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From Bell’s theorem to the device-independent 
quantum information scenario



Novel information applications become possible thanks to quantum effects, 
e.g. more powerful computers and secure cryptography.

Change of paradigm: physics matters! 

What happens when we encode information on quantum particles?

Quantum information science



Quantum Computer

Quantum information technologies

Quantum Simulator

Quantum Cryptography QRNG



Is this a quantum computer?

Quantum certification

Does this properly simulate 
a quantum system?

Is this cryptographically secure? Is this quantum random?





Can one certify the presence of (quantum) randomness?



How can one certify a quantum device from its outputs?



Quantum key distribution

Standard schemes: Bennett-Brassard 84 (BB84) protocol
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Bob.
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Quantum key distribution

Standard schemes: Bennett-Brassard 84 (BB84) protocol

Alice
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• Alice encodes a random bit into a two-dimensional quantum particle. The basis 

for encoding is also chosen randomly between x and z. The particle is sent to 
Bob.

• Bob also chooses randomly in which basis to measure the quantum particle.
• When the bases coincide the results are identical. These cases are kept.
• When the bases are different, the results are random. These cases are removed.
• At the end, of the process, Alice and Bob share a list of perfectly correlated and 

random bits ➔ a secret key!
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Quantum key distribution

Standard schemes: Bennett-Brassard 84 (BB84) protocol
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Eve intercepts the quantum particles while they travel through the channel.
However, she does not know in which basis to measure!
Heisenberg uncertainty principle: impossible to perform two non-commuting measurements.



Quantum key distribution

• Quantum key distribution protocols are based on physical security.

• Assumption: quantum theory offers a correct physical description of the 
devices.

• No assumption is required on the eavesdropper’s power, provided it does 
not contradict any quantum law.

• Using this (these) assumption(s), the security of the schemes can be 
proven, that is, one can construct a security proof.



Quantum hacking



Quantum hacking

How come?!



Quantum hacking

Quantum hacking attacks break the implementation, not the principle.



Quantum hacking

Theory

• Prepare states in a Hilbert space 
of dimension two.

• Measure observables in the 
same space, e.g. spin-1/2 
measurements.
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Quantum hacking

• Prepare states in a Hilbert space 
of dimension two.

• Measure observables in the 
same space, e.g. spin-1/2 
measurements.

Implementation

• Prepare states using an 
attenuated laser source.

• Measure polarization of light 
using single-photon detectors.

Moral: the unavoidable mismatch between theoretical requirements and 
implementation is an important weakness in quantum information protocols, 
especially in adversarial scenarios. Physical details become a weakness!

Quantum hacking attacks break the implementation, not the principle.

Theoretical security proof



A solution to the hacking problem

Device-Independent Quantum Key Distribution

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob

Protocols that establish a secure key only from the observed statistics and without 
making any assumption about the internal working of the devices used to obtain it.

A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007)

𝑝 𝑎𝑏|𝑥𝑦



DI quantum information processing

Develop a new form of quantum information theory in a scenario where the 
users’ devices are just seen as (quantum) black boxes processing classical 
information. The resulting protocols have self-certification.

xN = 1,…,m

a1 = 1,…,r aN = 1,…,r

x1 = 1,…,m

ai = 1,…,r

xi = 1,…,m

… …

Observed statistics

𝑝 𝑎1…𝑎𝑁|𝑥1…𝑥𝑁



Why is this possible?



From certification to Bell’s theorem

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob

Provider

𝑝 𝑎𝑏|𝑥𝑦
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Source
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From certification to Bell’s theorem

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob

Source

𝑝 𝑎𝑏|𝑥𝑦

This is nothing but a Bell test, in which local measurements are performed on two 
separated systems, prepared by the source.



One of the main lessons of Bell’s theorem
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𝑝 𝑎𝑏|𝑥𝑦

The statistics of an experiment, a.k.a. correlations, depends on the physical 
properties of the measured systems.



The statistics of an experiment, a.k.a. correlations, depends on the physical 
properties of the measured systems.

