Searches in the Higgs sector at the LHC

... from the CMS point of view

30th IFT Xmas Workshop, December 2024 Agni Bethani

Why study the Higgs sector?

Why study the Higgs sector?

The CMS detector

- One of the experiments along the Large Hadron Collider in the Geneva
- b-jets are really important for Higgs physics due to the large BR, H->bb BR 0.6
- information from the inner tracker are used to identify bjets

Resolved and boosted topologies

jets, b-jets and hadronic τ decays

b-jet tagging performance

ParticleNet: Cutting edge b-tagging algorithm for boosted topologies. Outperforms DeepAK8 x 2

11/12/2024

Extended Higgs sectors

- In the Standard Model the Higgs sector is one complex doublet
- SM+ Singlet
 - Minimal extension
 - Mixing with SM doublet=> modified couplings
- Two Higgs doublet model (2HDM)
 - e.g. MSSM
 - Very popular, rich phenomenology
 - Type I, II etc depending on how the doublet interacts with fermions
- 2HDM+Singlet
 - e.g NMSSM
 - Combines benefit from the two above
 - Rich phenomenology, several mixing angles, modified couplings, forbidden decays, multiple scalars

Long list of searches!!

This is not the full list...

I will only talk about select few today, as examples

V/HH/HV/V

H-ext.

General categories

- Heavy Higgs searches
- Light Higgs searches •
- Higgs pair production ٠
- X->VH

Overview of CMS B2G Results

lune 2024

Simulation boundary

4

138 fb⁻¹

➤ 36 fb⁻¹

36 - 138 fb⁻¹ (13 TeV)

0.8 - 4.3

1.3 – 4.4

0.8 - 3.7

0.8 - 3.7

1.3 - 3.9

1.0 - 4.0

1.0 - 4.0

1.0 - 4.0

1.0 - 3.9

11/12/2024

H->tt

- pQCD description of background
- top decay allows to exploit angular observables
 => different tt spin states

imas at IFT

H->tt

- Excess of events> 5 sigma with respect to bkg-only
- Pseudoscalar is more compatible than scalar
- Excess compatible with bound state η_t with σ =7.1pb +/-11%

https://cds.cern.ch/record/2911775

11/12/2024

H->tt

https://cds.cern.ch/record/2911775

exclusion limits on the coupling of pseudoscalar or scalar bosons to top quarks Φ mass 365–1000 GeV, width 0.5–25%

Xmas at IFT

H->aa->4 $\tau/2\tau+2\mu$

- a from 4 to 15 GeV
- specialized analysis strategy to identify highly Lorentz-boosted muon or tau lepton pairs with overlapping decay products
- Both 4τ and 2τ+2μ combined to extract limits relative to BR a->4τ a BR to fermions linear with m_a
- Various 2HDM+S models examined

https://cds.cern.ch/record/2911497

A->ZH->IItt

- mA > mH + mZ,
 - the decay A →ZH dominant in a wide range of the 2HDM
- mH> 400 GeV
 - the decay $H \rightarrow tt$ dominant
- ATLAS excess
 - (mA, mH) = (650, 450) GeV with a local significance of 2.85 SD

https://cds.cern.ch/record/2892681

A->ZH->IItt

Does not confirm the excess seen by ATLAS 2HDM interpretations

The Higgs potential

- The least explored part of the Standard Model!
- The Higgs sector is sensitive to new physics BSM
- Cosmological consequences:
 - Inflation
 - Vacuum stability
 - Baryogenesis
 - ...?

"If the Universe was infinitely old, even an arbitrarily low vacuum decay rate would be incompatible with our existence."

Double Higgs production at the LHC (SM)

- At the LHC dominant production mechanism for SM double Higgs production is gluon fusion (ggf)
- Other productions such as VBF and VHH also possible; σ is much smaller
- The "box" and "triangle" diagrams interact destructively
- SM cross-section very small !! (~1000 times smaller than single Higgs production)

Double Higgs production at the LHC (SM)

Graphic by Katherine Leney

Higgs trilinear coupling

Sensitivity to κ_{λ} via single Higgs production NLO corrections in H->VV decay and Higgs boson propagator

V

ď

Higgs pair production

HH decays:

bbbb:

the highest branching fraction, large multijet background

bbWW(bbVV): Second largest branching fraction Large background. Final states with at least one lepton cleaner.

