30th IFT Xmas Workshop December 11, 2024

Physics at future e⁺e⁻ EW/Higgs/Top factories

University of Granada

Based on the work of A LOT of people

- I0+ yrs after its discovery, the I25 GeV Higgs boson remains as the biggest achievement of the LHC
 - ✓ It finally proves the existence of the last ingredient required to fully test the validity of the SM at low energies...

With the LHC in the Run 3 and with much more luminosity expected to be collected during the HL-LHC phase, we find ourselves in the situation of deciding what should be the next big experiment in high-energy particle physics...

It would be much easier if we had any hint of what we are looking for...

Model <i>i</i> , <i>r</i> , <i>r</i> , <i>i</i> , <i>j</i>	ATLAS Heavy P Status: March 2022	article Searche	s* - 95% C	L Upper Exclusi	on Limits ∫£ d	ATL = (3.6 - 139) fb ⁻¹	AS Preliminary $\sqrt{s} = 8, 13 \text{ TeV}$
Bits ALD Exp. $+3/4$ $2/4$ $1/4$ $2/4$ $1/4$ $2/4$ $1/4$ $2/4$ $1/4$ $2/4$ $1/4$	Model	ℓ, γ Jets \downarrow E	' ∫£ dt[fb ⁻¹]	Limit			Reference
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW / ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \nu qq$ Bulk RS $G_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 Mp 36.7 Ms 37.0 Mth 3.6 Mth 139 Grkk mass 36.1 Grkk mass 36.1 grkk mass 36.1 Krk mass 36.1 Krk mass		1 8.6 1 8.9 9.5 4.5 TeV 2.3 TeV 2.0 TeV 3.8 TeV 1.8 TeV	1.2 TeV $n = 2$ iv $n = 3$ HLZ NLO TeV $n = 6$ TeV $n = 6, M_D = 3$ TeV, rot BH $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ $k/\overline{M}_{Pl} = 1.0$ $\Gamma/m = 15\%$ Tier $(1,1), \mathcal{B}(A^{(1,1)} \to tt) = 1$	2102.10874 1707.04147 1703.09127 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to VZ \to \ell\nu q \ell' d' \text{ mod} \\ \text{HVT } W' \to WZ \to \ell\nu \ell' \ell' \text{ mod} \\ \text{HVT } W' \to WH \text{ model B} \\ \text{LRSM } W_R \to \mu N_R \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 Z' mass 36.1 Z' mass 36.1 Z' mass 139 Z' mass 139 W' mass 139 W mass 80 W _R mass	340 GeV	5.1 TeV 2.42 TeV 2.1 TeV 4.1 TeV 6.0 TeV 5.0 TeV 4.4 TeV 4.3 TeV 3.2 TeV 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2007.05293 1904.12679
VicAxial-vector med. (Dirac DM)0 e. μ , τ , γ 1 - 4 jYes139mad376 GeV2.1 TeV $g_{r}=0.5, g_{r}=1, m(\gamma) + 1 GeV$ 2102.10874Vector med. Z'-2HDM (Dirac DM)0 e. μ , τ , γ 1 - 4 jYes139mad376 GeV3.1 TeV $g_{r=1,g_{r}=1,$	Cl qqqq Cl ℓℓqq Cl eebs Cl μμbs Cl tttt	$\begin{array}{ccccc} - & 2j & - \\ 2 e, \mu & - & - \\ 2 e & 1 b & - \\ 2 \mu & 1 b & - \\ \geq 1 e, \mu & \geq 1 b, \geq 1 j \end{array}$	37.0 Λ 139 Λ 139 Λ 139 Λ 36.1 Λ		1.8 TeV 2.0 TeV 2.57 TeV	$\begin{array}{c c} \textbf{21.8 TeV} & \eta_{LL}^{-} \\ \textbf{35.8 TeV} \\ \textbf{g}_{*} = 1 \\ \textbf{g}_{*} = 1 \\ \textbf{C}_{4t} = 4\pi \end{array} \qquad \eta_{LL}^{-}$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DI Vector med. Z'-2HDM (Dirac Pseudo-scalar med. 2HDM+a	$\begin{array}{cccc} 0 \ e, \mu, \tau, \gamma & 1-4 \ j & \mbox{Yes} \\ M & 0 \ e, \mu, \tau, \gamma & 1-4 \ j & \mbox{Yes} \\ DM & 0 \ e, \mu & 2 \ b & \mbox{Yes} \\ multi-channel \end{array}$	139 m _{med}	376 GeV 560 GeV	2.1 TeV 3.1 TeV	$\begin{array}{l} g_q \!=\! 0.25, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 \mathrm{GeV} \\ g_q \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 1 \mathrm{GeV} \\ \tan\!\beta \!=\! 1, g_{\chi} \!=\! 0.8, m(\chi) \!=\! 100 \mathrm{GeV} \\ \tan\!\beta \!=\! 1, g_{\chi} \!=\! 1, m(\chi) \!=\! 10 \mathrm{GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$\begin{array}{cccc} 2 \ e & \geq 2 \ j & \text{Yes} \\ 2 \ \mu & \geq 2 \ j & \text{Yes} \\ 1 \ \tau & 2 \ b & \text{Yes} \\ 0 \ e, \mu & \geq 2 \ j, \geq 2 \ b & \text{Yes} \\ \geq 2 \ e, \mu, \geq 1 \ \tau & \geq 1, j, \geq 1 \ b & - \\ 0 \ e, \mu, \geq 1 \ \tau & 0 - 2 \ j, 2 \ b & \text{Yes} \\ 1 \ \tau & 2 \ b & \text{Yes} \end{array}$	139 LQ mass 139 LO mass 139 LO [±] mass		1.8 TeV 1.7 TeV 1.2 TeV 1.24 TeV 1.43 TeV 1.26 TeV 1.77 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_3^u\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^u\rightarrow t\nu)=1\\ \mathcal{B}(\mathrm{LQ}_3^d\rightarrow t\nu)=1\\ \mathcal{B}(\mathrm{LQ}_3^d\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^d\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^V\rightarrow b\tau)=0.5, \mbox{YM coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
P Excited quark $q^* \rightarrow qg$ - 2 j - 139 q^* mass 6.7 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1910.08447 P Excited quark $q^* \rightarrow qg$ 1 γ 1 j - 36.7 q^* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1910.08447 P Excited quark $q^* \rightarrow qg$ - 1 b, 1 j - 36.7 q^* mass 5.3 TeV only u^* and d^* , $\Lambda = m(q^*)$ 1709.10440 Excited lepton ℓ^* 3 e, μ - - 20.3 ℓ^* mass 3.0 TeV $\Lambda = 3.0$ TeV $\Lambda = 3.0$ TeV 1411.2921 Excited lepton V^* 3 e, μ - - 20.3 ℓ^* mass 16 TeV $\Lambda = 1.6$ TeV 1411.2921	$\begin{array}{c} & VLQ\;TT \rightarrow Zt + X \\ & VLQ\;BB \rightarrow Wt/Zb + X \\ & VLQ\;T_{5/3}\;T_{5/3} T_{5/3} \rightarrow Wt + . \\ & VLQ\;T \rightarrow Ht/Zt \\ & VLQ\;T \rightarrow Ht/Zt \\ & VLQ\;B \rightarrow Hb \end{array}$	$\begin{array}{lll} 2e/2\mu \geq 3e,\mu \geq 1 \ b,\geq 1 \ j & - \\ & \text{multi-channel} \\ X & 2(SS)/\geq 3 \ e,\mu \geq 1 \ b,\geq 1 \ j & \text{Yes} \\ & 1 \ e,\mu & \geq 1 \ b,\geq 3 \ j & \text{Yes} \\ & 1 \ e,\mu & \geq 1 \ b,\geq 1 \ j & \text{Yes} \\ & 0 \ e,\mu & \geq 2b,\geq 1j,\geq 1J & - \end{array}$	139 T mass 36.1 B mass 36.1 T _{\$/3} mass 139 T mass 36.1 Y mass 36.1 Y mass 139 B mass 139 B mass		1.4 TeV 1.34 TeV 1.64 TeV 1.8 TeV 1.85 TeV 2.0 TeV	SU(2) doublet SU(2) doublet $\mathcal{B}(T_{5/3} \rightarrow Wt) = 1, c(T_{5/3}Wt) = 1$ SU(2) singlet, $\kappa_T = 0.5$ $\mathcal{B}(Y \rightarrow Wb) = 1, c_R(Wb) = 1$ SU(2) doublet, $\kappa_B = 0.3$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018
	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	139 q* mass 36.7 q* mass 36.1 b* mass 20.3 l* mass 20.3 y* mass		6.7 TeV 5.3 TeV 2.6 TeV 3.0 TeV 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1910.08447 1709.10440 1805.09299 1411.2921 1411.2921

- I0+ yrs after its discovery, the I25 GeV Higgs boson remains as the biggest achievement of the LHC
 - ✓ It finally proves the existence of the last ingredient required to fully test the validity of the SM at low energies...

✓ However, the Higgs itself reminds us of the limitations of the SM...

- How do we understand the mechanism of EWSB?
- Hierarchy problem: Why $M_h \ll M_P$?

Jorge de Blas - U. of Granada

Physics at future e⁺e⁻ EW/Higgs/Top factories

2

• This is just one of many "open" questions related to HEP and that motivate our belief in New Physics

• This is just one of many "open" questions related to HEP and that motivate our belief in New Physics

- Solutions to most of these questions involve BSM physics "talking" to any of the sectors of the SM, in particular the Higgs → Modifications of its properties
- Pushing the precision of SM measurements of the Higgs sector is a way of learning about new physics (indirectly)!

2020 European Strategy Update

magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs.

The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology,

taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. Deliverables for this decade should be defined in a timely fashion and coordinated among CERN

and national laboratories and institutes.

