Searching for physics beyond the Standard Model using atomic nuclei

Martin Hoferichter

 $u^{\scriptscriptstyle b}$

Albert Einstein Center for Fundamental Physics,

Institute for Theoretical Physics, University of Bern

D UNIVERSITÄT BERN

AEC ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS Dec 11, 2024 30th IFT Xmas Workshop

Madrid

	Observable	Physics scope	
Precision tests	(Superallowed) β decays Parity-violating electron scattering (PVES) Coherent elastic neutrino-nucleus scattering (CE ν NS)	V_{ud} and CKM unitarity, $V - A$ Weak charge, $V - A$ Weak charge, $V - A$	
Null tests	$\mu \rightarrow e$ conversion Neutrinoless double- β decay ($0\nu\beta\beta$) Electric dipole moments (EDMs)	Lepton flavor violation Lepton number violation, ν mass	
	Direct detection of dark matter	Weakly interacting massive particles	

Atomic nuclei as laboratory for BSM searches

- Advantage: stable targets, large statistics (Avogadro's number)
- Disadvantage: need to know nucleon and nuclear matrix elements for interpretation
- Modern perspective: effective-field-theory approach

三日 のへの

Scales in the example of $CE\nu NS$

BSM scale Λ_{BSM}: L_{BSM}

- **Solution** Effective Operators: $\mathcal{L}_{SM} + \sum_{i,k} \frac{1}{\Lambda_{BSM}^{i}} \mathcal{O}_{i,k}$
- Integrate out EW physics (start here if only SM)
- Hadronic scale: nucleons and pions
 - \hookrightarrow effective interaction Hamiltonian H_I

ONUMPER Scale: $\langle \mathcal{N} | H_l | \mathcal{N} \rangle$

 $\hookrightarrow \text{nuclear wave function}$

- Need to deal with large hierarchy of scales between BSM and nuclear physics
 - $\hookrightarrow \text{effective field theories}$
- Matching and RG corrections
 - Standard Model EFT (SMEFT): BSM to EW
 - Low-energy EFT (LEFT): EW to hadronic
 - Chiral perturbation theory (ChPT): single-hadron matrix elements
 - Chiral EFT: few-hadron amplitudes as input for ab-initio nuclear structure calculations
- Non-perturbative matching at low energies:
 - Nucleon matrix elements: ChPT, lattice QCD
 - Nuclear matrix elements: chiral EFT, nuclear many-body techniques
- Important both for limits and, even more so, a possible detection

3 3 9 9 9 9

Superallowed β decays and CKM unitarity

Cirigliano, Dekens, de Vries, Gandolfi, MH, Mereghetti PRL 133 (2024) 211801, PRC 110 (2024) 055502

2 $\mu \rightarrow e$ conversion in nuclei

Noël, MH JHEP 08 (2024) 052, Heinz, MH, Miyagi, Noël, Schwenk arXiv:2412.04545

EI= DQQ

Unitarity of the CKM matrix

$$V_{ij}V_{kj}^* = \delta_{ik} \qquad V_{ji}V_{jk}^* = \delta_{ik}$$

$$i = k \qquad |V_{id}|^2 + |V_{is}|^2 + |V_{ib}|^2 = 1 \qquad |V_{ui}|^2 + |V_{ci}|^2 + |V_{ti}|^2 = 1$$

$$i \neq k \qquad V_{id}V_{kd}^* + V_{is}V_{ks}^* + V_{ib}V_{kb}^* = 0 \qquad V_{ui}V_{uk}^* + V_{ci}V_{ck}^* + V_{ti}V_{tk}^* = 0$$

• Interesting relations if different terms scale in the same way with Wolfenstein parameter λ

$$\begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

• Unitarity triangle for i = d, k = b:

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$$
$$A\lambda^3(\rho + i\eta) - \lambda A\lambda^2 + A\lambda^3(1 - \rho - i\eta) = 0$$

The unitarity triangle

$$\begin{split} \bar{\rho} &= \rho \left(1 - \frac{\lambda^2}{2} + \dots \right) \\ \bar{\eta} &= \eta \left(1 - \frac{\lambda^2}{2} + \dots \right) \\ \bar{\eta} &= \left| \frac{V_{ud} \, V_{ub}^*}{V_{cd} \, V_{cb}^*} \right| \sin \gamma \\ \bar{\eta} &= \left| \frac{V_{td} \, V_{tb}}{V_{cd} \, V_{cb}^*} \right| \sin \beta \end{split}$$