Physical principles impose limits on correlations.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob

Source

𝑝 𝑎𝑏|𝑥𝑦

One of the main lessons of Bell’s theorem



Physical correlations

The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

a=1,…,r

x=1,…,m

Alice 𝑝 𝑎𝑏|𝑥𝑦

y=1,…,m

b=1,…,r

Bob



Physical correlations
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a=1,…,r

x=1,…,m
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Bob
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x=1,…,m
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Physical correlations

The object we deal with is a conditional probability distribution of the outputs given the 
inputs, which encapsulates the correlations among devices.

a=1,…,r

x=1,…,m

Alice 𝑝 𝑎𝑏|𝑥𝑦

y=1,…,m

b=1,…,r

Bob

𝑝 𝑎𝑏|𝑥𝑦 =

𝑝 1,1|1,1 𝑝 2, 1|1,1 ⋯ 𝑝 𝑟, 𝑟|1,1

𝑝 1,1|2,1 𝑝 2,1|2,1 ⋯ 𝑝 𝑟, 𝑟|2,1
⋮ ⋮ ⋱ ⋮

𝑝 1, 1|𝑚,𝑚 𝑝 2,1|𝑚,𝑚 ⋯ 𝑝 𝑟, 𝑟|𝑚,𝑚

𝑝 𝑎𝑏|𝑥𝑦 ≥ 0,෍

𝑎𝑏

𝑝 𝑎𝑏|1,1 = 1
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Example

y=0,1

a=+1,-1 b=+1,-1

x=0,1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

𝑝 +1,+1|0,0 𝑝 +1,−1|0,0 𝑝 −1,+1|0,0 𝑝 −1,−1|0,0

𝑝 +1,+1|0,1 𝑝 +1,−1|0,1 𝑝 −1,+1|0,1 𝑝 −1,−1|0,1

𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0

𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1

𝑝 𝑎𝑏|𝑥𝑦
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y=0

a=+1 b=-1

x=0

Alice Bob𝑝 +1,−1|0,0 = 𝑝 −1,+1|0,0 = 0
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y=1

a=+1,-1 b=+1,-1

x=0

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
1/2 0 0 1/2

𝑝 +1,+1|1,0 𝑝 +1,−1|1,0 𝑝 −1,+1|1,0 𝑝 −1,−1|1,0

𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1



Example

y=0

a=+1,-1 b=+1,-1

x=1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =
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1/2 0 0 1/2
1/2 0 0 1/2

𝑝 +1,+1|1,1 𝑝 +1,−1|1,1 𝑝 −1,+1|1,1 𝑝 −1,−1|1,1



Example

y=1

a=+1,-1 b=+1,-1

x=1

Alice Bob

𝑝 𝑎𝑏|𝑥𝑦 =

1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0
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a = 1,…,r

x = 1,…,m

b = 1,…,r

y = 1,…,m

Physical principles impose limits on correlations.

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.

𝑝𝐴 𝑎|𝑥 𝑝 𝑎𝑏|𝑥𝑦



Physical correlations

a = 1,…,r

x = 1,…,m

b = 1,…,r

y = 1,…,m
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the impossibility of instantaneous communication.
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Physical correlations

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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Physical correlations

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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Physical correlations

No-signalling correlations: correlations compatible with the no-signalling principle, i.e. 
the impossibility of instantaneous communication.
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𝑝𝐴 +1|0 = 𝑝 +1,+1|00 + 𝑝 +1,−1|00 =
1

2
= 𝑝 +1,+1|01 + 𝑝 +1,−1|01

෍

𝑎𝑘+1…𝑎𝑁

𝑝 𝑎1…𝑎𝑁|𝑥1…𝑥𝑁  = 𝑝 𝑎1…𝑎𝑘|𝑥1…𝑥𝑘  



Physical correlations

Classical correlations: deterministic processes at each place determine the output given 
the input and what comes from the source.

These are the standard “EPR” correlations. Independently of fundamental issues, these 
are the correlations achievable by classical means.  Bell inequalities define the limits on 
these correlations.

𝑝 𝑎𝑏|𝑥𝑦 =෍

𝜆

𝑝 𝜆 𝐷𝐴 𝑎|𝑥, 𝜆 𝐷𝐵 𝑏|𝑦, 𝜆



Physical correlations

Everything is expressed in terms of operators (the quantum state and the 
measurement projectors) acting on a Hilbert space. However, it can be any Hilbert 
space, of arbitrary dimension.

Quantum correlations: local measurements on a shared quantum state.

𝑝 𝑎𝑏|𝑥𝑦 = |𝜓|Π𝑎|𝑥⨂Π𝑏|𝑦ۦ ۧ𝜓
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Physical correlations

𝑝 𝑎𝑏|𝑥𝑦
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There exist correlations that cannot be explained by classical models. These 
(quantum) correlations are known as non-local and they are detected by the 
violation of a Bell inequality.

NSQC Bell

Physical correlations



C

Q

NS

There exist correlations that are 
compatible with the no-signalling 
principle but cannot be obtained by 
performing local measurements on a 
quantum state.

NSQC 
Tsirelson

Popescu-Rohrlich
Bell

Physical correlations

There exist correlations that cannot be explained by classical models. These 
(quantum) correlations are known as non-local and they are detected by the 
violation of a Bell inequality.



A crash course on Bell inequalities



Example: CHSH Bell inequality

Source

x = 1,2

a = +1,-1

y = 1,2

b = +1,-1

𝐶𝐻𝑆𝐻 = 𝐴1𝐵1 + 𝐴1𝐵2+ 𝐴2𝐵1- 𝐴2𝐵2



Example: CHSH Bell inequality

In classical physics, observables have well-defined values, now +1 or -1. 

Under this assumption:

Example:

So, the expectation value of this quantity also satisfies

Source

x = 1,2

a = +1,-1

y = 1,2

b = +1,-1

𝐶𝐻𝑆𝐻 = 𝐴1𝐵1 + 𝐴1𝐵2+ 𝐴2𝐵1- 𝐴2𝐵2

𝐶𝐻𝑆𝐻 ≤ 2

𝐴1 = 𝐴2 = 𝐵1 = 𝐵2 = +1 → 𝐶𝐻𝑆𝐻 = +2.

𝐶𝐻𝑆𝐻 ≤ 2



Quantum Bell inequality violation

Source

x = 1,2

a = +1,-1

y = 1,2

b = +1,-1

A2

A1

B1

B2
Classical values are now replaced by operators.

| ۧΦ+ =
1

2
| ۧ00 + | ۧ11



Quantum Bell inequality violation

A2

A1

B1

B2
Classical values are now replaced by operators.

Source

x = 1,2

a = +1,-1

y = 1,2

b = +1,-1

| ۧΦ+ =
1

2
| ۧ00 + | ۧ11

𝐶𝐻𝑆𝐻 = 𝐴1⨂𝐵1 Φ+ + 𝐴1⨂𝐵2 Φ+ + 𝐴2⨂𝐵1 Φ+ − 𝐴2⨂𝐵2 Φ+ = 𝟐 𝟐 > 𝟐 !!



Example: CHSH scenario

a = +1,-1

x = 1,2

b = +1,-1

y = 1,2

𝐶𝐻𝑆𝐻 = 𝐴1𝐵1 + 𝐴1𝐵2+ 𝐴2𝐵1- 𝐴2𝐵2



C

Q

NS

Example: CHSH scenario

a = +1,-1

x = 1,2

b = +1,-1

y = 1,2

1/2 0 0 1/2
1/2 0 0 1/2
1/2 0 0 1/2
0 1/2 1/2 0

𝐶𝐻𝑆𝐻 = 𝐴1𝐵1 + 𝐴1𝐵2+ 𝐴2𝐵1- 𝐴2𝐵2

𝐶𝐻𝑆𝐻 ≤ 2

𝐶𝐻𝑆𝐻 ≤ 2 2

𝐶𝐻𝑆𝐻 ≤ 4



Characterization of 
Quantum Correlations

Navascués, Pironio, Acin, PRL 2007, NJP 2009



Characterizing quantum correlations

Given p(a,b|x,y), does it have a quantum realization?

p a,b x, y( ) = Y Ma

x ÄMb

y Y
x

aaa

x

a

x

a

a

x

a

MMM

M

''

1

=
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Example:

( ) ( ) ( ) ( )32,32,32,32
8

1
0,1,1,0,0,0, +−−+=== bapbapbap

( ) ( )245.0,255.0,255.0,245.01,1, =bap

Previous work by Tsirelson



NPA hierarchy

Given a probability distribution p(a,b|x,y), we have defined a hierarchy consisting
of a series of tests based on semi-definite programming techniques allowing the
detection of supra-quantum correlations.

01 

NO NO

YES YES

NO

YES



The hierarchy is asymptotically convergent.

YES

002 



NPA hierarchy

Every step in the hierarchy defines a convex set that is included in the previous step. 
Convergence is provably attained asymptotically.

In many situations convergence is attained after a few steps. But there is evidence that 
there may be situations that require an infinite number of steps.

01 02 …Quantum correlations



Characterizing quantum correlations

Example:

( ) ( ) ( ) ( )32,32,32,32
8

1
0,1,1,0,0,0, +−−+=== bapbapbap

( ) ( )245.0,255.0,255.0,245.01,1, =bap

Solution: it is not quantum, that is, there exists no quantum state of two particles and 
local measurements acting on them that produce these correlations.

The experimental observation of these correlations would imply the failure of 
quantum physics, as Bell violations did for classical physics.



Protocols for Device-Independent 
Randomness Generation

R. Colbeck, PhD Thesis, arXiv:0911.3814 
S. Pironio et al., Nature 464, 1021 (2010) 
R. Colbeck and A. Kent, J. Phys. A: Math. Th. 44, 095305 (2011) 

https://arxiv.org/abs/0911.3814


Bell-certified quantum randomness

It is possible to bound the randomness of the outputs from the Bell inequality 
violation, which is a function only of the observed statistics.

The outcomes of a Bell experiment cannot be predicted in advance.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

User

𝑝 𝑎𝑏|𝑥𝑦



Bell-certified quantum randomness

All the region 
above the curve is 
impossible within 
Quantum 
Mechanics.

One pure 
random bit.

S. Pironio et al., Nature 464, 1021 (2010) 



Bell-certified quantum randomness

It is possible to bound the randomness of the outputs from the Bell inequality 
violation, which is a function only of the observed statistics.

The outcomes of a Bell experiment cannot be predicted in advance.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

User

𝑝 𝑎𝑏|𝑥𝑦



Bell-certified quantum randomness

Provider

A2

A1

B1

B2

The provider is not device-independent: devices and their details are crucial for 
the implementation! But they are irrelevant for the user’s certification.

| ۧΦ+



Protocols for Device-Independent 
Quantum Key Distribution

A. Acín et al., Phys. Rev. Lett. 98, 230501 (2007)



DI Quantum Key Distribution

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob

• One of the inputs (or more) are used on each side to generate the secret key.

• The generated statistics, which should violate a Bell inequality,  is used to 
bound the eavesdropper’s knowledge.

𝑝 𝑎𝑏|𝑥𝑦



DI Quantum Key Distribution

• Bases A1 and B3 are used to construct 
the key.

• Bases 1 and 2 on each side are used to 
estimate the CHSH violation and, from 
it, Eve’s knowledge.

A2

A1

B1

B2

B3

K ³ I A :B( ) - c A :E( )

| ۧΦ+
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Quantum theory based on real 
numbers can be experimentally falsified

M.-O. Renou et al., Nature 600, 625 (2021)



Complex numbers in quantum theory

Quantum mechanics is the first theory formulated in terms of complex numbers.

1. To any physical system it is associated a complex Hilbert space 𝐻.

2. A physical state of the system is specified by a vector in this space |𝜓ۧ ∈ 𝐻.

3. A measurement Π of 𝑅 outcomes is specified by a set of 𝑟 orthogonal 
projectors, Π𝑟 𝑟=1,…,𝑅, acting on 𝐻 that sum up to the identity, σ𝑟Π𝑟 = 1.

4. Born rule: The probability of observing result 𝑟 when performing 
measurement Π on a system in state |𝜓ۧ is 𝑃 𝑟 = |𝜓| Π𝑟ۦ ۧ𝜓 .

5. System composition: the Hilbert space associated to a system made of two 
subsystems, 𝐴 and 𝐵, is the tensor product of the two subsystem Hilbert 
spaces, 𝐻𝐴𝐵 = 𝐻𝐴⊗𝐻𝐵.



Complex numbers in quantum theory

Letter from Schrödinger to Lorentz (1926):

‘What is unpleasant here, and indeed directly to be objected to, is the 
use of complex numbers.  𝝍 is surely fundamentally a real function’
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1. To any physical system it is associated a real Hilbert space 𝐻.

2. A physical state of the system is specified by a vector in this space |𝜓ۧ ∈ 𝐻.

3. A measurement Π of 𝑅 outcomes is specified by a set of 𝑟 orthogonal 
projectors, Π𝑟 𝑟=1,…,𝑅, acting on 𝐻 that sum up to the identity, σ𝑟Π𝑟 = 1.
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Complex numbers in quantum theory

1. To any physical system it is associated a real Hilbert space 𝐻.

2. A physical state of the system is specified by a vector in this space |𝜓ۧ ∈ 𝐻.

3. A measurement Π of 𝑅 outcomes is specified by a set of 𝑟 orthogonal 
projectors, Π𝑟 𝑟=1,…,𝑅, acting on 𝐻 that sum up to the identity, σ𝑟Π𝑟 = 1.

4. Born rule: The probability of observing result 𝑟 when performing 
measurement Π on a system in state |𝜓ۧ is 𝑃 𝑟 = |𝜓| Π𝑟ۦ ۧ𝜓 .

5. System composition: the Hilbert space associated to a system made of two 
subsystems, 𝐴 and 𝐵, is the tensor product of the two subsystem Hilbert 
spaces, 𝐻𝐴𝐵 = 𝐻𝐴⊗𝐻𝐵.

C. M. Caves, C. A. Fuchs, and P. Rungta, Foundations of Physics Letters 14, 199 (2001)

What happens if we replace complex numbers by real numbers in quantum theory?
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Complex operators

Complex
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Single systems

𝑃 𝑟 = tr 𝜌Π𝑟

Complex operators

Complex

Real
෤𝜌 =

1

2
𝜌⊗ ۧ+𝑖 𝑖+ۦ + 𝜌∗⊗ ۧ−𝑖 𝑖−ۦ

෩Π𝑟 = Π𝑟 ⊗ ۧ+𝑖 𝑖+ۦ + Π𝑟
∗ ⊗ ۧ−𝑖 𝑖−ۦ

𝑃 𝑟 = tr 𝜌Π𝑟 = tr ෤𝜌෩Π𝑟

Real operators

Extra 
qubit Since 𝑃 𝑟 = 𝑃∗ 𝑟 = tr 𝜌∗Π𝑟

∗ :

| ۧ±𝑖 =
1

2
| ۧ0 ± 𝑖| ۧ1
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Extra qubit for each party
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Composite systems
Complex

Real

𝑃 𝑎𝑏|𝑥𝑦 =tr 𝜌𝐴𝐵Π𝑎|𝑥⊗Π𝑏|𝑦

Extra qubit for each party

෤𝜌𝐴𝐵 =
1

2
𝜌𝐴𝐵⊗ ۧ+𝑖 𝑖+ۦ ⊗2 + 𝜌𝐴𝐵

∗ ⊗ ۧ−𝑖 𝑖−ۦ ⊗2

෩Π𝑎|𝑥 = Π𝑎|𝑥 ⊗ ۧ+𝑖 𝑖+ۦ + Π𝑎|𝑥
∗ ⊗ ۧ−𝑖 𝑖−ۦ

𝑃 𝑎𝑏|𝑥𝑦 =tr ෤𝜌𝐴𝐵෩Π𝑎|𝑥⊗ ෩Π𝑏|𝑦

Correlations are used to synchronize the 
use of the state or its complex conjugate.

M. McKague, M. Mosca, N. Gisin, PRL 2009



Quantum network

Key idea: use independent preparations and measurements, that can be entangled.



Quantum network

Complex
𝑃 𝑎𝑏𝑐|𝑥𝑧 =tr ത𝜎𝐴𝐵1 ⊗ ത𝜎𝐵2𝐶Π𝑎|𝑥⊗Π𝑏 ⊗Π𝑐|𝑧

Key idea: use independent preparations and measurements, that can be entangled.

M.-O. Renou et al., Nature 600, 625 (2021)

Real and complex quantum theory lead to different correlations in an 
entanglement swapping experiment. Real quantum theory can be falsified.



Quantum network

Complex
𝑃 𝑎𝑏𝑐|𝑥𝑧 =tr ത𝜎𝐴𝐵1 ⊗ ത𝜎𝐵2𝐶Π𝑎|𝑥⊗Π𝑏 ⊗Π𝑐|𝑧

Key idea: use independent preparations and measurements, that can be entangled.

M.-O. Renou et al., Nature 600, 625 (2021)

Z.-D. Li et al., PRL 128, 040402 (2022); M.-C. Chen et al., PRL 128, 040403 (2022)

Real and complex quantum theory lead to different correlations in an 
entanglement swapping experiment. Real quantum theory can be falsified.
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quantum key distribution



Setups for device-independent 
quantum key distribution

How to observe a proper Bell 
violation at large distances?
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test at two distant locations.
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• The locality loophole is somehow artificial in this context, as it requires two 
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Implementations of DIQKD

• The implementation of DIQKD is extremely challenging. It requires a proper Bell 
test at two distant locations.

• The locality loophole is somehow artificial in this context, as it requires two 
devices communicating their inputs. Then, why not the outputs to the 
eavesdropper?

• Some shielding is always implicitly assumed in any crypto scenario.

y=1,…,m

a=1,…,r b=1,…,r

x=1,…,m

Alice Bob𝑝 𝑎𝑏|𝑥𝑦



Implementations of DIQKD

• The implementation of DIQKD thus requires a detection-loophole-free Bell test at 
two distant locations.

• Fake Bell violations have been demonstrated exploiting channel losses in Gerhardt 
et al., Phys. Rev. Lett. 107, 170404 (2011)?



Implementations of DIQKD

• The implementation of DIQKD thus requires a detection-loophole-free Bell test at 
two distant locations.

• Fake Bell violations have been demonstrated exploiting channel losses in Gerhardt 
et al., Phys. Rev. Lett. 107, 170404 (2011)?

• Losses affect the violation, and therefore the bound on Eve’s knowledge, but also 
the correlations between the users.

•  Detection efficiencies needed for security are higher than for Bell violation, of the 
order of 90-95%.

K ³ I A :B( ) - c A :E( )
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components and detectors. Yet, local losses are challenging.
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• Local losses may be seen just as a technological issue: better coupling, 

components and detectors. Yet, local losses are challenging.

• What about channel losses? They are unavoidable! 



Losses in DIQKD

y

a b

x Photon?

Yes/No

QND

Photon?

Yes/No

QND
F

Channel losses become irrelevant for the protocol security (not for the rate).

• Local losses may be seen just as a technological issue: better coupling, 
components and detectors. Yet, local losses are challenging.

• What about channel losses? They are unavoidable! 

• A solution: QND measurements. It is checked if the photon has arrived before 
performing the Bell test.



Heralding schemes

• QND are challenging. They can be replaced by heralding process, at one side (Side 
Heralding) or at a central station (Central Heralding) witnessing the correct state 
preparation.

• Correlations are kept only after successful heralding.



Remote entanglement preparation

Schemes for remote entanglement preparation between distant particles are also 
valid in this scenario (Hanson, Monroe and Weinfurter’s groups).



Remote entanglement preparation

Schemes for remote entanglement preparation between distant particles are also 
valid in this scenario (Hanson, Monroe and Weinfurter’s groups).

Conditioned on the double-click in the intermediate station, entanglement is 
created among the trapped particles.

Channel losses irrelevant and the almost perfect detection at the stations. 





Single-photon schemes

Both schemes produce an entangled state between Alice and Bob at first order.
Kolodynski et al., Quantum 4, 260 (2020) 







First proof-of-principle demonstrations

Trapped ions. Distance: 2m. 
Key rate: >90kbits / 8 hours.

Trapped atoms. Distance: 400m. 
No key rate, but possible if more 
rounds were available.
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Conclusions

• Device-independent protocols offer self-certified performance.

• The observation of non-locality is a necessary condition for device-independent 
quantum information processing.

• Protocols exist for randomness generation, secure key distribution and self-testing. 
What are the limitations and possibilities of the scenario?

• The implementation requires a detection-loophole-free violation. Experimentally 
challenging, especially when considering distant parties as in a cryptographic 
scenario. Single photons are promising in this direction.

• The framework also provides new light on other fields: quantum foundations, 
quantum optics and many-body physics.
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Quantum Certification: is a complex quantum device random? Secret? 
A quantum computer? Entangled?

What can we say about complex quantum systems when using limited 
(because scalable) classical information? 
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Detecting non-locality in 
many-body quantum states

J. Tura, R. Augusiak, A. B. Sainz, T. Vértesi, M. Lewenstein, A. Acín
Science 344, no. 6189, 1256-1258 (2014)
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Do the weakest form of correlations, 
represented by 2-body correlation 
functions, suffice to detect the non-locality 
of systems of an arbitrary number of 
particles?

We provided an affirmative answer to the previous question by constructing Bell 
inequalities made only of 2-body correlation functions and proving their quantum 
violation for any number of particles.



Non-locality of many-body states

• We derived general techniques for the study of non-locality of many-body 
quantum systems.

• We showed how 2-body correlation function suffice for the non-locality 
detection of systems of arbitrary size.

• We provided violations for Dicke states, which are ground states of interacting 
systems (LMG Hamiltonian).

• Some of the derived inequalities can be measured by means of first and second 
moment of global spin observables.



Experimental observation 

Our inequalities have already been violated in a BEC consisting of 480 particles. 

The violation was inferred by means of the 
first and second moments of global-spin 
observables.
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Non-locality of many-body systems

Do the weakest form of correlations, 
represented by 2-body correlation 
functions, suffice to detect the non-locality 
of systems of an arbitrary number of 
particles?

We provided an affirmative answer to the previous question by constructing Bell 
inequalities made only of 2-body correlation functions and proving their quantum 
violation for any number of particles.
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Non-locality of many-body systems

B =aS1 +bS2 +gS11 +dS12 +eS22 £ bC

Sk = Ak
(i)

i=1

N

å Skl = Ak
(i)Al

( j )

i¹ j=1

N

å

In the quantum case, variables are replaced by operators. As an example, take:

A1

(i) =s x A2

(i) =s z

S1 = s x

(i)

i=1

N

å S21 = s z

(i)s x

( j )

i¹ j=1

N

åTotal spin in the 
x direction.

It can be estimated 
through second 
moments of total spin 
in x and z directions.

Key idea: restrict the study to symmetric Bell inequalities.



Non-locality of many-body states

• We derived general techniques for the study of non-locality of many-body 
quantum systems.

• We showed how 2-body correlation function suffice for the non-locality 
detection of systems of arbitrary size.

• We provided violations for Dicke states, which are ground states of interacting 
systems (LMG Hamiltonian).

• Some of the derived inequalities can be measured by means of first and second 
moment of global spin observables.



Experimental observation 

Our inequalities have already been violated in a BEC consisting of 480 particles. 

The violation was inferred by means of the 
first and second moments of global-spin 
observables.



Energy as a detector of nonlocality 
of many-body spin systems 

J. Tura, G. De las Cuevas, R. Augusiak, M. Lewenstein, A. Acín, J. I. Cirac 
Phys. Rev. X 7, 021005 (2017)
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N

å

We want to associate a Bell inequality to this operator. 
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H = 1+g( )A1

(i) Ä A1

(i+1) + 1-g( )A2

(i) Ä A2

(i+1)( )
i=1

N

å



Energy as non-locality detector

Standard many-body Hamiltonian operator, e.g.:

H = 1+g( )s X

(i) Äs X

(i+1) + 1-g( )sY

(i) ÄsY

(i+1)( )
i=1

N

å

We want to associate a Bell inequality to this operator. 
Key idea: replace quantum observables by classical values.

H = 1+g( )A1

(i) Ä A1

(i+1) + 1-g( )A2

(i) Ä A2

(i+1)( )
i=1

N

å

If the ground-state energy of the quantum system EQ is smaller than the ground-
state energy of the classical system EC, non-locality follows from the observation 
of an energy smaller than the classical minimum energy.



Classical and quantum energies

• In general, computing the ground-state energy of an interacting system is a hard 
computational problem.

• However, in classical 1D systems with local interactions, the ground-state energy 
can be computed by means of dynamic programming with an effort linear in size.

• For the quantum value, we use 1D Hamiltonians that can be diagonalized using 
Jordan-Wigner transformations. This is again efficient.

• The combination of these two methods allow the construction of Bell inequalities 
from Hamiltonian operators for big system sizes.



Illustration of the method

Spin glass:

where the couplings are generated with a Gaussian probability distribution of 
mean μ and variance σ.

H = Gm,s

(i)

i=1

N

å s p /4

(i) Äs p /4

(i+1) +sY

(i) ÄsY

(i+1)( )

Ratio between the classical and 
quantum ground-state energy, for a 
100-spin systems with PBC and 
averaged over 1000 realizations. 

A violation is observed for large 
values of σ/μ.
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Idea of the method

Correlations P(r1r2…rN|m1m2…mN)  among N particles don’t violate any Bell inequality.

There exists a Hilbert space in which correlations P(r1r2…rN|m1m2…mN)  can be 
written as commuting measurements acting on a quantum state.

P r1r2…rN m1m2…mN( ) = tr rMr1
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Idea of the method

In the past, we designed a method to check if some correlations can be written as:

P r1r2…rN m1m2…mN( ) = tr rMr1

m1 ÄMr2

m2 Ä…ÄMrN

mN( )

The method consists of a hierarchy of semi-definite programming (SDP) tests that 
become computationally more demanding. It is asymptotically convergent.
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Navascués, Pironio, Acin, PRL 2007, NJP 2009



Idea of the method

Now, it is rather easy to modify the method so that it incorporates the 
commutation relations among measurements on each system:
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Non-local 

It is also possible to modify the method so that it takes into account only partial 
and not the full statistics, e.g. only few-body correlation functions. 



Idea of the method

• Any step in the hierarchy 
defines a tighter outer 
approximation to the set of 
local correlations.

• Deciding whether some 
observed correlations belong to 
a given set can be efficiently 
decided by SDP.

• When correlations are outside 
the set, it is possible to extract 
a Bell inequality certifying this.



Idea of the method

1. If a quantum state is separable then local measurements performed on it 
produce local correlations (i.e. correlations admitting a local model).

2. Any local correlations can be realized by performing commuting local 
measurements on a quantum state.

3. Correlations produced by commuting local measurements define a positive 
moment matrix with constraints associated to the commutation of all the 
measurements.

4. Our method consists in checking if the observed correlations are consistent with 
such positive moment matrix. In the negative case the correlations are certified 
to be nonlocal, and the state entangled in a device-independent way.
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Application of the method

Detection of W state: W =
1

N
10…0 + 01…0 +…+ 00…1( )

Local measurements: s X,s Z

Order of the correlation functions: 4

Robustness to white noise:

Scalability of number of measurements: N4

Results: the method detects the non-locality until 29 particles (possibly even more) 
with a resistance that decreases with the number of particles (6.5% for 29 particles).

1- p( ) W W + p
1

2N
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Application of the method

Detection of GHZ state: GHZ =
1

2
00…0 + 11…1( )

Local measurements: s X,sD

Order of the correlation functions: 4

plus 2 full-body correlation functions.
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Scalability of number of measurements: N4
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Application of the method

Detection of GHZ state: GHZ =
1

2
00…0 + 11…1( )

Local measurements:

Order of the correlation functions: 4

plus 2 full-body correlation functions.

Scalability of number of measurements: N4

Results: the method detects the non-locality until 29 particles (possibly even more) 
with a resistance that seems to be constant and equal to 14.5%.

s X,sD
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