High-priority future initiatives An electron-positron Higgs factory is the highest-priority next collider longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing the goals will require innovation and cutting-edge technology: • the particle physics community should ramp up its R&D effort foc on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS · Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a content of the senergy of at least 100 TeV and with an electron-positron Higgs and electroweak esse by the European Strategy Group factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour to the vites completed on the timescale of the next Strategy update. The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate. Β. Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. It is also a powerful driver for many accelerator-based An electron-positron Higgs factory is the highest-priority next collider. For the Α. fields of science and industry. The technologies under consideration include high-field

longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

> Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

f

2020 European Strategy Update

High-priority future initiatives An electron-positron Higgs factory is the highest-priority next collider longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing the goals will require innovation and cutting-edge technology: • the particle physics community should ramp up its R&D effort foc on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS · Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a content of the senergy of at least 100 TeV and with an electron-positron Higgs and electroweak by the European Strategy Group factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour to the vites completed on the timescale of the next Strategy update. The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate. Β. Innovative accelerator technology underpins the physics reach of high-energy and high-intensity colliders. It is also a powerful driver for many accelerator-based An electron-positron Higgs factory is the highest-priority next collider. For the Α.

longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

Now we just have to decide which one...

fields of science and industry. The technologies under consideration include high-field magnets, high-temperature superconductors, plasma wakefield acceleration and other high-gradient accelerating structures, bright muon beams, energy recovery linacs. The European particle physics community must intensify accelerator R&D and sustain it with adequate resources. A roadmap should prioritise the technology, taking into account synergies with international partners and other communities such as photon and neutron sources, fusion energy and industry. Deliverables for this decade should be defined in a timely fashion and coordinated among CERN and national laboratories and institutes.

Jorge de Blas - U. of Granada

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

esse

f

Future collider projects (e+e- and more)

Now we just have to decide which one...

• The "players"

Energy Frontier

Accuracy/Intensity Frontier

Indirect sensitivity to new physics

Direct Production

of new particles

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

The FCC integrated program

https://fcc-ped.web.cern.ch/

- The Future Circular Collider (FCC) is CERN's current flagship proje
 - 90.7 Km ring, 8 surface points, 4 interaction points (IPs)
- Stage I: FCC-ee (Z-pole, WW [161 GeV], ZH [240 GeV], tt [345/65 as e⁺e⁻ Higgs/EW/Top factory for precision measurements
- Stage 2: FCC-hh (pp @ 100 TeV) as natural continuation of the exploration of the energy frontier
- Currently finishing the FCC feasibility study (available in March 2025)

FUTURE

COLLIDE

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

LC Vision

- The Linear Collider Vision (LC Vision) brings together proponents and supporters of all kind of LC projects, to propose such a facility for CERN
- Initial e⁺e⁻ GM taenergy at one ben decided tive: A Linear Collider Facility for CERN based on budget and science: Initial e⁺e⁻ center-of-mass energy to be decided based
 - Minipudant 250 GeV
 minimum = 250 GeV
 (more science but more expensive)
 higher (eg 550 GeV) = more science but more expensive
 - Upgrade to higher CM energy via advanced technology onvturnel extension
- 2 interaction points.
 2 nd Beam Delivery System ⇒ 2 IPs
 2 interaction points.
 3 performance of the second collider Provided Figure 1 and the seco
 - 2 detectors for redundancy, cross checks, complementarity, ...

The Circular Electron Positr

- http://cepc.ihep.ac.cn/intro.html
- CEPC is an e⁺e⁻ Higgs factory, proposed in 2012 after the Higgs discovery, to be built in China
 - ✓ Similar run modes as FCCee, though with different luminosities
 - ✓ Tunnel can be re-used for pp collisions up to 100 TeV ⇒ Super proton-proton Collider (SPPC)
- If approved, could start construction in ~2027/28
- Not proposed to be built at CERN but could play an important role in the discussions for the strategy

Mode	√s (GeV)	Events
ZH	240	>1 million
WW	160	
Z	90	Tera-Z

Upgrade þg

- 1. Higher PAIso projected a
- 2. Higher energy "> top360 GeV producti
- 3. Super pp Collider (SppC) at ~100 TeV

2024-26 European Strategy Update

https://europeanstrategyupdate.web.cern.ch/

Remit of the European Strategy Group

"The aim of the Strategy update should be to develop a visionary and concrete plan that greatly advances human knowledge in fundamental physics through the realisation of the next flagship project at CERN. This plan should attract and value international collaboration and should allow Europe to continue to play a leading role in the field."

2024-26 European Strategy Update

ECFA guidelines for national inputs to the **ESPP**

Central element of the next ESPP: the choice of next collider at CERN.

ESG remit: "The Strategy update should include the preferred option for the next collider at CERN and prioritised alternative options to be pursued if the chosen preferred plan turns out not to be feasible or competitive".

 \rightarrow It is imperative that the European HEP community should provide explicit feedback on both the preferred and alternative options for this "next collider at CERN", which will be the Laboratory's next flagship project, and an explanation of any specific prioritisation.

- a) Which is the preferred next major/flagship collider project for CERN?
- b) What are the most important elements in the response to (a)?
 - i) Physics potential
 - ii) Long-term perspective
 - iii) Financial and human resources: requirements and effect on other projects

c) Should CERN/Europe proceed with the preferred option set out in (a) or should alternative options be considered:

i) if Japan proceeds with the ILC in a timely way?

ii) if China proceeds with the CEPC on the announced timescale?

iii) if the US proceeds with a muon collider?

iv) if there are major new (unexpected) results from the HL-LHC or other HEP experiments?

e) What is the prioritised list of alternative options if the preferred option is not feasible (due to cost, timing, international developments, or for other reasons)?

From P. Sphicas' talk at 3rd ECFA workshop in Paris

2024-26 European Strategy Update

9 Topical WGs

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

ECFA study on e⁺e⁻ EW/Higgs/Top factories

Jorge de Blas - U. of Granada

ECFA Study on Higgs/EW/Top factories

- Based on the recommendations of the European Strategy for Particle Physics Update, the European Committee for Future Accelerators (ECFA) launched a series of workshops on physics studies, experiment design, and detector technologies towards a future e⁺e⁻ Higgs/EW/Top factory.
- The aim was to bring together the efforts of various e⁺e⁻ projects, to share challenges and expertise, to explore synergies, and to respond coherently to the 2020 ESU high-priority strategy item.
- Structure based on three working groups:
 - WG I: Physics Potential Further divided in 5 subgroups

Conveners: J.B (Univ. Granada), P. Koppenburg (Nikhef), J. List (DESY), F. Maltoni (UC Louvain/Bologna)

WG 2: Physics Analysis Methods

Conveners: P. Azzi (INFN-Padova /CERN), F. Piccini (INFN Pavia), D. Zerwas (IJCLab/DMLab)

WG 3: Detector R&D

Conveners: M.C. Fouz (CIEMAT Madrid), G. Marchiori (APC Paris), F. Sefkow (DESY)

ECFA Study on Higgs/EW/Top factories

- Based on the recommendations of the European Strategy for Particle Physics Update, the European Committee for Future Accelerators (ECFA) launched a series of workshops on physics studies, experiment design, and detector technologies towards a future e⁺e⁻ Higgs/EW/Top factory.
- The aim was to bring together the efforts of various e⁺e⁻ projects, to share challenges and expertise, to explore synergies, and to respond coherently to the 2020 ESU high-priority strategy item.

Contents of this talk based on the results related
 Structure based on three working groups: to Physics potential

WG I: Physics Potential - Further divided in 5 subgroups

Conveners: J.B (Univ. Granada), P. Koppenburg (Nikhef), J. List (DESY), F. Maltoni (UC Louvain/Bologna)

WG 2: Physics Analysis Methods

Conveners: P. Azzi (INFN-Padova /CERN), F. Piccini (INFN Pavia), D. Zerwas (IJCLab/DMLab)

WG 3: Detector R&D

Conveners: M.C. Fouz (CIEMAT Madrid), G. Marchiori (APC Paris), F. Sefkow (DESY)

ECFA Study: WG I structure

- **WGI-GLOB:** Global Interpretation in (SM)EFT and UV complete models
 - **TH:** J. B., S. Heinemeyer
 - **EXP:** A. Grohsjean, M.Vos, J. Tian
- WGI-PREC: Precision Calculations and Theo., param. and exp. sys. uncertainties ECFA: Aiggs Factory Study - WG1 Physics Potential OvervEXP: A. Meyer, P. Azzurri, A. Irles
- WGI-HTE: Higgs/Top/EW physics
 - TH: F. Maltoni
 - **EXP:** K. Köneke, C. Hays
- WGI-FLAV: Flavour physics
 - TH: D. Marzocca
 - EXP: S. Monteil, P. Goldenzweig
- WGI-SRCH: Direct discovery potential
 - TH: R. Franceschini
 - **EXP:** R. Gonzalez, F. Zarnecki

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

ECFA Study on Higgs/EW/Top factories

ECFA study report: Currently editing more than 300 pages...

3 Developments in Higgs Physics

3.1	Focu	S TOPIC: ZH production and angular studies	26
	3.1.1	Higgs boson mass and model-independent ZH cross-section at FCC-ee	26
	3.1.2	Higgs boson width from the $ZH,H\toZZ^*$ cross section measurement at the FCC-ee $% ZH$.	28
	3.1.3	$H \to ZZ$ coupling sensitivity at CLIC	31
	3.1.4	HZZ CP studies at the FCC	31
	3.1.5	Improving HZZ CP constraints with neural-network-based observables	33
	3.1.6	CP tests with polarised beams	35
	• • •		

25 4 **Developments in Electroweak Physics & QCD** 77 4.3 FOCUS TOPIC: 2-fermion final states 81 4.3.3 ...

Dev	elopme	ents in Top Physics	107
5.1	Focu	S TOPIC: TTthresh: top quark properties from the threshold scan	107
	5.1.1	Predictions for top quark pair production at threshold	107
	5.1.2	Experimental studies	108
	5.1.3	Machine-related systematic uncertainties	110
	5.1.4	Results for the top quark mass and width	110
	5.1.5	Determination of the top quark Yukawa coupling	112

Glo	bal Interpretations	123
6.1	Global SMEFT fits at future e^+e^- colliders	123
	6.1.1 Combining EW/Higgs/Top measurements in the SMEFT at future colliders	124
6.2	BSM interpretation of SMEFT results	126
	6.2.1 Global constraints on Single-Particle SM extensions	126
6.3	New Physics Beyond Leading Order at Tera-Z	130
	6.3.1 New physics in the third family	130
	6.3.2 Single-Particle SM extensions	131
	•••	

7	Dire	ect Searches for New Particles	136
	7.1	General motivation for BSM searches at the HTE factory	136
	7.2	Focus topic: Exotic scalar searches	137
		7.2.1 Overview of scalar extensions of the Standard Model	137
		7.2.2 Focus topic targets	142
		7.2.3 Search for scalar-strahlung production	144
		7.2.4 Production of exotic scalars in Higgs boson decays	153
		7.2.5 Searches in other production channels	154
	7.3	Focus topic: Long lived particles	156
		7.3.1 Heavy Neutral Leptons	156
		7.3.2 Axion-like particles	159

Flavour Physics	210
8.1 Introduction	210
8.2 The new physics perspective and UV models	210
8.2.1 Flavour Deconstruction Models	211
8.3 Anticipated theoretical and experimental landscape at the dawn of future colliders	213
8.3.1 Expected precision from Lattice QCD	214
8.4 CKM profile prospects	216
8.4.1 Global analyses: New Physics in neutral meson mixings	216
8.4.2 $B^+_{(u,c)} \rightarrow \tau v$ leptonic decays as probes of $ V_{ub} , V_{cb} $ and new physics.	217
8.4.3 FOCUS TOPIC: Measuring $ V_{cb} $ and $ V_{cs} $ from W decays	218

. . .

. . .

107 6

8

ECFA study report Higgs/EW/Top studies

Higgs/EW/Top Studies Higgs Physics

Higgs mass: expected $\Delta M_{\rm H}$ ~10-20 MeV

Higgs physics at the e⁺e⁻ colliders

Some example numbers (FCCee):

Statistics (2IPs): 10⁶ (ZH) Higgses ~10⁵ (WWH) Higgses

But in a clean environment:

- -No pileup
- -Beam background under control
- -*E*, *p* constraints

4 IPs: 1.7x Stats using same running time

Higgs physics at the e⁺e⁻ colliders: What do ~10⁶ Higgses bring to the table?

\sqrt{s}	240	GeV	365	GeV
Integrated luminosity	5 a	b^{-1} (3 yrs)	1.5arepsilon	ab^{-1} (4 yrs)
Channel	ZH	$\nu_{\rm e}\bar{\nu}_{\rm e}$ H	ZH	$\nu_{\rm e} \bar{\nu}_{\rm e} \; {\rm H}$
$H \to any$	± 0.5	<u></u>	+0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$\mathrm{H} \rightarrow \mathrm{c}\bar{\mathrm{c}}$	± 2.2		± 6.5	± 10
$\mathrm{H} \rightarrow \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\mathrm{H} \rightarrow \mathrm{W}^+ \mathrm{W}^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
$\mathrm{H} \to \tau^+ \tau^-$	± 0.9		± 1.8	± 8
${\rm H} ightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mathrm{H} ightarrow \mu^+ \mu^-$	± 19		± 40	
$H \rightarrow invisible$	< 0.3		< 0.6	
	1			

E.g. FCCee Higgs precision (2IPs)

 $(\mathbf{H} \to Z\gamma)$

 $\pm 17^* \quad \leftarrow$ Ongoing study. Extrapolated from CEPC precision

Statistical uncertainties: Experimental systematics not expected to be a limiting factor for Higgs measurements 0.5% precision in σ_{ZH}
 SM: 1-loop EW corrections ~3%
 Tests of quantum corrections in the Higgs sector

Higgs width measured to 1%

Access to light quark couplings: Charm (~1%) Strange (?)

Focus Topic: H →ss

• Sensitivity to $H \rightarrow ss$ would allow for a complete exploration of the 2nd generation Yukawa couplings

- At the LHC this is inaccessible because:
 - Tiny expected rates vs. large QCD backgrounds
 - Current detector capabilities
 - ► Strange tagging: one of the most powerful handles to ID strange-quarks jets is the possibility to distinguish between Kaons and Pions up to tens of GeV in momentum ⇒ Requires dedicated detector subsystems not

present in LHC multi-purpose detectors

 Proof of concepts studied in past years focused in strange-tag algorithms and potential detector designs

Focus Topic: H →ss

Accelerator	Detector Concept	Dedicated Tagger	Analysis Strategy	Results (BR)	Results (k _s)	References	Additional Notes
FCC-ee @ 240 GeV, 10.8 ab ⁻¹ , @ 365 GeV, 3.0 ab ⁻¹	IDEA	Yes, ParticleNet. Uses dN/dx and TOF for PID information	ZH production, $Z \rightarrow II, Z \rightarrow vv$ and $Z \rightarrow q\overline{q}$. Use shape information of discriminant variable, fit all couplings simultaneously	$\sigma(ZH) \times BR(H \rightarrow s\overline{s})$ $O(100\%) \text{ at}$ $68\% \text{ CL with}$ $10.8 \text{ ab}^{-1} \text{ at}$ 240 GeV. $O(460\%) \text{ at}$ $68\% \text{ CL with}$ $3.0 \text{ ab}^{-1} \text{ at}$ 365 GeV.	Not available	Ref. [240]. See also here.	Fast Simulation based on DELPHES.
ILC @ 250 GeV, 2 ab ⁻¹	SiD	Yes, ParticleNet with improved calorimeter granularity	$Z \rightarrow II, Z \rightarrow \nu\nu$ and $Z \rightarrow qq$	$\sigma(ZH) imes BR(H ightarrow s\overline{s}) O(300\%).$	To evaluate and add higher energy run	Based on IDEA	Analysis sensitivity estimated by extrapolation.

⇒ Sensitivity to O(1) deviations to strange Yukawa

present in Line multi-purpose detectors

• Proof of concepts studied in past years focused in strange-tag algorithms and potential detector designs

Electron Yukawa coupling

- Hopeless at the LHC, given the tiny value of the electron mass (\rightarrow tiny width)
- With an integrated luminosity of 10 ab⁻¹/year expected at \sqrt{s} ~125 GeV, FCCee could attempt an observation of $e^+e^- \rightarrow H \Rightarrow$ Electron Yukawa

- Challenges:
 - Need to know first m_H with MeV precision
 - Small resonant $\sigma \rightarrow$ Need high beam monochromatization ($\delta \sim MeV$)
 - Multiple backgrounds orders of magnitude larger than signal

Electron Yukawa coupling

Most sensitive channel $H \rightarrow gg$ (no irreducible $Z \rightarrow gg$ background but requires to reduce light-quark for mistag below 1% while keeping high gluon efficiency (~70%))

Multiple backgrounds orders of magnitude larger than signal

• Two complementary approaches:

• Two complementary approaches:

FCC-ee

FCC-hh

8

36
Focus Topic: Higgs self-coupling

 Previous studies always focused around the SM value. That makes a big difference for HH probes of the self-coupling:

Negative interference in ggHH: suppression for $\Delta\lambda_3 \sim 0$

Focus Topic: Higgs self-coupling

 Previous studies always focused around the SM value. That makes a big difference for HH probes of the self-coupling:

Negative interference in ggHH: suppression for $\Delta\lambda_3 \sim 0$

Positive interference in ZHH

Focus Topic: Higgs self-coupling

Negative interference in ggHH: suppression for $\Delta\lambda_3 \sim 0$ Positive interference in ZHH

Focus Topic: Higgs self-coupling

Why care about large κ_{λ} ?

- O(I) corrections expected in scenarios with strong 1st order phase transition: In 2HDM this suggest $\kappa_{\lambda}=2$
- But... "traditional wisdom" suggests that any NP inducing large corrections to κ_{λ} would be seen first via its effects on single Higgs couplings (more precise)?
- Several counter-examples to the last point:
 - Tree-level EFT arguments: EW scalar quadruplets only correct κ_{λ} at LO
 - Loop-level in concrete BSM scenarios: large NLO corrections to selfcoupling possible, with small modifications of single-Higgs couplings

Negative interference in ggHH: suppression for $\Delta\lambda_3 \sim 0$ Positive interference in ZHH

Focus Topic: Higgs self-coupling

Focus Topic: Higgs self-coupling

Focus Topic: Higgs self-coupling

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

Focus Topic: Higgs self-coupling

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

Focus Topic: Higgs self-coupling

• The absolute precision of the determination from single-Higgs measurements, coming from NLO effects, is much less dependent on central value of K_{λ} :

- Sizable modification of κ_λ, small effect in statistical precision
- Changes in dependence around different values of K_λ small compared to effect of uncertainties from LO interactions

 This interpretation is typically performed in a global fit to all Higgs observables within the EFT framework and it is not without (several) complications... Let's come back at this after we have at least introduced the EFT global analyses...

Higgs/EW/Top Studies Electroweak Physics

Future e⁺e⁻ factories will also help us improve our knowledge of the EW interactions:

γ

 Significantly lower stats at linear colliders but can benefit from use of polarization ⇒ Extra observables wrt unpolarized case. E.g. asymmetries

Ζ

Future e⁺e⁻ factories will also help us improve our knowledge of the EW interactions:

• Z-pole measurements are also possible during the Higgs factory phase ($\sqrt{s} \sim 250$ GeV) via radiative return to the Z resonance

$$e^+e^- \to \gamma Z$$

ILC 250 with 2 ab⁻¹: 77 (12) million hadronic (leptonic) Zs 5 (100) times more statistics than LEP (SLC)!

K. Fuji et al. , arXiv: 1908.11299 [hep-ex] T. Mizuno, K. Fuji, J. Tian, arXiv: 2203.07944 [hep-ph]

Ζ

 Projections for future EWPO have been extensively studied in the past, e.g. improvement in Z pole observables can reach up to 2 orders of magnitude at Tera Z for leptonic and heavy flavor observables

Quantity	current	ILC250	ILC-GigaZ	FCC-ee	CEPC	CLIC380
$\Delta \alpha(m_Z)^{-1} (\times 10^3)$	18 [*]	18 [*]		3.8 (1.2)	18 [*]	
Δm_Z (MeV)	2 .1 [*]	0.7 (0.2)	0.2	0.004 (0.1)	0.005 (0.1)	2 .1 [*]
$\Delta\Gamma_Z$ (MeV)	2.3*	1.5 (0.2)	0.12	0.004 (0.025)	0.005 (0.025)	2.3*
$\Delta \overline{A}_e (\times 10^5)$	190*	14 (4.5)	1.5 (8)	0.7 (2)	1.5 (2)	60 (15)
$\Delta A_{\mu} (\times 10^5)$	1500^{*}	82 (4.5)	3 (8)	2.3 (2.2)	3.0 (1.8)	390 (14)
$\Delta A_{\tau} (\times 10^5)$	400 [*]	86 (4.5)	3 (8)	0.5 (20)	1.2 (20)	550 (14)
$\Delta A_{b} (\times 10^{5})$	2000^{*}	53 (35)	9 (50)	2.4 (21)	3 (21)	360 (92)
$\Delta A_c (\times 10^5)$	2700^{*}	140 (25)	20 (37)	20 (15)	6 (30)	190 (67)
$\Delta\sigma_{\sf had}^0$ (pb)	37*			0.035 (4)	0.05 (2)	37*
$\delta R_e (\times 10^3)$	2.4*	0.5 (1.0)	0.2 (0.5)	0.004 (0.3)	0.003 (0.2)	2.5 (1.0)
$\delta R_{\mu} (imes 10^3)$	1.6*	0.5 (1.0)	0.2 (0.2)	0.003 (0.05)	0.003 (0.1)	2.5 (1.0)
$\delta R_{\tau} (\times 10^3)$	2.2*	0.6 (1.0)	0.2 (0.4)	0.003 (0.1)	0.003 (0.1)	3.3 (5.0)
$\delta R_{\sf b}~(imes 10^3)$	3.1 [*]	0.4 (1.0)	0.04 (0.7)	0.0014 (< 0.3)	0.005 (0.2)	1.5 (1.0)
$\delta R_c(\times 10^3)$	17*	0.6 (5.0)	0.2 (3.0)	0.015 (1.5)	0.02 (1)	2.4 (5.0)

stat (sys)

 Could also measure properties of light family quarks (up & down) using QED FSR (see backup slides)

- Future e⁺e⁻ factories will also help us improve our knowledge of the EW charged current interactions:
 - ✓ WW production at 161 GeV and above: O(10⁸) WW pairs to improve measurements <u>W mass</u> and width, BRs, aTGCs, ...

✓ W couplings:

Decay mode relative precision	$B(W \rightarrow ev)$	$B(W \to \mu \nu)$	B(W o au v)	$B(W \to q\overline{q})$
LEP2	1.5%	1.4%	1.8%	0.4%
LHC	1.0%	0.8%	2.1%	0.3%
future e^+e^-	$3 \cdot 10^{-4}$	$3 \cdot 10^{-4}$	$4 \cdot 10^{-4}$	$1 \cdot 10^{-4}$

Improvement of order 50

✓ aTGC: Measured across a wider ranger of energies than LEP2 (avoiding the approximate degeneracy between some of the aTGC present there)

Higgs/EW/Top Studies Top Physics

MAX-PLANCI

Top physics

Focus Topic: Top quark properties from threshold

- Top mass is one a key input of the SM, of particular relevance for the EW fit
 - ✓ Rapid cross section increase around $\sqrt{s} \sim 2m_t \rightarrow Multi-point scan around threshold and fit to determine position of top mass and width (shape)$

Focus Topic: Top quark properties from threshold

• Top mass is one a key input of the SM, of particular relevance for the EW fit

✓ Rapid cross section increase around $\sqrt{s} \sim 2m_t \rightarrow Multi-point scan around threshold and fit to determine position of top mass and width (shape)$

Focus Topic: Top quark properties from threshold

• Top mass is one a key input of the SM, of particular relevance for the EW fit

✓ Rapid cross section increase around $\sqrt{s} \sim 2m_t \rightarrow Multi-point scan around threshold and fit to determine position of top mass and width (shape)$

54

Focus Topic: Top quark couplings

e+e above the *tt* threshold enable measurements of the Top-quark couplings to the Z and γ , in a way that is complementary to hadron colliders: ے^{10³}

 $(\mathbf{x}^{+}_{\pm 10^2})$

_ס(e⁺e⁻

10

- LHC: accessible via $pp \rightarrow ttZ$, $tt\gamma$ Not very precisely measured
- $e+e^{-} \rightarrow tt$: mediated by Z/γ interactions. Clean environment. Better cross section slightly above threshold ~365 GeV
- Top Yukawa coupling: *tth* is the golden channel $(pp \rightarrow tth \text{ and } e+e \rightarrow tth)$

 10^{-1} e+e-: only available to high-E (e.g. 550 GeV) 1000 2000 3000 0 √s [GeV] determination of the Top couplings depends on the theory framework and it is typically done within the SMEFT

- Via a global fit to different types of top processes available at pp and e+e-
- Complete characterization
 Complete characterization of the HLLHC and $e+e^{-1}$ colliders

tīH

H

tŧ

 $t\bar{t}v_e\overline{v}_e$

tīΖ

ECFA study report Global combinations in the SMEFT

Global fits at future e⁺e⁻ colliders

- **SMEFT:** general, theoretically consistent, QFT description of BSM effects for $E \ll \Lambda$ (EFT cutoff) with minimal assumptions:
 - Mass gap with new physics: A≫v (justified by absence of new particles in direct searches?)

 \Rightarrow Low-energy particles & symmetries: SM (Higgs in 2~SU(2)_L)

• Power counting: Decoupling NP. New effects $\rightarrow 0$ as $\Lambda \rightarrow \infty$

 $\Rightarrow \text{Expansion of BSM effects in } 1/\Lambda$

Leading Order (LO) Beyond the SM effects (assuming B & L) ⇒ Dim-6 SMEFT: 2499 Operators/Wilson coefficients

Global fits at future e+e- colliders

• LO SMEFT Lagrangian (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Ignoring flavour)

Operator	Notation	Operator	Notation	Operator	Notation	Operator	Notation
$(\overline{l_L}\gamma_\mu l_L) \ (\overline{l_L}\gamma^\mu l_L)$	$\mathcal{O}_{n}^{(1)}$			$\left(\phi^{\dagger}\phi ight)\square\left(\phi^{\dagger}\phi ight)$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right)$	${\cal O}_{qq}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$	${\cal O}_{qq}^{(8)}$	$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{l_L} \gamma^{\mu} l_L\right)$	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overleftrightarrow{D}_{\mu}^{a} \phi\right) \left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L}\right)$	$\mathcal{O}_{\phi l}^{(3)}$
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{q_L}\gamma^{\mu}q_L\right)$	$\mathcal{O}_{lq}^{(1)}$	$\left(\overline{l_L}\gamma_\mu\sigma_a l_L\right)\left(\overline{q_L}\gamma^\mu\sigma_a q_L\right)$	$\mathcal{O}_{lq}^{(3)}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	$\mathcal{O}_{\phi e}^{(1)}$		
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{ee}			$\left(\phi^{\dagger}i \stackrel{\leftrightarrow}{D_{\mu}} \phi\right) \left(\overline{q_L} \gamma^{\mu} q_L\right)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D_{\mu}} \phi ight) \left(\overline{q_L} \gamma^{\mu} \sigma_a q_L ight)$	${\cal O}_{\phi q}^{(3)}$
$\left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_{\mu}d_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right)$	$\mathcal{O}_{dd}^{(1)}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}u_{R} ight)$	$\mathcal{O}_{\phi u}^{(1)}$	$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{d_{R}}\gamma^{\mu}d_{R} ight)$	$\mathcal{O}_{\phi d}^{(1)}$
$\left(\overline{u_R}\gamma_{\mu}u_R\right)\left(d_R\gamma^{\mu}d_R\right)$	$\mathcal{O}_{ud}^{(1)}$	$(\overline{u_R}\gamma_{\mu}T_A u_R) (\underline{d_R}\gamma^{\mu}T_A d_R)$	$\mathcal{O}_{ud}^{(8)}$	$\left(\phi^{T}i\sigma_{2}iD_{\mu}\phi\right)\left(\overline{u_{R}}\gamma^{\mu}d_{R}\right)$	$\mathcal{O}_{\phi ud}$		
$(e_R'\gamma_\mu e_R)(u_R'\gamma''u_R)$	U_{eu}	$(e_R'\gamma_\mu e_R)(a_R'\gamma' a_R)$	\mathcal{O}_{ed}	$(l_L \sigma^{\mu\nu} e_R) \phi B_{\mu\nu}$	\mathcal{O}_{eB}	$\begin{pmatrix} l_L \sigma^{\mu\nu} e_R \end{pmatrix} \sigma^a \phi W^a_{\mu\nu}$ $(\overline{a_L} \sigma^{\mu\nu} u_R) \sigma^a \check{\phi} W^a$	\mathcal{O}_{eW}
$ \frac{\left(l_L\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)}{\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)} $	\mathcal{O}_{le}	$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{qe}	$(\overline{q_L}\sigma^{\mu\nu}d_R)\phi B_{\mu\nu}$ $(\overline{q_L}\sigma^{\mu\nu}d_R)\phi B_{\mu\nu}$	${\cal O}_{dB}$	$ (\overline{q_L}\sigma^{\mu\nu}d_R) \sigma^a \phi W^a_{\mu\nu} $	${\cal O}_{dW}$
$ \begin{pmatrix} l_L \gamma_\mu l_L \end{pmatrix} \begin{pmatrix} u_R \gamma^\mu u_R \end{pmatrix} $	$\mathcal{O}_{lu} \\ \mathcal{O}^{(1)}$	$ \begin{pmatrix} l_L \gamma_\mu l_L \end{pmatrix} \begin{pmatrix} d_R \gamma^\mu d_R \end{pmatrix} $ $ \begin{pmatrix} \overline{a_R} \gamma^\mu T_{R} a_{R} \end{pmatrix} \begin{pmatrix} \overline{a_R} \gamma^\mu T_{R} a_{R} \end{pmatrix} $	\mathcal{O}_{ld} $\mathcal{O}^{(8)}$	$\left(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R\right)\widetilde{\phi}G^A_{\mu\nu}$	\mathcal{O}_{uG}	$\left(\overline{q_L}\sigma^{\mu\nu}\lambda^A d_R\right)\phi G^A_{\mu\nu}$	\mathcal{O}_{dG}
$(q_L\gamma_\mu q_L) (a_R\gamma^\mu a_R)$ $(\overline{a_L}\gamma_\mu a_L) (\overline{d_R}\gamma^\mu d_R)$	$\mathcal{O}_{qu}^{(1)}$	$(q_L\gamma_{\mu}T_Aq_L) (u_R\gamma^{\mu}T_Au_R)$ $(\overline{a_L}\gamma_{\mu}T_Aq_L) (\overline{d_R}\gamma^{\mu}T_Ad_R)$	$\mathcal{O}_{qu}^{(8)}$	$(\phi^{\dagger}\phi) (\overline{l_L}\phi e_R)$	$\mathcal{O}_{e\phi}$		
$\frac{(q_L / \mu q_L)}{(\overline{l_L} e_R)} \left(\frac{d_R}{d_R} q_L \right)$	${\cal O}_{ledq}^{}$	$(4L / \mu^2 A4L) (\omega n / 2A\omega n)$	\mathbf{c}_{qd}	$\left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\phiu_{R} ight)$	$\mathcal{O}_{u\phi}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
$(\overline{\alpha}, u)$ is $(\overline{\alpha}, d)^{\mathrm{T}}$	$\mathcal{O}^{(1)}$	$(\overline{a}, T, u) i \sigma (\overline{a}, T, d)^{\mathrm{T}}$	(⁸)	$\left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right)$	$\mathcal{O}_{\phi D}$	$A^{\dagger} A \widetilde{D} D \mu \nu$	0
$(q_L u_R) i\sigma_2 (q_L u_R)$ $(\overline{l_L} e_R) i\sigma_2 (\overline{a_L} u_R)^{\mathrm{T}}$	\mathcal{O}_{qud}	$(q_L I_A u_R) i \sigma_2 (q_L I_A u_R)$ $(\overline{l_L} u_R) i \sigma_2 (\overline{a_L} e_R)^{\mathrm{T}}$	\mathcal{O}_{qud}	$\phi^{\dagger}\phi^{} B_{\mu\nu} B^{\mu\nu}$ $\phi^{\dagger}\phi^{} W^{a}_{\mu\nu} W^{a\mu\nu}$	$\mathcal{O}_{\phi B} \ \mathcal{O}_{\phi W}$	$\phi^{\dagger}\phi^{} D_{\mu\nu}D^{\mu\nu}$ $\phi^{\dagger}\phi^{} \widetilde{W}^{a}_{\mu\nu}W^{a\ \mu\nu}$	$\mathcal{O}_{\phi \widetilde{B}} \ \mathcal{O}_{ec{W}}$
$(L \cap R) = 2 (4L \cap R)$	• lequ	$(L \cap L) = 2 (AL \cap L)$	• qeiu	$\phi^{\dagger}\sigma_{a}\phi \ W^{a}_{\mu u}B^{\mu u}$	\mathcal{O}_{WB}	$\phi^{\dagger}\sigma_{a}\phi\widetilde{W}^{\mu u}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\widetilde{W}B}^{\phi_W}$
				$\phi^{\dagger}\phi~G^{A}_{\mu\nu}G^{A~\mu\nu}$	$\mathcal{O}_{\phi G}$	$\phi^{\dagger}\phi\;\widetilde{G}^{A}_{\mu\nu}G^{A\;\mu\nu}$	$\mathcal{O}_{\phi \widetilde{G}}$
				$\varepsilon_{abc} W^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho}$	\mathcal{O}_W	$\varepsilon_{abc} \widetilde{W}^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho}$	$\mathcal{O}_{\widetilde{W}}$
				$J_{ABC} G_{\mu}^{\mu\nu} G_{\nu}^{\mu\nu} G_{\rho}^{\sigma\mu}$	\mathcal{O}_G	$J_{ABC} G^{\mu\nu}_{\mu} G^{\mu\nu}_{\nu} G^{\sigma\mu}_{\rho}$	$\mathcal{O}_{\widetilde{G}}$

Global fits at future e+e- colliders

• **LO SMEFT Lagrangian** (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Ignoring flavour)

Operator	Notation	Operator	Notation		Operator	Notation	Operator	Notation
$\left(l_L \gamma_\mu l_L ight) \left(l_L \gamma^\mu l_L ight)$	$\mathcal{O}_{ll}^{(1)}$				$(\phi^{\dagger}\phi)\Box(\phi^{\dagger}\phi)$	$\mathcal{O}_{\phi\square}$	$\underline{}_{\underline{}} \underline{}_{\underline{}} (\phi^{\dagger} \phi)^{3} \underline{}_{\underline{}} \underline{}$	\mathcal{O}_{ϕ}
$\left(\overline{q_L}\gamma_\mu q_L\right)\left(\overline{q_L}\gamma^\mu q_L\right)$	$\mathcal{O}_{qq}^{\scriptscriptstyle (1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$	$\mathcal{O}_{qq}^{(\mathfrak{d})}$	Í	$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi ight)\left(\overline{l_{L}}\gamma^{\mu}l_{L} ight)$	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D}{}_{\mu}^{a}\phi ight)\left(\overline{l_{L}}\gamma^{\mu}\sigma_{a}l_{L} ight)$	$\mathcal{O}_{\phi l}^{(3)}$
$(l_L \gamma_\mu l_L) (\overline{q_L} \gamma^\mu q_L)$	$\mathcal{O}_{lq}^{(1)}$	$\left(l_L\gamma_\mu\sigma_a l_L\right)\left(\overline{q_L}\gamma^\mu\sigma_a q_L\right)$	$\mathcal{O}_{lq}^{(3)}$		$\left(\phi^{\dagger}i\overset{\leftrightarrow}{D}_{\mu}\phi\right)\left(\overline{e_{R}}\gamma^{\mu}e_{R}\right)$	$\mathcal{O}_{\phi e}^{(1)}$	×	
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{ee}	_	(4)	1	$\left(\phi^{\dagger}i\widetilde{D}_{\mu}\phi\right)\left(\overline{q_{L}}\gamma^{\mu}q_{L} ight)$	$\mathcal{O}_{\phi q}^{(1)}$	$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{a}\phi ight)\left(\overline{q_{L}}\gamma^{\mu}\sigma_{a}q_{L} ight)$	$\mathcal{O}_{\phi q}^{(3)}$
$\left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{uu}^{(1)}$	$\left(\overline{d_R}\gamma_{\mu}d_R\right)\left(\overline{d_R}\gamma^{\mu}d_R\right)$	$\mathcal{O}_{dd}^{(1)}$		$\left(\phi^{\dagger}i\overleftrightarrow{D}_{\mu}\phi\right)\left(\overline{u_{B}}\gamma^{\mu}u_{B}\right)$	${\cal O}_{\star a}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D}_{\!$	${\cal O}_{\phi d}^{(1)}$
$\left(\overline{u_R}\gamma_{\mu}u_R\right)\left(d_R\gamma^{\mu}d_R\right)$	$\mathcal{O}_{ud}^{(1)}$	$(\overline{u_R}\gamma_{\mu}T_Au_R)\left(d_R\gamma^{\mu}T_Ad_R\right)$	$\mathcal{O}_{ud}^{(\circ)}$	- 2	$\left(\phi^T i\sigma_2 iD_\mu\phi\right)\left(\overline{u_R}\gamma^\mu d_R\right)$	$\mathcal{O}_{\phi ud}$		
$\left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{u_R}\gamma^{\mu}u_R ight)$	\mathcal{O}_{eu}	$\left(\overline{e_R}\gamma_\mu e_R\right)\left(d_R\gamma^\mu d_R ight)$	\mathcal{O}_{ed}	_	$\left(\overline{l_L}\sigma^{\mu u}e_R ight)\phiB_{\mu u}$	\mathcal{O}_{eB}	$\left(\overline{l_L}\sigma^{\mu u}e_R ight)\sigma^a\phiW^a_{\mu u}$	\mathcal{O}_{eW}
$\left(\overline{l_L}\gamma_{\mu}l_L\right)\left(\overline{e_R}\gamma^{\mu}e_R\right)$	\mathcal{O}_{le}	$\left(\overline{q_L}\gamma_\mu q_L\right)\left(\overline{e_R}\gamma^\mu e_R\right)$	\mathcal{O}_{qe}		$(\overline{q_L}\sigma^{\mu\nu}u_R)\phi B_{\mu\nu}$	\mathcal{O}_{uB}	$(\overline{q_L}\sigma^{\mu\nu}u_R)\sigma^a\phi W^a_{\mu\nu}$	\mathcal{O}_{uW}
$\left(\overline{l_L}\gamma_\mu l_L\right)\left(\overline{u_R}\gamma^\mu u_R ight)$	\mathcal{O}_{lu}	$\left(\overline{l_L}\gamma_\mu l_L\right)\left(d_R\gamma^\mu d_R ight)$	\mathcal{O}_{ld}	Г	$(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R)\phi G^A_{\mu\nu}$ $(\overline{q_L}\sigma^{\mu\nu}\lambda^A u_R)\phi G^A_{\mu\nu}$	\mathcal{O}_{dB} \mathcal{O}_{uG}	$\left(\overline{q_L}\sigma^{\mu u}\lambda^A d_R ight)\phi G^A_{\mu u}$	${\cal O}_{dW} \ {\cal O}_{dG}$
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(\overline{u_R}\gamma^{\mu}u_R\right)$	$\mathcal{O}_{qu}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{u_R}\gamma^{\mu}T_Au_R\right)$	$\mathcal{O}_{qu}^{(8)}$	1	$(\phi^{\dagger}\phi) (\overline{l_L}\phi e_R)$	$\mathcal{O}_{e\phi}$		
$\left(\overline{q_L}\gamma_{\mu}q_L\right)\left(d_R\gamma^{\mu}d_R\right)$	$\mathcal{O}_{qd}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(d_R\gamma^{\mu}T_Ad_R\right)$	$\mathcal{O}_{qd}^{(0)}$		$\left(\phi^{\dagger}\phi\right)\left(\overline{q_{L}}\tilde{\phi}u_{R} ight)$	$\mathcal{O}_{u\phi}$	$\left(\phi^{\dagger}\phi ight)\left(\overline{q_{L}}\phid_{R} ight)$	$\mathcal{O}_{d\phi}$
$(l_L e_R) (a_R q_L)$	O_{ledq}			1	$\left(\phi^{\dagger}D_{\mu}\phi\right)\left(\left(D^{\mu}\phi\right)^{\dagger}\phi\right)$	$\mathcal{O}_{\phi D}$		
$\left(\overline{q_L}u_R ight)i\sigma_2\left(\overline{q_L}d_R ight)^{\mathrm{T}}$	$\mathcal{O}_{qud}^{(1)}$	$\left(\overline{q_L}T_A u_R\right) i\sigma_2 \left(\overline{q_L}T_A d_R\right)^{\mathrm{T}}$	$\mathcal{O}_{qud}^{(8)}$		$\phi'\phi B_{\mu\nu}B^{\mu\nu}$	$\mathcal{O}_{\phi B}$	$\phi^\dagger \phi \; \widetilde{B}_{\mu u} B^{\mu u}$	$\mathcal{O}_{\phi \widetilde{B}}$
$\left(\overline{l_L}e_R\right)i\sigma_2\left(\overline{q_L}u_R ight)^{\mathrm{T}}$	\mathcal{O}_{lequ}	$\left(\overline{l_L}u_R\right)i\sigma_2\left(\overline{q_L}e_R\right)^{\mathrm{T}}$	\mathcal{O}_{qelu}		$\phi^\dagger \phi \; W^a_{\mu u} W^a \;^{\mu u}$	${\cal O}_{\phi W}$	$\phi^\dagger \phi \; \widetilde{W}^a_{\mu u} W^{a \; \mu u}$	$\mathcal{O}_{\phi \widetilde{W}}$
					$\phi^{\dagger}\sigma_{a}\phi\;W^{a}_{\mu\nu}B^{\mu\nu}$	\mathcal{O}_{WB}	$\phi^{\dagger}\sigma_{a}\phi W^{a}_{\mu u}B^{\mu u}$	$\mathcal{O}_{\widetilde{W}B}$
	van dim 6 an	a interfering with CM		-	$\phi^{\dagger}\phi G^{II}_{\mu\nu}G^{II\mu\nu}$	$\mathcal{O}_{\phi G}$	$\frac{\phi \phi G_{\mu\nu}^{\mu} G^{\mu\nu}}{\widetilde{W}}$	$\mathcal{O}_{\phi \widetilde{G}}$
<u>UP-e</u>					$\varepsilon_{abc} W^{a \nu}_{\mu} W^{o \rho}_{\nu} W^{c \mu}_{\rho}$ $f_{\mu \nu} c^{A \nu} C^{B \rho} C^{C \mu}$	\mathcal{O}_W	$\varepsilon_{abc} W^{a \nu}_{\mu} W^{o \rho}_{\nu} W^{c \mu}_{\rho}$ $f_{\mu \nu \alpha} \widetilde{C}^{A \nu} C^{B \rho} C^{C \mu}$	$\mathcal{O}_{\widetilde{W}}$
EWPO EW dibo	oson Higg	gs Top (Had. Coll., Le	ept. Coll.)		$JABC G_{\mu} G_{\nu} G_{\rho}$	\mathcal{O}_G	$J_{ABC} G_{\mu} G_{\nu} G_{\rho}$	${oldsymbol{arPhi}}_G$

Global fits at future e⁺e⁻ colliders

• **LO SMEFT Lagrangian** (assuming B & L) \Rightarrow Dim-6 SMEFT: 2499 operators

Warsaw basis operators (Ignoring flavour)

Operator	Notation	Operator	Notation	Operator	Notation	Operator	Notation
$\left(l_L \gamma_\mu l_L ight) \left(l_L \gamma^\mu l_L ight)$	$\mathcal{O}_{ll}^{(1)}$			$\begin{pmatrix} \phi^{\dagger}\phi \end{pmatrix} \Box \begin{pmatrix} \phi^{\dagger}\phi \end{pmatrix}$	$\mathcal{O}_{\phi\square}$	$rac{1}{3}\left(\phi^{\dagger}\phi ight)^{3}$	\mathcal{O}_{ϕ}
$ \begin{array}{c} \left(\overline{q_L} \gamma_{\mu} q_L \right) \left(\overline{q_L} \gamma^{\mu} q_L \right) \\ \left(l_L \gamma_{\mu} l_L \right) \left(\overline{q_L} \gamma^{\mu} q_L \right) \end{array} $	$\mathcal{O}_{qq}^{(1)} \ \mathcal{O}_{l}^{(1)}$	$\left(\overline{q_L}\gamma_{\mu}T_Aq_L\right)\left(\overline{q_L}\gamma^{\mu}T_Aq_L\right)$ $\left(\overline{q_L}\gamma^{\mu}\sigma_aq_L\right)\left(\overline{q_L}\gamma^{\mu}\sigma_aq_L\right)$	$\mathcal{O}_{qq}^{(S)}$	$ \begin{pmatrix} \phi^{\dagger} i \overset{\leftrightarrow}{D}_{\mu} \phi \end{pmatrix} \begin{pmatrix} \overline{l_L} \gamma^{\mu} l_L \end{pmatrix} $	$\mathcal{O}_{\phi l}^{(1)}$	$\left(\phi^{\dagger}i \overset{\leftrightarrow}{D}{}_{\mu}^{a} \phi\right) \left(\overline{l_{L}} \gamma^{\mu} \sigma_{a} l_{L}\right)$	$\mathcal{O}_{\phi l}^{(3)}$
$ \begin{array}{c} \left(\overline{e_R}\gamma_{\mu}e_R\right)\left(\overline{e}\right) \\ \left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{e}\right) \\ \left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{e}\right) \\ \left(\overline{u_R}\gamma_{\mu}u_R\right)\left(\overline{e}\right) \\ \left(\overline{e_R}\gamma_{\mu}u_R\right)\left(\overline{e}\right) \\ \left(\overline{e}\right) \\ \left(\overline{e_R}\gamma_{\mu}u_R\right)\left(\overline{e}\right) \\ \left(\overline{e}\right) $		SMEFT interpret 2020 ESU	tations a J or Snov	Iready prepar wmass 2021	ed for		$\mathcal{D}_{\phi q}^{(3)}$
$(e_{R}\gamma_{\mu}e_{R}) (t)$ $(\overline{l_{L}}\gamma_{\mu}l_{L}) (\overline{e}$ $(l_{L}\gamma_{\mu}l_{L}) (\overline{u}$ $(\overline{q_{L}}\gamma_{\mu}q_{L}) (\overline{v}$ $(\overline{q_{L}}\gamma_{\mu}q_{L}) (\overline{o}$ $(l_{L}e_{R}) (\overline{o}$	sector t Pre	Mainly for reated mostly sep sented in terms of of SM-like intera	ocused o oarately of sensitiv actions (e	n EW/Higgs or under restr vity to BSM de effective coup	r <mark>ictive</mark> a eformat o <i>lings)</i>	ssumptions tion	\mathcal{D}_{eW} \mathcal{D}_{uW} \mathcal{D}_{dW} \mathcal{D}_{dG}
$ \begin{array}{c} \left(\overline{q_L} u_R \right) i \sigma_2 \left(\overline{q_L} d_R \right)^{\mathrm{T}} \\ \left(\overline{l_L} e_R \right) i \sigma_2 \left(\overline{q_L} u_R \right)^{\mathrm{T}} \end{array} $	${\cal O}_{qud}^{(1)} \ {\cal O}_{lequ}$	$ \begin{array}{c} \left(\overline{q_L} T_A u_R \right) i \sigma_2 \left(\overline{q_L} T_A d_R \right)^{\mathrm{T}} \\ \left(\overline{l_L} u_R \right) i \sigma_2 \left(\overline{q_L} e_R \right)^{\mathrm{T}} \end{array} $	$\mathcal{O}_{qud}^{(8)} \ \mathcal{O}_{qelu}$	$\begin{array}{c} \phi^{\dagger}\phi \ B_{\mu\nu}B^{\mu\nu} \\ \phi^{\dagger}\phi \ W^{a}_{\mu\nu}W^{a\ \mu\nu} \\ \phi^{\dagger}\sigma_{a}\phi \ W^{a}_{\mu\nu}B^{\mu\nu} \\ \phi^{\dagger}\sigma_{a}\phi \ G^{A} \ G^{A\ \mu\nu} \end{array}$	$O_{\phi B}$ $\mathcal{O}_{\phi W}$ \mathcal{O}_{WB} $\mathcal{O}_{\phi C}$	$ \phi^{\dagger}\phi \ \widetilde{B}_{\mu\nu}B^{\mu\nu} \phi^{\dagger}\phi \ \widetilde{W}^{a}_{\mu\nu}W^{a\ \mu\nu} \phi^{\dagger}\sigma_{a}\phi \ \widetilde{W}^{a}_{\mu\nu}B^{\mu\nu} \phi^{\dagger}\phi \ \widetilde{G}^{A} \ G^{A\ \mu\nu} $	$\mathcal{O}_{\phi\widetilde{B}}$ $\mathcal{O}_{\phi\widetilde{W}}$ $\mathcal{O}_{\widetilde{W}B}$ $\mathcal{O}_{\chi\widetilde{R}}$
CP-e	ven dim 6 op oson Higg	<u>s. interfering with SM</u> s Top (Had. Coll., Le	ept. Coll.)	$\varepsilon_{abc} W^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho}$ $f_{ABC} G^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho}$	\mathcal{O}_W \mathcal{O}_G	$\varepsilon_{abc} \widetilde{W}^{a \nu}_{\mu} W^{b \rho}_{\nu} W^{c \mu}_{\rho} f_{ABC} \widetilde{G}^{A \nu}_{\mu} G^{B \rho}_{\nu} G^{C \mu}_{\rho}$	$\mathcal{O}_{\widetilde{W}} \ \mathcal{O}_{\widetilde{G}}$

Global fits at future e⁺e⁻ colliders

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

Global fits at future e+e- colliders

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

Global fits at future e⁺e⁻ colliders

Global fits at future e+e- colliders

hef Gabibboults will be presented, not in terms of afesty gaage-invarfant operators, but in rred to as *Effective Higgs and electroweak couplings*, comyables and thus, independent of the basis one could have 10⁻² 5 Lagrangian. This is done by performing the fit internally 10⁻³ ne fit. Colf officients and then from the couplings, defined from: $\delta_{q_{z_{i}}}$ $\delta g_{Z,R}^{bb}$ the mannetities Radiative return measurements still bring a significant improvement ies, referren 2 knowledge of EW interstrions uplings, com III H → X al observations and May s, in the first and the part of the part of the save o ension-6 Lagrangian. This is done by generation of the fit internal gs, or the quantit to and then, from the posterior of the fit couplings, or the quantum case, enough precision to gath a sylfethile on the EW fit A5th phenomer ilson coefficients al iction for the quantities Higgs coupling and the Higgs self-interaction. Being a couplings evertheless still apply similar definition

Jorge de Blas - U. of Granada $g_{HX}^{\text{eff 2}} \equiv \frac{I p u p ose we will never the structure of EW/Niggs/Top factories S S fill apply stimulate$ $<math display="block">\Gamma_{SM}^{\text{SM}} = \frac{I p u p ose we will never the structure of EW/Niggs/Top factories S S fill apply stimulate$ C structure of EW/Niggs/Top factories S S fill apply stimulate $<math display="block">\Gamma_{SM}^{\text{SM}} = \frac{I p u p ose we will never the structure of EW/Niggs/Top factories S S fill apply stimulate$ C structure of EW/Niggs/Top factories S S fill apply stimulate $<math display="block">\Gamma_{SM}^{\text{SM}} = \frac{I p u p ose we will never the structure of EW/Niggs/Top factories S S fill apply stimulate$ C structure of EW/Niggs/Top factories S S fill apply structure of EW/Niggs/Top factories S S fill apply structure of the structure of EW/Niggs/Top factories S S fill apply structure of EW/Niggs/Top factories S S fill apply structure of EW/Niggs/Top factories S S fill apply structure of the structure of EW/Niggs/Top factories S S fill apply structure of the struct

65

Focus Topic: Top quark couplings

- At a "standalone" $e+e^{-}$ collider two distinct \sqrt{s} points are required to separate vertex corrections from, e.g. four-fermion operators (different E-scaling).
- e+e-& pp complementarity in Top production: sensitive to completely different four fermion interactions but combination with HLLHC helps e+e- if only one energy point is used, by controlling common 2-fermion operators

Focus Topic: Top quark couplings

- At a "standalone" $e+e^{-}$ collider two distinct \sqrt{s} points are required to separate vertex corrections from, e.g. four-fermion operators (different E-scaling).
- e+e-& pp complementarity in Top production: sensitive to completely different four fermion interactions but combination with HLLHC helps e+e- if only one energy point is used, by controlling common 2-fermion operators
- Global precision on Top Yukawa

Valu	es in % units	LHC	HL-LHC	ILC500	ILC550	ILC1000	CLIC	FCChh	μ -coll
Su	Global fit	12%	5.1%	3.1%	2.6%	1.5%	3.0%	-	-
$\mathbf{O}\mathbf{y}_t$	Indiv. fit	10%	3.7%	2.8%	2.3%	1.4%	2.5%	1%	1.5%

Relatively small improvement wrt HLLHC until very high-E lepton collider or FCC-hh

Global fits at future e⁺e⁻ colliders

Combining EW, Higgs and Top sectors

 c_t^8

 $c_{Q_i}^8$

Ratio of Uncertainties to SMEFiT3.0 Baseline, $\mathcal{O}(\Lambda^{-4})$, Marginalised

- Global fit of HLLHC+PFuture e+e-CC including simultaneously EW, Higgs at Top measurements $C_{\varphi B}$ $C_{\varphi G}$
 - Also including: VL4Q QCD effects in LHC.2 obs.
 - Impact of quadratic terms (small for operators entering in e^+e^- measurements)

Confirms that, to a large extent, EW/Higgs and Top sector are approximately orthogonal at e*ergd

HL-LHC

 $c_{\tau\varphi}$ c_{tG} c_{tW} c_{tZ} $c_{\varphi q}^{(3)}$ $c_{\varphi Q}^{(-)}$ $c_{\varphi Q}^{(-)}$

HL-LHC+FCC-ee

 $c_{b\varphi}$

 $c_{t\varphi}$

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

MEF

 $c_{\omega l}$

0.8

Global fits at future e+e- colliders

Interplay EW, Higgs and Top sectors

69

Global fits at future e'e colliders

Global fits at future e⁺e⁻ colliders

Coming back to the Higgs self-coupling

• Current determination from single-Higgs are based in EFT analysis including ALL LO contributions BUT ONLY the one-loop effects from κ_{λ} :

You can still learn from this (e.g. need at least two energy points to separate K_λ from LO), but a "model-independent" interpretation of K_λ within the SMEFT assumptions requires introducing all operators that contribute at NLO!

Global fits at future e⁺e⁻ colliders

Coming back to the Higgs self-coupling

• Full SMEFT calculation of ZH at NLO:

arXiv: 2409.11466 [hep-ph]

- Aside from the LO interactions, a total of 6 boson operator (4 CP violating),
 9 two-fermion operators and 14 four-fermion operators contribute to
 dimension six at NLO...
- Some of them which will remain relatively weakly constrained at the LHC!

 $\Rightarrow e^+e^- tt$ operators
Global fits at future e+e- colliders

Coming back to the Higgs self-coupling

observables of the fit

• Some of them which will remain relatively weakly constrained at the LHC!

 $\Rightarrow e^+e^- tt$ operators

Physics at future e⁺e⁻ EW/Higgs/Top factories December 11, 2024

Global fits at future e⁺e⁻ colliders

What do we learn from these EFT analyses?

Sensitivity to BSM deviations in future projections within the framework of dimension-6 SMEFT can be translated into any specific scenarios (consistent with the SMEFT assumptions)

 \Rightarrow Match c_i to specific models to learn about UV

Global fits at future e⁺e⁻ colliders

• What can we learn with all this precision about UV physics?

High Energy UV theory/BSM Aatchin Match to UV and reinterpret SMEFT bounds **SMEFT** Low Energy **48 multiplets** contributing to

@ Tree level

Jorge de Blas - U. of Granada

19 spin 0

Name	S	\mathcal{S}_1	\mathcal{S}_2	arphi	[1]	Ξ_1	Θ_1	Θ_3
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,1)_2$	$(1,2)_{\frac{1}{2}}$	$(1,3)_{0}$	$(1,3)_1$	$(1,4)_{\frac{1}{2}}$	$(1,4)_{\frac{3}{2}}$
N				Π	Π			
Name	ω_1	ω_2	ω_4	Π_1	Π_7	ζ		
Irrep	$(3,1)_{-\frac{1}{3}}$	$(3,1)_{\frac{2}{3}}$	$(3,1)_{-\frac{4}{3}}$	$(3,2)_{\frac{1}{6}}$	$(3,2)_{\frac{7}{6}}$	$(3,3)_{-\frac{1}{3}}$		
NT	0	0	0	\sim	Ŧ			
Name	Ω_1	Ω_2	Ω_4	1	Φ			
Irrep	$(6,1)_{\frac{1}{3}}$	$(6,1)_{-\frac{2}{3}}$	$(6,1)_{\frac{4}{3}}$	$(6,3)_{\frac{1}{3}}$	$(8,2)_{\frac{1}{2}}$			

13 spin 1/2

Name	N	E	Δ_1	Δ_3	Σ	Σ_1	
Irrep	$(1,1)_{0}$	$(1,1)_{-1}$	$(1,2)_{-\frac{1}{2}}$	$(1,2)_{-\frac{3}{2}}$	$(1,3)_{0}$	$(1,3)_{-1}$	
Name	U	D	Q_1	Q_5	Q_7	T_1	T_2

17 spin 1

Name	${\mathcal B}$	\mathcal{B}_1	$\mathcal W$	\mathcal{W}_1	${\cal G}$	\mathcal{G}_1	${\cal H}$	\mathcal{L}_1
Irrep	$(1,1)_{0}$	$(1,1)_1$	$(1,3)_{0}$	$(1,3)_1$	$(8,1)_0$	$(8,1)_1$	$(8,3)_0$	$(1,2)_{\frac{1}{2}}$
Namo	ſ	11.	11.	0.	0	Y	<u>)</u> 2.	72
Name	\mathcal{L}_3	\mathcal{U}_2	\mathcal{U}_5	\mathcal{Q}_1	\mathcal{Q}_5	\mathcal{X}	\mathcal{Y}_1	\mathcal{Y}_5

JB, J.C. Criado, M. Pérez-Victoria, J. Santiago, JHEP 03 (2018) 109

Global fits ut juice e'e conjuers. Down Scenarios

Global SMEFT fit translated in terms of New Particle extensions of the SM

A few examples of new scalars/vectors/fermions

Multi-TeV sensitivity, depending on couplings

 Including only LO effects. Going beyond further illustrates the importance of precision measurements at the Tera Z (and theory calculations)

Global fits at future e⁺e⁻ colliders: BSM scenarios

Global SMEFT fit translated in terms of New Particle extensions of the SM

NLO sensitivity to New Physics at the Tera-Z

• Even if no tree-level effects at Tera Z, the very high precision of these measurements could set strong constrained via loop effects (here RGE only)

Considering loop effects, any particle contributing to the dimension 6 effective Lagrangian at tree level would be strongly constrained by future EWPO

Jorge de Blas - U. of Granada

Summary

- There are MANY aspects of the study that I didn't cover. Just a small selection of the huge amount of work collected in the nearly 300 pages of the ECFA study report
- Still, I tried to emphasize the case for precision physics at a future e^+e^- machine
 - Higgs: Permille precision of single-Higgs + access to couplings beyond the reach of HLLHC. Complementary ways to access self-coupling, depending on collider energy
 - EW: huge luminosity at Z-pole enables extremely precise measurements of EWPO, in some cases two orders of magnitude better than today
 - Flavor: Tera-Z luminosity also enables Flavor physics beyond the reach of B and Tau factories (see backup slides)
 - ► Top: Precise measurements of top properties. Complementarity with LHC.
- All combined, these measurements can cover many different directions where BSM effects could enter, with precision that enables multi-TeV indirect sensitivity to new physics

Jorge de Blas - U. of Granada

BSM and Higgs

 Higgs couplings modifications can tell us about BSM, but the O(10%) precision at the LHC gives limited information:

Higgs couplings also provide information about Naturalness

2024-26 European Strategy Update

ECFA Study on Higgs/EW/Top factories

- Study focused on stages common to all future e^+e^- colliders ($\sqrt{s} \approx 365$ GeV)
 - Exceptions made for some studies where higher energies are relevant
- Kick-off meeting on June 21, 2021: <u>https://indico.cern.ch/event/1033941/</u>
- Preliminary status presented in 3 workshops:
 - 2022 in DESY: <u>https://indico.desy.de/event/33640/</u>
 - 2023 in Paestum (Salerno): <u>https://agenda.infn.it/event/34841/</u>
 - 2024 in Paris: <u>https://indico.in2p3.fr/event/32629/</u>
- Plus many dedicated small meetings organized by the different subgroups, seminars, etc:
 - See <u>https://gitlab.in2p3.fr/ecfa-study/ECFA-HiggsTopEW-Factories</u>
- Currently finishing first version of a report with the conclusions of the study, in preparation as (extended) input for 2026 ESU

Higgs/EW/Top Studies Electroweak Physics

Determining quark couplings to light quarks via FSR

• Up and down-type quarks radiate differently \Rightarrow Use QED FSR to separate

$$\Gamma_{had+\gamma} \sim \frac{\alpha}{2\pi} f(y_{cut}) (3Q_d^2 c_d + 2Q_u^2 c_u)$$

- Challenges: Need to separate from ISR or decays from hadronization products
- Cut study using fast detector sim. with Delphes (ILCgen cards)

- Above 10 GeV the sample with FSR γ becomes dominant
- Several sources of uncertainty considered: Lumi; acceptance; b, c, s, light jet tagging

Prelim. results suggest sub-percent precision could be achievable for light quarks

Consistency tests of the EW sector: HL-LHC vs. Giga Z vs. Tera Z

Theory Challenges at the precision frontier

- Proper interpretation of precision measurements require precision theory
 - The goal of improved precision measurements is to learn about new physics
 We need to distinguish between new physics (signal) and SM (background)
- We need to have very good control of the background so its uncertainties do not affect the new physics interpretation

	experim current	iental ILC	accuracy FCC-ee	intrinsic current	th. unc.	parameti prospect	ric unc. source	
$\Delta M_{\rm Z}[{ m MeV}]$	2.1	_	0.1		<u> </u>			
$\Delta \Gamma_{\rm Z} [{ m MeV}]$	2.3	1	0.1	0.4	0.15	0.1	$lpha_{f s}$	
$\Delta \sin^2 \theta_{\text{eff}}^{\ell} [10^{-5}]$	23	1.3	0.6	4.5	1.5	2(1)	$\Delta lpha_{ m had}$	
$\Delta R_{ m b} [10^{-5}]$	66	14	6	11	5	1	$lpha_{ m s}$	
$\Delta R_{\ell}[10^{-3}]$	25	3	1	6	1.5	1.3	$lpha_{ m s}$	
A. Freitas et al., arXiv: 1906.05379 [hep-ph]								

- Theory challenges: Future projections assume full EW & QCD-EW 3-loop + leading 4 loop (Yt enhanced) are computed by the time of future e+e-
 - \checkmark Enough only to lower theory uncertainty to the experimental level

Theory Challenges at the precision frontier

• Precision Experiment vs. Theory: Impact of SM theory uncertainties

- Even accounting for future progress, SM theory uncertainties will have an impact on BSM interpretation of EWPO
- Parametric uncertainties expected to have similar effect ($\alpha_{em} \rightarrow A_l \rightarrow S$ par.)

ECFA study report Flavor

Jorge de Blas - U. of Granada

- Current flagship experiments:
 - LHCb at the LHC
 - ► ATLAS & CMS also contribute, e.g. $B^0 \rightarrow \mu\mu$, $B^0_s \rightarrow \mu\mu$
 - ► Belle II at the SuperKEKB collider: $e^+e^- \rightarrow \Upsilon(4S) \rightarrow bb$
- Future e^+e^- colliders running at the Z pole (Tera-Z): $e^+e^- \rightarrow Z \rightarrow bb$
 - Combines advantages of both Belle II (high signal-to-noise, fully efficient trigger) and LHCb (full spectrum of hadrons, high boost)
 - Momenta of b and c hadrons not known a priori but distribution well understood
 - ► Also $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$: momentum of produced τ exactly known
- Flavor measurements also possible in $e^+e^- \rightarrow WW$: CKM elements

B physics at Tera-Z

- Determination of CKM elements: $|V_{ub}|$ and $|V_{cb}|$
 - Tensions between inclusive vs exclusive determinations
 - Prospective studies at Tera-Z from B→TV, assuming precision between to 2% to 4% in BR

 |V_{cb}| estimate not available (depends on production fraction of B_c. No measurement currently available)

CKM from W decays

- FCCee, CEPC and ILC will produce order of 10⁸ W boson pairs
- Combined with state-of-the-art jet-flavor tagging techniques this offers a unique opportunity to enhance the precision of CKM matrix elements, particularly $|V_{cb}|$ and $|V_{cs}|$
- Studies available or ongoing at all types of e⁺e- colliders, in some cases with full detector simulation. From the CEPC study at 250 GeV:

Tau physics at Tera-Z

- Similar to the case case of B physics, with 6×10^{12} Z decays at a Tera-Z factory, we'll have a large sample of 2×10^{11} T pairs to deepen studies of T physics.
 - Tau mass and lifetime: Extrapolated from DELPHI and OPAL analyses with Tera-Z statistics (+ estimates in systematics)

 δm_{τ} ~ 5x10⁻⁵ (current) → 10⁻⁵ $\delta \tau_{\tau}$ ~1.7x10⁻³(current) → 2.2x10⁻⁵

Tau Physics

- Similar to the case case of B physics, with 6×10^{12} Z decays at a Tera-Z factory, we'll have a large sample of 2×10^{11} T pairs to deepen studies of T physics.
 - Lepton Flavor Violating decay modes: $\tau \rightarrow \mu \gamma$ and $\tau \rightarrow \mu \mu \mu$

ECFA study report Direct Searches

Jorge de Blas - U. of Granada

Direct searches at e⁺e⁻ Higgs factories

- Energy reach at future e⁺e⁻ factories won't be much larger than, e.g. LEP2. Still they have the potential to discover NP not accessible to current high intensity machines because
 - Too heavy for the 10 GeV machine like superKEK-B
 - Too elusive to be seen with the (relatively) low luminosity of LEP2
- They would also cover scenarios whose signals are too faint at the LHC:
 - Small couplings (or no couplings) to QCD and can only be produced via EW ⇒ Relatively small cross section compared to background
 - e^+e^- HTE complementary: cross sections comparable to backgrounds
- or where produced new states live too long to be detected at the LHC detectors ⇒ Long lived particles
 - Triggering less of an issue in e^+e^-
 - Learn from challenges at LHC and optimize searches

Direct searches at e⁺e⁻ Higgs factories

Focus Topic: Long-Lived Particles

- Centered around several scenarios where small couplings give rise to LLPs, e.g.
 - Heavy Neutral Leptons (HNLs)

- Search at Z-pole run (Tera Z)
- Pythia8 + Fast Sim using Delphes card of simulation of IDEA detector
- Studies at ZH run (240-250 GeV) from ILC also available

Direct searches at e⁺e⁻ Higgs factories

Focus Topic: Long-Lived Particles

- Centered around several scenarios where small couplings give rise to LLPs, e.g.
 - Axion-Like Particles (ALPs)