M. Hoferichter (Institute for Theoretical Physics)

Searching for BSM physics using atomic nuclei

■ ▶ < ■ ▶</p>
Dec 11, 2024

7

三日 のへの

Benchmarks numbers for CKM tests from PDG - a our quarking man			
first row:	$ V_{ud} ^2 + V_{us} ^2 + V_{ub} ^2 = 0.9985(7)$		
second row:	$ V_{cd} ^2 + V_{cs} ^2 + V_{cb} ^2 = 1.001(12)$		
first column:	$ V_{ud} ^2 + V_{cd} ^2 + V_{td} ^2 = 0.9972(20)$		
second column:	$ V_{us} ^2 + V_{cs} ^2 + V_{ts} ^2 = 1.004(12)$		

- Interesting relations arise for the diagonal tests, except for third row/column $\mathcal{O}(\lambda^4)$
- Indications for deficit in first row (and first column)
- Testing consistency of V_{ud} and V_{us} at precision of a few times 10^{-4} , while $|V_{ub}|^2 \simeq 1.5 \times 10^{-5}$
- Here:
 - Status of the first-row test
 - Recent developments for V_{ud} from superallowed β decays

= nac

Determination of V_{ud} from superallowed β decays

Master formula Hardy, Towner 2018

$$|V_{ud}|^2 = \frac{2984.432(3) \,\mathrm{s}}{\mathcal{F}t(1 + \Delta_R^V)}$$

with (universal) radiative corrections Δ_R^V

• Value of V_{ud} crucially depends on Δ_R^V :

Ref.	Δ_R^V	
Marciano, Sirlin 2006	0.02361(38)	
Seng, Gorchtein, Patel, Ramsey-Musolf 2018	0.02467(22)	
Czarnecki, Marciano, Sirlin 2019	0.02426(32)	
Seng, Feng, Gorchtein, Jin 2020	0.02477(24)	
Hayen 2020	0.02474(31)	
Shiells, Blunden, Melnitchouk 2021	0.02472(18)	
Cirigliano, Crivellin, MH, Moulson 2022	0.02467(27)	

Hardy, Towner 2020

 \hookrightarrow main uncertainty from Regge region, first

lattice calculation largely consistent Ma et al. 2023

M. Hoferichter (Institute for Theoretical Physics)

Searching for BSM physics using atomic nuclei

Determination of V_{ud} from superallowed β decays

Further corrections

- Isospin breaking Miller, Schwenk 2008, 2009, Condren, Miller 2022, Seng, Gorchtein 2022, Crawford, Miller 2022
- Nuclear corrections Seng, Gorchtein, Ramsey-Musolf 2018, Gorchtein 2018
- Estimate from Gorchtein 2018 becomes dominant source of uncertainty

$$V_{ud}^{0^+ \to 0^+} = 0.97367(11)_{exp}(13)_{\Delta_{U}^R}(27)_{NS}[32]_{total}$$

 Improvements from ab-initio nuclear structure necessary to make progress

Hardy, Towner 2020

Determination of V_{ud} from neutron decay

Master formula Czarnecki, Marciano, Sirlin 2018

$$|V_{ud}|^2 \tau_n (1 + 3g_A^2)(1 + \Delta_{\rm RC}) = 5099.3(3) \, {\rm s}$$

with radiative corrections Δ_{RC}

 \hookrightarrow need lifetime τ_n and asymmetry $\lambda = g_A/g_V$

• PDG average especially for g_A includes large scale factors

Determination of V_{ud} from neutron decay

Results for V_{ud}

$$\begin{split} V_{ud}^{n,\,\text{PDG}} &= 0.97441(3)_f(13)_{\Delta_R}(82)_{\lambda}(28)_{\tau_n}[88]_{\text{total}} \\ V_{ud}^{n,\,\text{best}} &= 0.97413(3)_f(13)_{\Delta_R}(35)_{\lambda}(20)_{\tau_n}[43]_{\text{total}} \end{split}$$

 \leftrightarrow average of $V_{ud}^{0^+ \rightarrow 0^+}$ with $V_{ud}^{n, \text{best}}$ gives $V_{ud}^{\beta} = 0.97384(26)$

Need improved measurements especially for g_A to make progress

Determination of V_{ud} from pion β decay

• Master formula Cirigliano, Knecht, Neufeld, Pichl 2003, Czarnecki, Marciano, Sirlin 2020, Feng et al. 2020

$$\Gamma(\pi^+ \to \pi^0 e^+ \nu_e(\gamma)) = \frac{G_F^2 |V_{ud}|^2 M_{\pi^{\pm}}^5 |f_+^{\pi}(0)|^2}{64\pi^3} (1 + \Delta_{\rm RC}^{\pi\ell}) I_{\pi\ell}$$

 \hookrightarrow need branching fraction and pion life time from experiment

- (Theory) inputs
 - Phase space $I_{\pi\ell} = 7.3766(43) \times 10^{-8}$, uncertainty from $\Delta_{\pi} = M_{\pi^+} M_{\pi^0}$

• Form factor
$$f^{\pi}_{+}(0) = 1 - 7 \times 10^{-6}$$

 \hookrightarrow protected by SU(2) Ademollo–Gatto theorem (Behrends–Sirlin)

- Radiative corrections $\Delta_{RC}^{\pi\ell} = 0.0334(10)$ ChPT, Cirigliano et al., $\Delta_{RC}^{\pi\ell} = 0.0332(3)$ lattice QCD, Feng et al.
- Resulting V_{ud} extracted from PIBETA 2004

$$\begin{aligned} V_{ud}^{\pi,\text{ChPT}} &= 0.97376(281)_{\text{BR}}(9)_{\tau\pi}(47)_{\Delta_{\text{RC}}^{\pi\ell}}(28)_{I_{\pi\ell}}[287]_{\text{total}} \\ V_{ud}^{\pi,\text{lattice}} &= 0.97386(281)_{\text{BR}}(9)_{\tau\pi}(14)_{\Delta_{\text{BC}}^{\pi\ell}}(28)_{I_{\pi\ell}}[283]_{\text{total}} \end{aligned}$$

 \hookrightarrow factor 10 possible before other errors creep in (same as for $R_{e/\mu}$)

	+	_
Superallowed β decays	many isotopes to average	nuclear uncertainties
Neutron decay	no nuclear uncertainties	need high precision for $ au_n$ and g_A
Pion β decay	theoretically pristine	experimentally challenging

- Prospects for improvement:
 - Superallowed β decays: need improved theory
 - Neutron decay: need improved measurement of g_A
 - \hookrightarrow PERC, Nab
 - Pion β decay: need an order of magnitude in branching fraction
 - \hookrightarrow **PIONEER**
- All approaches rather complementary, several avenues to improve V_{ud}!

5 1 - A C

Tensions in the $V_{\mu\sigma} - V_{\mu\sigma}$ plane

 \hookrightarrow already tension in kaon sector alone 2.6 σ

ELE SOG

- Need to improve nuclear structure calculations for radiative corrections
- Two aspects:
 - Calculate nuclear responses with modern ab-initio techniques
 - 2 Derive which nuclear responses even need to be calculated
 - \hookrightarrow 2. is far from trivial since traditional master formula based on nuclear models
- A large hierarchy of scales: $q_{\rm ext} \simeq m_e, E_0 \ll M_\pi \ll \Lambda_\chi \ll M_W$
 - \hookrightarrow calls for treatment in effective field theory

EL OQO

EFT landscape

M. Hoferichter (Institute for Theoretical Physics)

Searching for BSM physics using atomic nuclei

Dec 11, 2024

15

Hard photons

- Hard photons: $\Lambda_{\chi}^2 \lesssim Q^2 \lesssim M_W^2$
- Integrate out W boson ⇒ Low-Energy EFT (LEFT)

 $\mathcal{L}_{\text{LEFT}} = -2\sqrt{2}G_F V_{ud} \ C^{\prime}_{\beta}(\mu) \ \bar{e}_L \gamma_{\mu} \nu_L \ \bar{u}_L \gamma^{\mu} d_L + \text{ h.c.}$

Hadronization

One nucleon ("one-body"):

 $\mathcal{L}_{W}^{1b} = -\sqrt{2}G_{F}V_{ud}\,\bar{e}_{L}\gamma_{\mu}\nu_{L}\bar{N}\big[g_{V}(\mu)v^{\mu} - 2g_{A}(\mu)S^{\mu}\big]\tau^{+}N + \cdots$

- Two nucleons ("two-body"): $\mathcal{L}_{W}^{2b} = -\sqrt{2}e^{2}G_{F}V_{ud}\bar{e}_{L}\gamma_{\mu}\nu_{L}v^{\mu}\left[g_{V1}^{NN}(\mu)N^{\dagger}\tau^{+}NN^{\dagger}N + g_{V2}^{NN}(\mu)N^{\dagger}\tau^{+}NN^{\dagger}\tau^{3}N\right] + \cdots$
- Pion-mass difference: $\mathcal{L}_{\pi} = 2e^2 F_{\pi}^2 Z_{\pi} \pi^+ \pi^- + \cdots$ $M_{\pi^\pm}^2 M_{\pi^0}^2 = 2e^2 F_{\pi}^2 Z_{\pi}$

• Renormalization-group evolution important, e.g.

$$g_{V}(\mu) = \tilde{U}(\mu, \mu_{\chi}) \times \left[1 + \overline{\Box}_{had}^{V}(\mu_{0}) - \frac{\alpha(\mu_{\chi})}{2\pi} \kappa \left(\frac{\mu}{\mu_{0}}, \frac{\mu_{0}}{\mu_{\chi}}\right)\right] \times \left(1 + \frac{\alpha(\mu_{\chi})}{\pi} B(\mathbf{a})\right)^{-1} U(\mu_{\chi}, \mu_{W}) \frac{C_{\beta}^{r}(\mu_{W})}{C_{\beta}^{r}(\mu_{W})}$$

Power counting

Scales

- Low-energy: $q_{\text{ext}} \simeq m_e \simeq E_0 = \mathcal{O}(1 \text{ MeV})$
- 2 Nuclear: $\gamma \simeq R^{-1} \simeq M_{\pi} \simeq k_F = \mathcal{O}(100 \text{ MeV})$
- (a) Chiral/hadronic: $\Lambda_{\chi} \simeq 4\pi F_{\pi} \simeq m_N \simeq 1 \text{ GeV}$
- Electroweak: $M_W \simeq 100 \text{ GeV}$

Expansion parameters

$$\epsilon_{
m recoil} = \mathcal{O}\left(rac{q_{
m ext}}{\Lambda_{\chi}}
ight) \simeq 0.005 \qquad \epsilon_{\neq} = \mathcal{O}\left(rac{q_{
m ext}}{M_{\pi}}
ight) \simeq 0.05 \qquad \epsilon_{\chi} = \mathcal{O}\left(rac{M_{\pi}}{\Lambda_{\chi}}
ight) \simeq 0.1$$

 \hookrightarrow need to keep $\mathcal{O}(\alpha \epsilon_{\sharp})$ and $\mathcal{O}(\alpha \epsilon_{\chi})$ for 10⁻⁴ precision (also some $\mathcal{O}(\alpha^2)$ terms)

Important lessons:

- Dominant contributions from "potential" photons: $q^0 \simeq {f q}^2/m_N \simeq q_{
 m ext}, \, |{f q}| \simeq M_\pi$
- Ultrasoft modes ($q^0 \simeq |{f q}| \simeq q_{\sf ext} \simeq M_\pi^2/m_N$) contribute to classic Fermi/Sirlin functions
- Soft modes $(q^0 \simeq |\mathbf{q}| \simeq M_{\pi})$ suppressed by $\mathcal{O}(\alpha \epsilon_{\chi}^2)$
- g_{V1}^{NN} , g_{V2}^{NN} enhanced by RG arguments \Rightarrow need to be kept

▶ ★ ■ ▶ ★ ■ ▶ ■ ■ ● 9 Q P

- (b), (c), real emission: ultrasoft modes corresponding to Fermi/Sirlin function
- (c): potential modes $\mathcal{O}(\alpha \epsilon_{\sharp})$ and $\mathcal{O}(\alpha \epsilon_{\chi})$
- (d): pion mass splitting $\mathcal{O}(\alpha \epsilon_{\sharp})$ and $\mathcal{O}(\alpha \epsilon_{\chi})$
- (e): contact terms $\mathcal{O}(\alpha \epsilon_{\chi})$
- (c,d,e) give rise to "potentials," to be evaluated between nuclear wave functions
- Many more subtleties regarding ultrasoft photons, RG corrections, enhanced $\mathcal{O}(\alpha^2 Z)$, $\mathcal{O}(\alpha^2 \log r)$ terms, ...

Master formula for lifetime

$$\frac{1}{t} = \frac{G_F^2 |V_{ud}|^2 m_{\theta}^2}{\pi^3 \log 2} \left[C_{\text{eff}}^{(g_V)}(\mu) \right]^2 \times \left[1 + \bar{\delta}'_R(\mu) \right] \left(1 + \bar{\delta}_{\text{NS}} \right) \left(1 - \bar{\delta}_C \right) \bar{f}(\mu)$$

• Written in a form that resembles the traditional decomposition, but:

- $\bar{\delta}_{NS}$ includes contact terms $g_{V1,V2}^{NN}$, so far implicit in high-energy part of matrix elements
- Only potentials to be evaluated, no sum over intermediate states
- Large logarithms consistently resummed
- Two-body currents included, no "quenching" corrections
- Factorization and scale independence manifest (at the considered order)
- EFT maximally exploits separation of scales

QMC evaluation for $^{14}O \rightarrow ^{14}N$

- Explicit Quantum Monte Carlo (QMC) calculations for ${}^{6}\text{Be} \rightarrow {}^{6}\text{Li}, {}^{6}\text{Li} \rightarrow {}^{6}\text{He}$, and $^{14}O \rightarrow ^{14}N$
 - \hookrightarrow power counting expectations largely confirmed
- ${}^{14}O \rightarrow {}^{14}N$ is a physical transition, first numerical analysis

 $V_{ud} = 0.97364(10)_{exp}(12)_{g_V}(22)_{\mu}(12)_{\delta_C}(43)_{q_V^{NN}}(20)_{\delta_{exp}^E}[56]_{total}$

 \hookrightarrow dominant error from contact terms, next residual scale dependence

- Points of comparison:
 - Neutron decay in EFT Cirigliano et al. 2023: Vieutron = 0.97402(42)
 - Superallowed β decays (global) Hardy, Towner 2020: $V_{ud}^{HT} = 0.97373(31)$
 - ¹⁴O \rightarrow ¹⁴N Hardy, Towner 2020: $V_{ud}^{\text{HT, }^{14}\text{O}} = 0.97405(13)_{\text{exp}}(9)_{\Delta_{R}^{V}}(12)_{\delta_{C}}(31)_{\delta_{\text{NS}}}[37]_{\text{total}}$
- Extraction from single isotope could become competitive if contact terms were known

• Strategies for determination of contact terms

- Cottingham approach
- Lattice QCD
- Global fit to superallowed β decays, with V_{ud} and g_{V1}^{NN} as free parameters
- Ab-initio calculations for more isotopes
- Subleading contributions
 - Two- and three-body $\mathcal{O}(\alpha \epsilon_{\chi}^2)$ diagrams
 - Subleading terms in the Fermi function $\mathcal{O}(\alpha^2 Z)$
 - Shape corrections in phase-space evaluation

= ~ Q Q

Why lepton flavor violation?

Lepton flavor symmetry

- Lepton flavor conserved in SM with massless neutrinos
- Neutrino oscillations sign of lepton flavor violation (LFV) in neutral sector
- Propagates to charged sector via mass insertions in loops, but, e.g.,

$$\mathsf{Br}[\mu o e\gamma] \simeq \left(rac{\Delta m_
u^2}{M_W^2}
ight)^2 \simeq 10^{-50}$$

 \hookrightarrow unobservably small in SM!

- Lepton flavor "accidental" symmetry of SM
 - $\hookrightarrow \mathsf{LFV}$ expected to occur for a wide range of BSM scenarios
- In practice: LFV highly sensitive null test

LFV process	current limit on Br	(planned) experiments		
$\mu ightarrow oldsymbol{e}\gamma$	$< 4.2 imes 10^{-13}$ MEG	MEG II		
$\mu ightarrow$ 3 e	$< 1.0 imes 10^{-12}$ SINDRUM	Mu3e		
$ au o \ell \gamma, 3\ell, \ell P, \dots$	$\lesssim 10^{-8}$ Belle, LHCb,	Belle 2,		
$K ightarrow \mu e, \mu e \pi, \mu e \pi \pi$	$\lesssim 10^{-11}$ KTeV, NA62, BNL	KOTO, LHCb		
$\pi^0 ightarrow ar{\mu} oldsymbol{e}$	$< 3.6 imes 10^{-10}$ KTeV			
$\eta ightarrow ar{\mu} oldsymbol{e}$	$< 6 imes 10^{-6}$ spec			
$\eta' ightarrow ar{\mu} {m heta}$	$< 4.7 imes 10^{-4}$ CLEO II	JEF, REDTOP (?)		
$\operatorname{Au} \mu^- ightarrow \operatorname{Au} e^-$	$< 7 imes 10^{-13}$ SINDRUM II			
${\rm Ti}\mu^- ightarrow {\rm Ti}{\it e}^-$	$< 6.1 imes 10^{-13}$ SINDRUM II			
$AI\mu^-\toAI\pmb{e}^-$	$\lesssim 10^{-17}$ (projected)	Mu2e, COMET		

 \hookrightarrow major experimental improvements expected in coming years!

1 = 1 = 1 A C

What is $\mu \rightarrow e$ conversion?

- What is $\mu \rightarrow e$ conversion? A theorist's perspective:
 - Muon bound in 1s level of nucleus
 - Muon converts to electron within Coulomb field of nucleus

$$\bar{\mathbf{e}}\sigma^{\alpha\beta}\mu F_{\alpha\beta}, \quad \bar{\mathbf{e}}\mu\,\bar{\mathbf{q}}\mathbf{q}, \quad \dots$$

 \hookrightarrow both long- and short-range BSM mechanisms possible

- Electron ejected with energy of muon-electron mass difference (minus binding energy)
 - \hookrightarrow very clear experimental signature
- Background: muon decay in orbit $\mu
 ightarrow e
 u_{\mu} ar{
 u}_{e}$
- Normalization: muon capture $\mu(A, Z) \rightarrow \nu_{\mu}(A, Z-1)$

Very schematic master formula for $\mu \rightarrow e$ conversion

 $\Gamma[\mu(A, Z) \rightarrow e(A, Z)] \simeq BSM$ Wilson coefficients \otimes hadronic matrix elements

> nuclear responses 🛛 🛇 bound-state solution \otimes

Latter two traditionally combined into overlap integrals Kitano et al. 2002

$$\begin{split} \mathcal{S}^{(N)} &= \frac{\#N}{2\sqrt{2}} \int_0^\infty dr \,\rho_N(r) [g_{-1}^{(e)}(r)g_{-1}^\mu(r) - f_{-1}^e(r)f_{-1}^\mu(r)] \qquad V^{(N)} &= \frac{\#N}{2\sqrt{2}} \int_0^\infty dr \,\rho_N(r) [g_{-1}^{(e)}(r)g_{-1}^\mu(r) + f_{-1}^e(r)f_{-1}^\mu(r)] \\ D &= \frac{-4m_\mu}{\sqrt{2}} \int_0^\infty dr \, \mathcal{E}(r) [g_{-1}^e(r)f_{-1}^\mu(r) + f_{-1}^e(r)g_{-1}^\mu(r)] \end{split}$$

 \hookrightarrow covers coherently enhanced **spin-independent** responses, $\Gamma_{SI} \propto \# N^2$

 Similarly, dominant spin-dependent contribution from nuclear responses finite for $q=0, \, {
m e.g.},$ for axial-vector operators $\Gamma_{
m SD}\propto g_{
m A}^2$ Davidson et al. 2018

Focus on spin-independent responses for now

Uncertainty quantification for nuclear responses

- So far: nuclear responses calculated in (phenomenological) nuclear shell model
 - \hookrightarrow uncertainty estimates difficult, especially for neutron responses

Ab-initio approaches

- Often uncertainties dominated by chiral Hamiltonian, not by many-body solution
- Often correlations between different responses much more stable Hagen et al. 2015, Payne et al. 2019

Need for charge distributions with quantified uncertainties

- Solution of the Dirac equation
- Input for correlation analysis in ab-initio approaches
- Charge distributions extracted from electron scattering without uncertainties (!)
 - \hookrightarrow Fourier–Bessel expansions Dreher et al. 1974, de Vries et al. 1987

$$\rho(\mathbf{r}) = \begin{cases} \sum_{n=1}^{N} a_n j_0(q_n \mathbf{r}) & \mathbf{r} \le R \\ 0 & \mathbf{r} > R \end{cases} \quad \text{with} \quad q_n = \frac{\pi n}{R} \end{cases}$$

ELE OQO

Extracting charge distributions from electron scattering

- Practical challenges of re-analysis:
 - Most data taken in the 70s+80s
 - Many data sets not available at all ("private communication"), or only published in PhD theses
 - Documentation of uncertainties rudimentary
- Propagation of uncertainties computationally intensive
 - \hookrightarrow truncation errors in *R*, *N*
- Carried this program out for ²⁷Al, ^{40,48}Ca, and ^{48,50}Ti
- Results available as python notebook

2406.06677

Solving the Coulomb problem

• For a realistic description, need to resum Coulomb phase shifts

 $\hookrightarrow \text{phase shift model}$

- Fits carried out over large grid of (N, R), using veto on oscillations and asymptotics to prevent overparameterization
- Constraints from Barrett moments measured in 2p → 1s transitions of muonic atoms

$$\left\langle r^{k}e^{-\alpha r}\right\rangle =rac{4\pi}{Z}\int_{0}^{\infty}dr\,r^{k+2}\rho(r)e^{-\alpha r}$$

- Similar approach also applies to Coulomb corrections elsewhere
 - $\hookrightarrow \text{parity-violating electron scattering}$

Dipole overlap integrals

 $D(^{27}\text{Al}) = 0.0359(2)$ $D(^{40}\text{Ca}) = 0.07531(5)$ $D(^{48}\text{Ca}) = 0.07479(10)$ $D(^{48}\text{Ti}) = 0.0864(1)$ $D(^{50}\text{Ti}) = 0.0870(3)$

Dipole overlap integrals

$$D = \frac{-4m_{\mu}}{\sqrt{2}} \int_{0}^{\infty} dr \, E(r) \left[g_{-1}^{\theta}(r) \, f_{-1}^{\mu}(r) + f_{-1}^{\theta}(r) \, g_{-1}^{\mu}(r) \right]$$

 \hookrightarrow only depends on charge distributions, electric field $E(r) = \frac{\sqrt{4\pi\alpha}}{r^2} \int_0^r dr' r'^2 \rho(r')$

- For the first time, fully quantified uncertainties
- For $S^{(N)}$, $V^{(N)}$ other nuclear responses contribute
 - \hookrightarrow interplay with ab-initio methods

□ > < E > < E > E = の < 0

Ab-initio calculations for $\mu \rightarrow e$ conversion

- Calculations performed using VS-IMSRG for ²⁷Al for various chiral Hamiltonians
 - \hookrightarrow tight correlation with charge radius
- Shell-model result actually falls onto correlation

Residuals and correlations

315

31

Conclusions

Atomic nuclei as laboratory for BSM searches

• Superallowed β decays

- 3σ hint for tension with unitarity
- Derived EFT-based master formula
- Power counting, RG corrections, factorization, ...
- Clarified role of residue contribution
- First numerical analysis for $^{14}\text{O} \rightarrow {}^{14}\text{N}$
- Analysis strategy for EFT determination of V_{ud}

• $\mu ightarrow e$ conversion in nuclei

- Control over nuclear responses critical to disentangle LFV mechanism
- Tight correlation between proton, neutron, and charge densities
- Complete set of overlap integrals, including covariances

Dec 11, 2024

Determination of V_{us}/V_{ud} from kaon decays: $K_{\ell 2}/\pi_{\ell 2}$

• $K_{\ell 2}$ decays: $K \rightarrow \ell \nu_{\ell}$

$$\frac{V_{us}}{V_{ud}}\frac{F_{K}}{F_{\pi}} = \left(\frac{\Gamma(K^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{\pi}}{\Gamma(\pi^{+} \to \mu^{+}\nu_{\mu}(\gamma)M_{K}}\right)^{1/2} \frac{1 - \frac{m_{\mu}^{2}}{M_{\pi}^{2}}}{1 - \frac{m_{\mu}^{2}}{M_{K}^{2}}} \left(1 - \underbrace{\frac{\Delta_{\mathrm{RC}}^{K} - \Delta_{\mathrm{RC}}^{\pi}}{2}}_{\Delta_{\mathrm{RC}}^{K\pi}/2}\right)$$

- Consider the ratio over $\pi_{\mu 2}$ because
 - Only need ratio of decay constant
 - Certain structure-dependent radiative corrections cancel
- Need theory input for:
 - Decay constants in isospin limit: $F_K/F_{\pi} = 1.1978(22)$ HPQCD 2013, Fermilab/MILC 2017, CalLat 2020, ETMC 2021
 - Isospin-breaking corrections: $\Delta_{BC}^{K\pi} = -0.0112(21)$ ChPT, Cirigliano, Neufeld 2011,

$$\Delta_{\mathsf{RC}}^{\mathit{K}\pi} = -0.0126(14)$$
 lattice, Di Carlo et al. 2019

Result:

$$\frac{V_{US}}{V_{ud}}\Big|_{K_{\ell 2}/\pi_{\ell 2}} = 0.23108(23)_{\exp}(42)_{F_K/F_{\pi}}(16)_{IB}[51]_{total}$$

3 3 9 9 9 9 9

•
$$K_{\ell 3}$$
 decays: $K \to \pi \ell \nu_{\ell}$

$$\Gamma(K \to \pi \ell \nu_{\ell}(\gamma)) = \frac{C_{K}^{2} G_{F}^{2} |V_{US}|^{2} M_{K}^{5} |f_{+}^{K\pi}(0)|^{2}}{192\pi^{3}} \left(1 + \underbrace{\Delta_{RC}^{K\ell}}_{\Delta_{EM}^{K} + \Delta_{SU(2)}}\right) I_{K\ell}$$

 $\hookrightarrow \ell = \mu, \textit{e}$ and two charge channels

- Need theory input for:
 - Form factor: $f_+^{K\pi}(0) = 0.9698(17)$ ETMC 2016, Fermilab/MILC 2019
 - Radiative corrections: $\Delta_{SU(2)} = 0.0252(11)$ Cirigliano et al. 2002, $\Delta_{EM}^{K^0 \rho} = 0.0116(3)$, $\Delta_{EM}^{K^+ \rho} = 0.0021(5)$, $\Delta_{EM}^{K^0 \mu} = 0.0154(4)$, $\Delta_{EM}^{K^+ \mu} = 0.0005(5)$ Seng et al. 2022

Result:

$$V_{us}^{K_{\ell 3}} = 0.22330(35)_{exp}(39)_{f_+}(8)_{IB}[53]_{tota}$$

Corroborating V_{ud}

- Nuclear-structure corrections for superallowed β decays
- Improved neutron-decay measurements (g_A, τ_n)
- Pion β decay: **PIONEER**
- Corroborating V_{us}
 - Improved lattice calculations of F_K/F_{π}
 - A new measurement of K_{µ3}/K_{µ2}
 - τ and hyperon decays sensitive to V_{us} , but feasible at the relevant level of accuracy?

= 200

A new measurement of $K_{\mu3}/K_{\mu2}$, why?

	current fit	$\kappa_{\mu3}/\kappa_{\mu2}$ BR at 0.5%		$\kappa_{\mu3}/\kappa_{\mu2}$ BR at 0.2%			
		central	$+2\sigma$	-2σ	central	$+2\sigma$	-2σ
$\frac{\frac{V_{US}}{V_{Ud}}}{\frac{V_{\ell 2}}{V_{\ell 2}}} _{K_{\ell 2}/\pi_{\ell 2}}$	0.23108(51)	0.23108(50)	0.23085(51)	0.23133(51)	0.23108(49)	0.23071(51)	0.23147(52)
	0.22330(53)	0.22337(51)	0.22360(52)	0.22309(54)	0.22342(49)	0.22386(52)	0.22287(52)
10 ² ∆ ⁽³⁾ CKM	-1.64(63)	-1.57(60)	-1.18(62)	-2.02(63)	-1.53(59)	-0.83(62)	-2.33(62)
	-2.6σ	-2.6σ	-1.9σ	-3.2σ	-2.6σ	-1.4σ	-3.8σ

- Is the $K_{\ell 3}$ vs. $K_{\ell 2}$ tension real or an experimental problem?
 - K_{l2} data base completely dominated by KLOE 2006
 - Global fit to kaon data not great, p-value $\simeq 1\%$
- This can be clarified with a new precision measurement of $K_{\mu3}/K_{\mu2}$:
 - In case the tension were of experimental origin, there should be a positive shift compared to current fit

 $\hookrightarrow \Delta_{CKM}^{(3)}$ would move from -2.6σ to -1.4σ for a $+2\sigma$ shift with a 0.2% measurement

- In case the tension were of BSM origin, the current value would be confirmed (or move further in the other direction)
- In progress at NA62: one week of minimum-bias data taken
 - \hookrightarrow last chance after HIKE cancellation

= nan

Interpretation in terms of right-handed currents

• Can parameterize the tensions via right-handed currents ϵ_R and $\epsilon_R^{(s)} = \epsilon_R + \Delta \epsilon_R$

 \hookrightarrow modify (axial-)vector processes via 1 $\pm \epsilon_R$

Projections

current: $\epsilon_R = -0.69(27) \times 10^{-3}$ [2.5 σ] $\Delta \epsilon_R = -3.9(1.6) \times 10^{-3}$ [2.4 σ]

0.2%
$$2\sigma$$
 above: $\epsilon_R = -0.67(27) \times 10^{-3}$ [2.5 σ] $\Delta \epsilon_R = -1.8(1.6) \times 10^{-3}$ [1.1 σ]

0.2% 2 σ below: $\epsilon_R = -0.70(27) \times 10^{-3}$ [2.6 σ] $\Delta \epsilon_R = -5.7(1.6) \times 10^{-3}$ [3.5 σ]

 \hookrightarrow should decide whether $\Delta \epsilon_R$ is needed

ELE NOR

Master formula in dispersive approach Seng, Gorchtein 2023

$$\Box_{\gamma W} = -\frac{e^2}{M_{\rm F}^{(0)}} \int \frac{{\rm d}^4 q}{(2\pi)^4} \frac{M_W^2}{Q^2 + M_W^2} \frac{T_3(\nu, Q^2)}{(\rho_e - q)^2 Q^2} \frac{Q^2 + M_\nu \frac{p_e \cdot q}{\rho \cdot \rho_e}}{M_\nu}$$

with $\nu = p \cdot q/M = q^0$, $Q^2 = -q^2$

• $T_3(\nu, