pa-
rameters in QNNs are randomly initialized following a uni-
form distribution within [�⇡, ⇡]. We use binary cross-entropy
as the loss function

L(Ũ,✓) = �
1
|Ũ|

X

yi2Ũ

⇥
yi loghŷii + (1 � yi) log(1 � hŷii)

⇤
,

(21)
where Ũ is the training set, yi = 0 or 1 is the true label of
sample xi, and hŷii = (hÔi + 1)/2 is the renormalized out-
put of QNN based on the expectation value of the measured
operator Ô = hẐ0 + Ẑ1i/2 2 [�1, 1]. We optimize the loss
function with the Adam optimizer using a learning rate of 0.1
for 100 epochs without batch method. While minimizing the
loss function, we monitor the classification accuracy on the
validation set and record the best accuracy in history to re-
trieve the model for evaluation on the test set. In Fig. 5(a),
we display the model’s estimation over the parameter space
and the decision boundary between the two classes, achiev-
ing a satisfactory accuracy of 96% with d = 3 layers of
equivariant ansatz, preserving the rigid Z2 label symmetry.
For a fair comparison between EQNN-Z and HEA, we must
limit the circuit depth to the same level. Note that RXX(✓)
as Mølmer-Sørensen gate is not directly implementable in all
quantum platforms. Thus, we decompose it into RXX(✓) =
(H ⌦ H)CNOT[I ⌦ RZ(2✓)]CNOT(H ⌦ H) for maximal com-
patibility. By only counting the number of two-qubit gates
after decomposition for circuit depth, we set the layers of
HEA to d = 6 in numerical experiments for benchmarking,
resulting in an example of 79% accuracy in Fig.5(b). After
training EQNN-Z and HEA with 40 di↵erent random initial-
izations over full samples in the training pool, we achieve an
average accuracy of (91.63± 4.24%) and (77.30± 2.06%), re-
spectively, evaluated once the best historical performance on
validation sets is observed after training for 49.88± 28.62 and
34.40 ± 15.23 epochs, proving that our hyperparameters are
chosen adequately for model convergence.

D. Numerical experiments

After demonstrating that GQML can achieve high accu-
racy with su�cient labeled samples, Bob initiates slicing-the-
donut using QAL with a model-based-only USAMP strategy.
Note that for binary classification, the three sampling strate-
gies in Definition 1-3 are equivalent; that is, the sample will
be queried if it is nearest to the decision boundary among oth-
ers. Based on the loss function, Bob defines the model’s confi-
dence as |hÔix|, and queries the sample xQAL = argmaxx|hÔix|
for its true label from Alice. In Fig. 6, we illustrate the sam-
pling behavior of USAMP with EQNN-Z and HEA by record-

6

(a)

(b)

FIG. 5. Model estimation over parameter space and decision bound-
aries of (a) EQNN-Z with geometric priors and (b) HEA as the base-
line QNN. These models are trained with full labels of all samples
in the training pool. Correct and incorrectly classified samples in the
test set are plotted as dots and crosses, respectively. Dashed curves
characterize the decision boundaries for slicing the donut.

hardware-e�cient ansatz (HEA). We introduce the undesired
pseudo-symmetry by ordering the RX and RY gates in the same
manner on two qubits. The HEA consists of two independent
parameterized RX gates that do not belong to the equivariant
gate set, and a CNOT gate for entangling two qubits.

UHAE(✓(d)) = CNOT[RX(✓(d)
0 ) ⌦ RX(✓(d)

1 )]. (20)

The operator to be measured is the same as those in EQNN-Z.
This QNN, see Fig. 4(b), should also be trained as a baseline
to validate GQML and study the choice for models in QAL.

C. Training of the model

The assumption of QAL is that one can achieve satisfactory
model performance by labeling the most informative samples
estimated by QNNs for few-shot learning. Before implement-
ing QAL, we need to verify if the model can classify two
classes with full information, meaning that all samples in the
training pool are labeled and used for model training. All pa-
rameters in QNNs are randomly initialized following a uni-
form distribution within [�⇡, ⇡]. We use binary cross-entropy
as the loss function
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⇤
,

(21)
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operator Ô = hẐ0 + Ẑ1i/2 2 [�1, 1]. We optimize the loss
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for 100 epochs without batch method. While minimizing the
loss function, we monitor the classification accuracy on the
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trieve the model for evaluation on the test set. In Fig. 5(a),
we display the model’s estimation over the parameter space
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ing a satisfactory accuracy of 96% with d = 3 layers of
equivariant ansatz, preserving the rigid Z2 label symmetry.
For a fair comparison between EQNN-Z and HEA, we must
limit the circuit depth to the same level. Note that RXX(✓)
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patibility. By only counting the number of two-qubit gates
after decomposition for circuit depth, we set the layers of
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resulting in an example of 79% accuracy in Fig.5(b). After
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izations over full samples in the training pool, we achieve an
average accuracy of (91.63± 4.24%) and (77.30± 2.06%), re-
spectively, evaluated once the best historical performance on
validation sets is observed after training for 49.88± 28.62 and
34.40 ± 15.23 epochs, proving that our hyperparameters are
chosen adequately for model convergence.

D. Numerical experiments

After demonstrating that GQML can achieve high accu-
racy with su�cient labeled samples, Bob initiates slicing-the-
donut using QAL with a model-based-only USAMP strategy.
Note that for binary classification, the three sampling strate-
gies in Definition 1-3 are equivalent; that is, the sample will
be queried if it is nearest to the decision boundary among oth-
ers. Based on the loss function, Bob defines the model’s confi-
dence as |hÔix|, and queries the sample xQAL = argmaxx|hÔix|
for its true label from Alice. In Fig. 6, we illustrate the sam-
pling behavior of USAMP with EQNN-Z and HEA by record-

training accuracy 91.63 ± 4.24% (EQNN) and 77.30 ± 2.06% (HEA) 

Test accuracies 95% (EQNN) and 69% (HEA)

Using a uncertainty sampling strategy
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FIG. 8. In tic-tac-toe games, the winner is independent of rotations and flips, indicating a label symmetry of the dihedral group D4. Chess
boards g can be digitized into a sequence of integers among gi 2 {1, 0,�1} for QML tasks. The encoder (denoted by ”T”) consists of Rx

gates with parameters xi =
2
3 gi for data encoding. The ansatz with geometric priors is comprised of single-qubit gates (RX and RY ) on the

corner (black ”C”), edge (blue ”E”), and middle (red ”M”), where gates in the same category, repetition, and layer share a trainable parameter.
Controlled RY gates act as entanglers that connect corners to edges (black ”O”), edges to middle (blue ”I”), and middle to corner (red ”D”),
constructing the shadowed triangle to cover the qubit grid with label symmetry. The QNN (l, d) has l layers of trainable blocks, each of which
starts with an encoder ”T”, followed by d permutations of the ansatz ”CEMOID”.

C. Numerical experiments

Before applying QAL, we need to evaluate the model’s per-
formance with all samples labeled from the training pool. We
use the mean square error (MSE) loss function:

L(Ũ,✓) =
1
Ũ

X

g
i
2Ũ

||ŷ(g
i
,✓) � y

i
||

2, (28)

where y
i

is the one-hot encoded label of the chess board g
i

that +1 is assigned to the correct class and �1 to the others.
The loss function is minimized using the Adam optimizer with
a learning rate of 0.1 for 200 epochs without batching. All
settings, including dataset separation, parameter initialization
method, and stopping criterion, remain consistent with those
used in the slicing-a-donut experiment. We opt for the Mean
Squared Error (MSE) loss function instead of cross-entropy to
expedite the learning process with fewer epochs and a higher
learning rate. We have trained the model with 40 di↵erent ran-
dom parameter initializations over all labeled chess boards in
the training pool. Achieving an accuracy of 76.89±6.54% af-
ter training for an average of 127.58 ± 61.20 epochs, we con-
clude that the hyperparameter settings are adequate and the
model is capable of classifying tic-tac-toe chess boards. It also
shows a good agreement with the results from other numerical
experiments, where this family of equivariant QNN was firstly
proposed [32]. It is noteworthy that one can cherry-pick an
accuracy of 88.89% among the 40 results, significantly out-

performing the 33.33% baseline, which corresponds to blind
guessing in a triple classification problem.

For triple classification, these sampling strategies are no
longer equivalent. Additionally, it is necessary to map the vec-
tor of expectation values to a probabilistic distribution for US-
AMP. This can be achieved by employing the softmax func-
tion

Pyi
=

exp(yi)
exp(hÔ�i) + exp(hÔ�i) + exp(hÔ⇥i)

, (29)

where yi are the expectation values in the vector. Thus, one
can take the probabilities of all classes into consideration
when assessing uncertainty, sampling by entropy

gES = argmax
g

2
6666664�
X

j

P✓(y j|g) log P✓(y j|g)

3
7777775 (30)

to query the more informative chess board g according to the
model estimation. In Fig. 9, we demonstrate QAL for tic-tac-
toe with margin sampling over 40 di↵erent parameter initial-
izations. Benchmarking against random sampling, QAL fails
to outperform the baseline after querying 20 chess boards in
the training pool.

The ine↵ectiveness of QAL in the tic-tac-toe scenario can
be attributed to several factors. Firstly, tic-tac-toe chess
boards may lack significant variation in terms of their infor-
mativeness. Even if a specific board is deemed more informa-
tive by the model, the reduction in uncertainty upon labeling
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With this toy model, we demonstrate that QAL is valid if
there is an adequate QNN with su�cient learnability, as well
as the trade-o↵ between expressivity and equivariance. More-
over, it should also work for binary classifying datasets with
either discrete or continuous label symmetry if the distribution
of classical data xi in domain X is continuous (e.g., donut-like
datasets) or the outputs from quantum experiments ⇢i are liv-
ing in the whole Hilbert space (e.g., classifying single-qubit
density matrices according to purity). In this way, the model
can easily select the samples that are nearest to the decision
boundary for labeling, making the optimized sampling behav-
iors more e↵ective than sampling over those with almost the
same distances to the decision boundary.

IV. TIC-TAC-TOE:D4 SYMMETRY

A. Problem formulation

After exploring QAL with continuous data encoding, we
study its performance with discrete data encoding using tic-

tac-toe as another toy model. The tic-tac-toe board has three
classes: ”cross ⇥ won,” ”circle � won,” and ”draw �”, deter-
mined by checking if any player (⇥ or �) has formed a se-
quence of the same mark by row, column, or diagonal. Once
again, Alice has results from 500 tic-tac-toe games, divided
into a ratio of 3 : 1 : 1 for the training pool, validation set,
and test set. Alice requires Bob to train a QML model for
this multinomial classification problem with limited labeled
samples selected from the pool. Ironically, Bob lacks knowl-
edge of tic-tac-toe, preventing him from inferring the winner
despite having full access to the configurations of all chess
boards. Thus, similar to the approach used in slicing-a-donut,
he relies on Alice to provide label information whenever a
chess board is chosen from the pool.

B. QML model

Although Bob lacks common sense in classical determinis-
tic method for classification, he is an expert in group theory.
He decides to incorporate the symmetry of the game into the
model design. As shown on the left side of Fig. 8, the la-
bel of an arbitrary chessboard is preserved under rotations of
0, ⇡/2, ⇡, 3⇡/2 and the corresponding flipping about the verti-
cal axis. Bob understands that this symmetry is characterized
by the dihedral groupD4, with an order of 8.

This symmetry ensures that corners remain mapped to cor-
ners, edges to edges, and the middle remains unchanged after
the operation. It inspires the use of one-hot encoding, which
maps each site on the chessboard to one qubit, simplifying the
encoding-induced representation of label symmetryD4 to just
SWAP. The chessboard is digitized as g = {g0, ..., g8}, where
the status of each site is given as gi = {+1,�1, 0}, correspond-
ing to ⇥, �,�, respectively. These are then mapped to rotation
angles xi = 2⇡gi/3 for the RX(xi) gate, see the middle of Fig. 8.
The encoder layer, denoted as ”T” in the QNN structure, ap-
pears repeatedly in the circuit for data re-uploading. Conse-

quently, the permutation-type symmetry leads to equivariant
gates with visualizable symmetry on the grid of 9 qubits. For
example, a rotation of ⇡/2 angles should preserve labels af-
ter the following mappings: 0 ! 6 ! 8 ! 2 for corners
and 1 ! 3 ! 7 ! 5 for edges. This corresponds to the
SWAP06SWAP28SWAP08 and SWAP37SWAP15SWAP35 oper-
ations, respectively. Similarly, a vertical flip 0 $ 2, 3 $ 5,
6 $ 8 corresponds to SWAP02SWAP35SWAP68. There-
fore, single-qubit gates should act on qubits of the same cate-
gory with the same parameters, i.e., RY (✓(l,d)

1 j
)RX(✓(l,d)

0 j
), where

j = {”C”, ”E”, ”M”} represents the qubit on the corner (C),
edge (E), and middle (M). The entangling gate should also
follow this symmetry, e.g., CRY (✓(l,d)

j
), linking all neighboring

corners to edges symmetrically, leading to corner-to-edge (O),
edge-to-middle (I), and middle-to-corner (D). The gate sym-
metry is illustrated on the right side of Fig. 8. The correctness
of the gateset can be verified by calculating the twirling with
reduced symmetry, ensuring that symmetry between qubit 0
and qubit 2, for instance, is satisfied. For the single-qubit gate
RX with generator X0, we have the twirling formula

TR[X0] =
1
2

[IX0I + SWAP02X0SWAP02]

= (X0 + X2)/2, (23)

giving RX gate on the qubit 0 and qubit 2 by exp(�i✓TR[X0]),
absorbing the all coe�cients in gate parameters. Meanwhile,
for the two-qubit gate CRY with qubit 4 in the middle as the
control qubit and the generator G = (1� Z)4 ⌦ Y0, the formula
reads

TR[G] =
1
2
{I402[(I � Z)4 · ⌦Y0 ⌦ I2]I402

+ [I4 ⌦ SWAP02][(I � Z)4 ⌦ Y0 ⌦ I2][I4 ⌦ SWAP02]}

=
1
2

[(I � Z)4 ⌦ Y0 ⌦ I2 + (I � Z)4 ⌦ I0 ⌦ Y2], (24)

generating CRY gates that target qubit 0 and 2 with the same
parameters. The QNN with geometric prior consists of l

layers, each of which has one encoder ”T” followed by d

repetitions of the equivariant ansatz ”CEMOID”. Note that
the ansatz configuration can be permutations of ”CEMOID”
without loss of equivariance. In numerical experiments, we
take (l, d) = (2, 5) with the QNN configuration denoted
by ”TCEMOIDCEMOIDCEMOIDCEMOIDCEMOIDTCE-
MOIDCEMOIDCEMOIDCEMOIDCEMOID”. After apply-
ing the QNN to |0i⌦9, the prediction for each class is obtained
by measuring equivariant observables

Ô� =
1
4

X

C

Zj =
1
4

[Z0 + Z2 + Z6 + Z8], (25)

Ô� = ZM = Z4, (26)

Ô⇥ =
1
4

X

E

Zj =
1
4

[Z1 + Z3 + Z5 + Z7] (27)

for the vector of expectation values ŷ = [hÔ�i, hÔ�i, hÔ⇥i],
where each expectation value is within [�1, 1], and finding
the maximal expectation.
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FIG. 8. In tic-tac-toe games, the winner is independent of rotations and flips, indicating a label symmetry of the dihedral group D4. Chess
boards g can be digitized into a sequence of integers among gi 2 {1, 0,�1} for QML tasks. The encoder (denoted by ”T”) consists of Rx

gates with parameters xi =
2
3 gi for data encoding. The ansatz with geometric priors is comprised of single-qubit gates (RX and RY ) on the

corner (black ”C”), edge (blue ”E”), and middle (red ”M”), where gates in the same category, repetition, and layer share a trainable parameter.
Controlled RY gates act as entanglers that connect corners to edges (black ”O”), edges to middle (blue ”I”), and middle to corner (red ”D”),
constructing the shadowed triangle to cover the qubit grid with label symmetry. The QNN (l, d) has l layers of trainable blocks, each of which
starts with an encoder ”T”, followed by d permutations of the ansatz ”CEMOID”.

C. Numerical experiments

Before applying QAL, we need to evaluate the model’s per-
formance with all samples labeled from the training pool. We
use the mean square error (MSE) loss function:

L(Ũ,✓) =
1
Ũ

X

g
i
2Ũ

||ŷ(g
i
,✓) � y

i
||

2, (28)

where y
i

is the one-hot encoded label of the chess board g
i

that +1 is assigned to the correct class and �1 to the others.
The loss function is minimized using the Adam optimizer with
a learning rate of 0.1 for 200 epochs without batching. All
settings, including dataset separation, parameter initialization
method, and stopping criterion, remain consistent with those
used in the slicing-a-donut experiment. We opt for the Mean
Squared Error (MSE) loss function instead of cross-entropy to
expedite the learning process with fewer epochs and a higher
learning rate. We have trained the model with 40 di↵erent ran-
dom parameter initializations over all labeled chess boards in
the training pool. Achieving an accuracy of 76.89±6.54% af-
ter training for an average of 127.58 ± 61.20 epochs, we con-
clude that the hyperparameter settings are adequate and the
model is capable of classifying tic-tac-toe chess boards. It also
shows a good agreement with the results from other numerical
experiments, where this family of equivariant QNN was firstly
proposed [32]. It is noteworthy that one can cherry-pick an
accuracy of 88.89% among the 40 results, significantly out-

performing the 33.33% baseline, which corresponds to blind
guessing in a triple classification problem.

For triple classification, these sampling strategies are no
longer equivalent. Additionally, it is necessary to map the vec-
tor of expectation values to a probabilistic distribution for US-
AMP. This can be achieved by employing the softmax func-
tion

Pyi
=

exp(yi)
exp(hÔ�i) + exp(hÔ�i) + exp(hÔ⇥i)

, (29)

where yi are the expectation values in the vector. Thus, one
can take the probabilities of all classes into consideration
when assessing uncertainty, sampling by entropy

gES = argmax
g

2
6666664�
X

j

P✓(y j|g) log P✓(y j|g)

3
7777775 (30)

to query the more informative chess board g according to the
model estimation. In Fig. 9, we demonstrate QAL for tic-tac-
toe with margin sampling over 40 di↵erent parameter initial-
izations. Benchmarking against random sampling, QAL fails
to outperform the baseline after querying 20 chess boards in
the training pool.

The ine↵ectiveness of QAL in the tic-tac-toe scenario can
be attributed to several factors. Firstly, tic-tac-toe chess
boards may lack significant variation in terms of their infor-
mativeness. Even if a specific board is deemed more informa-
tive by the model, the reduction in uncertainty upon labeling

Achieving accuracy 76.89 ± 6.54% after 
training 127.58 ± 61.20 epochs.tic-tac-toe board 
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With this toy model, we demonstrate that QAL is valid if
there is an adequate QNN with su�cient learnability, as well
as the trade-o↵ between expressivity and equivariance. More-
over, it should also work for binary classifying datasets with
either discrete or continuous label symmetry if the distribution
of classical data xi in domain X is continuous (e.g., donut-like
datasets) or the outputs from quantum experiments ⇢i are liv-
ing in the whole Hilbert space (e.g., classifying single-qubit
density matrices according to purity). In this way, the model
can easily select the samples that are nearest to the decision
boundary for labeling, making the optimized sampling behav-
iors more e↵ective than sampling over those with almost the
same distances to the decision boundary.

IV. TIC-TAC-TOE:D4 SYMMETRY

A. Problem formulation

After exploring QAL with continuous data encoding, we
study its performance with discrete data encoding using tic-

tac-toe as another toy model. The tic-tac-toe board has three
classes: ”cross ⇥ won,” ”circle � won,” and ”draw �”, deter-
mined by checking if any player (⇥ or �) has formed a se-
quence of the same mark by row, column, or diagonal. Once
again, Alice has results from 500 tic-tac-toe games, divided
into a ratio of 3 : 1 : 1 for the training pool, validation set,
and test set. Alice requires Bob to train a QML model for
this multinomial classification problem with limited labeled
samples selected from the pool. Ironically, Bob lacks knowl-
edge of tic-tac-toe, preventing him from inferring the winner
despite having full access to the configurations of all chess
boards. Thus, similar to the approach used in slicing-a-donut,
he relies on Alice to provide label information whenever a
chess board is chosen from the pool.

B. QML model

Although Bob lacks common sense in classical determinis-
tic method for classification, he is an expert in group theory.
He decides to incorporate the symmetry of the game into the
model design. As shown on the left side of Fig. 8, the la-
bel of an arbitrary chessboard is preserved under rotations of
0, ⇡/2, ⇡, 3⇡/2 and the corresponding flipping about the verti-
cal axis. Bob understands that this symmetry is characterized
by the dihedral groupD4, with an order of 8.

This symmetry ensures that corners remain mapped to cor-
ners, edges to edges, and the middle remains unchanged after
the operation. It inspires the use of one-hot encoding, which
maps each site on the chessboard to one qubit, simplifying the
encoding-induced representation of label symmetryD4 to just
SWAP. The chessboard is digitized as g = {g0, ..., g8}, where
the status of each site is given as gi = {+1,�1, 0}, correspond-
ing to ⇥, �,�, respectively. These are then mapped to rotation
angles xi = 2⇡gi/3 for the RX(xi) gate, see the middle of Fig. 8.
The encoder layer, denoted as ”T” in the QNN structure, ap-
pears repeatedly in the circuit for data re-uploading. Conse-

quently, the permutation-type symmetry leads to equivariant
gates with visualizable symmetry on the grid of 9 qubits. For
example, a rotation of ⇡/2 angles should preserve labels af-
ter the following mappings: 0 ! 6 ! 8 ! 2 for corners
and 1 ! 3 ! 7 ! 5 for edges. This corresponds to the
SWAP06SWAP28SWAP08 and SWAP37SWAP15SWAP35 oper-
ations, respectively. Similarly, a vertical flip 0 $ 2, 3 $ 5,
6 $ 8 corresponds to SWAP02SWAP35SWAP68. There-
fore, single-qubit gates should act on qubits of the same cate-
gory with the same parameters, i.e., RY (✓(l,d)

1 j
)RX(✓(l,d)

0 j
), where

j = {”C”, ”E”, ”M”} represents the qubit on the corner (C),
edge (E), and middle (M). The entangling gate should also
follow this symmetry, e.g., CRY (✓(l,d)

j
), linking all neighboring

corners to edges symmetrically, leading to corner-to-edge (O),
edge-to-middle (I), and middle-to-corner (D). The gate sym-
metry is illustrated on the right side of Fig. 8. The correctness
of the gateset can be verified by calculating the twirling with
reduced symmetry, ensuring that symmetry between qubit 0
and qubit 2, for instance, is satisfied. For the single-qubit gate
RX with generator X0, we have the twirling formula

TR[X0] =
1
2

[IX0I + SWAP02X0SWAP02]

= (X0 + X2)/2, (23)

giving RX gate on the qubit 0 and qubit 2 by exp(�i✓TR[X0]),
absorbing the all coe�cients in gate parameters. Meanwhile,
for the two-qubit gate CRY with qubit 4 in the middle as the
control qubit and the generator G = (1� Z)4 ⌦ Y0, the formula
reads

TR[G] =
1
2
{I402[(I � Z)4 · ⌦Y0 ⌦ I2]I402

+ [I4 ⌦ SWAP02][(I � Z)4 ⌦ Y0 ⌦ I2][I4 ⌦ SWAP02]}

=
1
2

[(I � Z)4 ⌦ Y0 ⌦ I2 + (I � Z)4 ⌦ I0 ⌦ Y2], (24)

generating CRY gates that target qubit 0 and 2 with the same
parameters. The QNN with geometric prior consists of l

layers, each of which has one encoder ”T” followed by d

repetitions of the equivariant ansatz ”CEMOID”. Note that
the ansatz configuration can be permutations of ”CEMOID”
without loss of equivariance. In numerical experiments, we
take (l, d) = (2, 5) with the QNN configuration denoted
by ”TCEMOIDCEMOIDCEMOIDCEMOIDCEMOIDTCE-
MOIDCEMOIDCEMOIDCEMOIDCEMOID”. After apply-
ing the QNN to |0i⌦9, the prediction for each class is obtained
by measuring equivariant observables

Ô� =
1
4

X

C

Zj =
1
4

[Z0 + Z2 + Z6 + Z8], (25)

Ô� = ZM = Z4, (26)

Ô⇥ =
1
4

X

E

Zj =
1
4

[Z1 + Z3 + Z5 + Z7] (27)

for the vector of expectation values ŷ = [hÔ�i, hÔ�i, hÔ⇥i],
where each expectation value is within [�1, 1], and finding
the maximal expectation.
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With this toy model, we demonstrate that QAL is valid if
there is an adequate QNN with su�cient learnability, as well
as the trade-o↵ between expressivity and equivariance. More-
over, it should also work for binary classifying datasets with
either discrete or continuous label symmetry if the distribution
of classical data xi in domain X is continuous (e.g., donut-like
datasets) or the outputs from quantum experiments ⇢i are liv-
ing in the whole Hilbert space (e.g., classifying single-qubit
density matrices according to purity). In this way, the model
can easily select the samples that are nearest to the decision
boundary for labeling, making the optimized sampling behav-
iors more e↵ective than sampling over those with almost the
same distances to the decision boundary.

IV. TIC-TAC-TOE:D4 SYMMETRY

A. Problem formulation

After exploring QAL with continuous data encoding, we
study its performance with discrete data encoding using tic-

tac-toe as another toy model. The tic-tac-toe board has three
classes: ”cross ⇥ won,” ”circle � won,” and ”draw �”, deter-
mined by checking if any player (⇥ or �) has formed a se-
quence of the same mark by row, column, or diagonal. Once
again, Alice has results from 500 tic-tac-toe games, divided
into a ratio of 3 : 1 : 1 for the training pool, validation set,
and test set. Alice requires Bob to train a QML model for
this multinomial classification problem with limited labeled
samples selected from the pool. Ironically, Bob lacks knowl-
edge of tic-tac-toe, preventing him from inferring the winner
despite having full access to the configurations of all chess
boards. Thus, similar to the approach used in slicing-a-donut,
he relies on Alice to provide label information whenever a
chess board is chosen from the pool.

B. QML model

Although Bob lacks common sense in classical determinis-
tic method for classification, he is an expert in group theory.
He decides to incorporate the symmetry of the game into the
model design. As shown on the left side of Fig. 8, the la-
bel of an arbitrary chessboard is preserved under rotations of
0, ⇡/2, ⇡, 3⇡/2 and the corresponding flipping about the verti-
cal axis. Bob understands that this symmetry is characterized
by the dihedral groupD4, with an order of 8.

This symmetry ensures that corners remain mapped to cor-
ners, edges to edges, and the middle remains unchanged after
the operation. It inspires the use of one-hot encoding, which
maps each site on the chessboard to one qubit, simplifying the
encoding-induced representation of label symmetryD4 to just
SWAP. The chessboard is digitized as g = {g0, ..., g8}, where
the status of each site is given as gi = {+1,�1, 0}, correspond-
ing to ⇥, �,�, respectively. These are then mapped to rotation
angles xi = 2⇡gi/3 for the RX(xi) gate, see the middle of Fig. 8.
The encoder layer, denoted as ”T” in the QNN structure, ap-
pears repeatedly in the circuit for data re-uploading. Conse-

quently, the permutation-type symmetry leads to equivariant
gates with visualizable symmetry on the grid of 9 qubits. For
example, a rotation of ⇡/2 angles should preserve labels af-
ter the following mappings: 0 ! 6 ! 8 ! 2 for corners
and 1 ! 3 ! 7 ! 5 for edges. This corresponds to the
SWAP06SWAP28SWAP08 and SWAP37SWAP15SWAP35 oper-
ations, respectively. Similarly, a vertical flip 0 $ 2, 3 $ 5,
6 $ 8 corresponds to SWAP02SWAP35SWAP68. There-
fore, single-qubit gates should act on qubits of the same cate-
gory with the same parameters, i.e., RY (✓(l,d)

1 j
)RX(✓(l,d)

0 j
), where

j = {”C”, ”E”, ”M”} represents the qubit on the corner (C),
edge (E), and middle (M). The entangling gate should also
follow this symmetry, e.g., CRY (✓(l,d)

j
), linking all neighboring

corners to edges symmetrically, leading to corner-to-edge (O),
edge-to-middle (I), and middle-to-corner (D). The gate sym-
metry is illustrated on the right side of Fig. 8. The correctness
of the gateset can be verified by calculating the twirling with
reduced symmetry, ensuring that symmetry between qubit 0
and qubit 2, for instance, is satisfied. For the single-qubit gate
RX with generator X0, we have the twirling formula

TR[X0] =
1
2

[IX0I + SWAP02X0SWAP02]

= (X0 + X2)/2, (23)

giving RX gate on the qubit 0 and qubit 2 by exp(�i✓TR[X0]),
absorbing the all coe�cients in gate parameters. Meanwhile,
for the two-qubit gate CRY with qubit 4 in the middle as the
control qubit and the generator G = (1� Z)4 ⌦ Y0, the formula
reads

TR[G] =
1
2
{I402[(I � Z)4 · ⌦Y0 ⌦ I2]I402

+ [I4 ⌦ SWAP02][(I � Z)4 ⌦ Y0 ⌦ I2][I4 ⌦ SWAP02]}

=
1
2

[(I � Z)4 ⌦ Y0 ⌦ I2 + (I � Z)4 ⌦ I0 ⌦ Y2], (24)

generating CRY gates that target qubit 0 and 2 with the same
parameters. The QNN with geometric prior consists of l

layers, each of which has one encoder ”T” followed by d

repetitions of the equivariant ansatz ”CEMOID”. Note that
the ansatz configuration can be permutations of ”CEMOID”
without loss of equivariance. In numerical experiments, we
take (l, d) = (2, 5) with the QNN configuration denoted
by ”TCEMOIDCEMOIDCEMOIDCEMOIDCEMOIDTCE-
MOIDCEMOIDCEMOIDCEMOIDCEMOID”. After apply-
ing the QNN to |0i⌦9, the prediction for each class is obtained
by measuring equivariant observables
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FIG. 8. In tic-tac-toe games, the winner is independent of rotations and flips, indicating a label symmetry of the dihedral group D4. Chess
boards g can be digitized into a sequence of integers among gi 2 {1, 0,�1} for QML tasks. The encoder (denoted by ”T”) consists of Rx

gates with parameters xi =
2
3 gi for data encoding. The ansatz with geometric priors is comprised of single-qubit gates (RX and RY ) on the

corner (black ”C”), edge (blue ”E”), and middle (red ”M”), where gates in the same category, repetition, and layer share a trainable parameter.
Controlled RY gates act as entanglers that connect corners to edges (black ”O”), edges to middle (blue ”I”), and middle to corner (red ”D”),
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C. Numerical experiments

Before applying QAL, we need to evaluate the model’s per-
formance with all samples labeled from the training pool. We
use the mean square error (MSE) loss function:

L(Ũ,✓) =
1
Ũ

X

g
i
2Ũ
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where y
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is the one-hot encoded label of the chess board g
i

that +1 is assigned to the correct class and �1 to the others.
The loss function is minimized using the Adam optimizer with
a learning rate of 0.1 for 200 epochs without batching. All
settings, including dataset separation, parameter initialization
method, and stopping criterion, remain consistent with those
used in the slicing-a-donut experiment. We opt for the Mean
Squared Error (MSE) loss function instead of cross-entropy to
expedite the learning process with fewer epochs and a higher
learning rate. We have trained the model with 40 di↵erent ran-
dom parameter initializations over all labeled chess boards in
the training pool. Achieving an accuracy of 76.89±6.54% af-
ter training for an average of 127.58 ± 61.20 epochs, we con-
clude that the hyperparameter settings are adequate and the
model is capable of classifying tic-tac-toe chess boards. It also
shows a good agreement with the results from other numerical
experiments, where this family of equivariant QNN was firstly
proposed [32]. It is noteworthy that one can cherry-pick an
accuracy of 88.89% among the 40 results, significantly out-

performing the 33.33% baseline, which corresponds to blind
guessing in a triple classification problem.

For triple classification, these sampling strategies are no
longer equivalent. Additionally, it is necessary to map the vec-
tor of expectation values to a probabilistic distribution for US-
AMP. This can be achieved by employing the softmax func-
tion
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where yi are the expectation values in the vector. Thus, one
can take the probabilities of all classes into consideration
when assessing uncertainty, sampling by entropy
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to query the more informative chess board g according to the
model estimation. In Fig. 9, we demonstrate QAL for tic-tac-
toe with margin sampling over 40 di↵erent parameter initial-
izations. Benchmarking against random sampling, QAL fails
to outperform the baseline after querying 20 chess boards in
the training pool.

The ine↵ectiveness of QAL in the tic-tac-toe scenario can
be attributed to several factors. Firstly, tic-tac-toe chess
boards may lack significant variation in terms of their infor-
mativeness. Even if a specific board is deemed more informa-
tive by the model, the reduction in uncertainty upon labeling
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starts with an encoder ”T”, followed by d permutations of the ansatz ”CEMOID”.
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Summary on quantum machine learning

ü Training an embedding quantum kernel (EQK) from data re-uploading QNNs for classification. 
ü Constructing the kernel matrix only once, offering improved efficiency. 

ü Two specific cases:
n-to-n: the output of the training of an n-qubit QNN directly as a feature map.  
1-to-n: creating EQKs with entanglement from the training of a single-qubit QNN.

ü EQK with classical PCA for classification of satellite images with accuracy approaching 90%.
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ü Intriguing to investigate the potential of alternative QML models.

ü QAL can achieve performance comparable to that on fully labeled datasets
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Thanks for your attention!