Multilepton(WW*WW*, WW*ττ, and ττττ): Many different signatures, clean leptonic final states, no b-tagging needed

bbττ: relatively large branching fraction, cleaner final state

bbγγ:

very small branching fraction, clean signal extraction due to the narrow $h \rightarrow \gamma \gamma$ mass peak

WWγγ: Clean γγ peak, leptonic final states or jets

ττγγ: best of ττ and γγ. Small BR

11/12/2024

Higgs pair production cross-section

Xmas at IFT

Higgs trilinear coupling

11/12/2024

Single and double Higgs searches Simultaneously constrain

- Higgs boson trilinear self-coupling
- Higgs boson couplings to fermions and to vector bosons.

Analysis	Integrated	Maximum	References	Analysis	Int. luminosity (fb $^{-1}$)	Targeted production modes
	luminosity (fb $^{-1}$)	granularity	References	$HH \rightarrow \gamma \gamma b \overline{b}$	138	ggHH and qqHH
$H \rightarrow 4l$	138	STXS 1.2	[34]	${ m HH} ightarrow au au { m b} \overline{ m b}$	138	ggHH and qqHH
${ m H} ightarrow \gamma \gamma$	138	STXS 1.2	[35,none]	$\mathrm{HH} ightarrow 4\mathrm{b}$	138	ggHH, qqHH and VHH
$\mathrm{H} \to \mathrm{W}\mathrm{W}$	138	STXS 1.2	[37]	$HH \rightarrow leptons$	138	ggHH
$H \rightarrow leptons (t\bar{t}H)$	138	Inclusive	[38]	$HH \rightarrow WWb\overline{b}$	138	ggHH and qqHH
$\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}} \; (\mathrm{g} \mathrm{g} \mathrm{H})$	138	Inclusive	[39]			
${ m H} ightarrow { m b} \overline{ m b} ~({ m V}{ m H})$	77	Inclusive	[40,41]			
$H \rightarrow b\overline{b} \ (t\overline{t}H)$	36	Inclusive	[42]			
m H ightarrow au au	138	STXS 1.2	[43]			
${ m H} ightarrow \mu \mu$	138	Inclusive	[44]		https://arxiv.org/abs	(2407 13554

W/Z

g **-**mmm

g -.....

`..... *κ*λ

Single and double Higgs searches

CMS

	Best f	it $\pm 1\sigma$	95% CL interval		
Hypothesis	Expected	Observed	Expected	Observed	
Other couplings fixed to SM	$1.0^{+4.6}_{-1.7}$	$3.1^{+3.0}_{-3.0}$	[-2.0, +7.7]	[-1.2, +7.5]	
Floating ($\kappa_{\rm V}, \kappa_{2\rm V}, \kappa_f$)	$1.0^{+4.7}_{-1.8}$	$4.5^{+1.8}_{-4.7}$	[-2.2, +7.8]	[-1.7, +7.7]	
Floating ($\kappa_{\rm V}, \kappa_{\rm t}, \kappa_{\rm b}, \kappa_{\tau}$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.7}_{-4.1}$	[-2.3, +7.7]	[-1.4, +7.8]	
Floating ($\kappa_{\rm V}, \kappa_{\rm 2V}, \kappa_{\rm t}, \kappa_{\rm b}, \kappa_{\tau}, \kappa_{\mu}$)	$1.0^{+4.8}_{-1.8}$	$4.7^{+1.7}_{-4.2}$	[-2.3, +7.8]	[-1.4, +7.8]	

- Single H prefers positive $\kappa\lambda$
- Allowing other coupling to float doesn't affect the constraints a lot. We can measure κλ without assumptions!

https://arxiv.org/abs/2407.13554

Single and double Higgs searches

• Adding the H constraints on kt and kv bring enormous improvement to 2D countours!

HH anomalous couplings <u>HIG-20-011</u>

- HEFT parametrisation
- Benchmarks combinations of the coupling modifiers
 (κ_λ , κ_t , c₂ , c_g , c_{2g})

HH/YH searches in CMS

- Searches for heavy resonances
 - X→HH
 - $X \rightarrow YH$
- In Run 2 only narrow width (~10%) resonances with:
 - spin 0 such as a radion, or heavy Higgs in models with extended Higgs sector, e.g. 2HDM
 - spin 2 such as a KK graviton in Randal-Sundrum model
 - Some model dependent interpretations
- Mass range: 250 GeV to 4500 GeV
- No interference effects considered

$$H \rightarrow YX \rightarrow 4b$$

- HH and HY
- X in HH search 400–1400 GeV
- X in HY search 400-1600 GeV
 - Y mass range being 60–1400 GeV

HIG-20-012

 4.1σ (local) 2.8σ (global)

- HH and HY
- X in HH search 400–1400 GeV
- X in HY search 400-1600 GeV
 - Y mass range being 60–1400 GeV
- Interpretation in the context of NMSSM

$HY \rightarrow bb\gamma\gamma$

- HH and HY
- X in HH search 260–1000 GeV
- X in HY search 300–1000 GeV
 - Y mass range being 90–800 GeV

$HY \rightarrow bb\gamma\gamma$

Expected exclusion limits at 95% CL on σ (pp \rightarrow X \rightarrow HY \rightarrow $\gamma\gamma$ bb) [fb]

10

10⁻²

Summary and combination of HH searches

https://arxiv.org/abs/2403.16926 Review on HH,YH and ZH searches

11/Accepted by Phys. Rept.

Summary and combination of YH searches

Xmas at IFT

Model dependent results: hMSSM

Model dependent results: Mh EFT

Model dependent results: warped extra dimensions

Narrow width approximation

- HH and YH analyses make use of the NWA
- Interference with non-resonant HH can be either constructive or destructive
- May have nonnegligible effect in exclusion limits
- Benchmark: Simplified scenario based on the real-singlet model Chosen to have the smallest number of additional free parameters $(\lambda_{HHX}, \sin\alpha, M_X, \kappa\lambda=1)$
- Model dependent!!! Take it with a grain of salt But it shows that we need to take this into account in the future.

Narrow width approximation

Xmas at IFT

- HH and YH analyses make use of the NWA
- Interference with non-resonant HH can be either constructive or destructive
- May have nonnegligible effect in exclusion limits
- Benchmark: Simplified scenario based on the real-singlet model Chosen to have the smallest number of additional free parameters $(\lambda_{HHX}, \sin\alpha, M_X, \kappa\lambda=1)$
- Model dependent!!! Take it with a grain of salt But it shows that we need to take this into account in the future.

(HL-)LHC timeline

HL-LHC projections

- HL-LHC is planned to start in 2029
- 3000 fb⁻¹ (maybe even 4000 fb⁻¹)
- center-of-mass energy of 14 TeV
- 140 (200) PU baseline (ultimate) scenario.
- bbττ, bbγγ, bbbb(boosted)

- S1
 - systematics same as Run2
 - conservative
- S2
 - Systematic uncertainties halved
 - Datadriven/statistical uncertainties scaled with lumi
 - no MC statistical uncertainties

HL-LHC projections

HIG-20-012

After 1000 fb-1 of data we will be sensitive to μ =1

	Significance (σ) at 2000 fb ⁻¹		Significance (σ) at 3000 fb ⁻¹	
	S2	Stat. only	S2	Stat. only
$b\overline{b}b\overline{b}$ resolved jets	1.0	1.3	1.4	1.6
$b\overline{b}b\overline{b}$ merged jets	1.7	1.7	2.0	2.1
$b\overline{b}\tau\tau$	1.7	1.9	2.1	2.3
bbWW	0.6	0.8	0.7	0.9
$b\overline{b}\gamma\gamma$	1.8	1.9	2.2	2.3
Combination	3.2	3.6	3.8	4.3

- We could have discovery at the end of HL-LHC!
- Historically projections are always conservative
- We already know of improvements that will benefit the HH results and some are in place already for Run3

Summary

- Searches for additional scalars
 - Heavy
 - Light
 - 2HDM, NMSSM and more
- Searches for Higgs pairs
 - non-resonant (brand new!)
 - resonant HH and HY
- Looking ahead:
 - Run3:
 - promising improvements expected.
 - More thorough investigations and interpretations
 - Discovery at HL-LHC??

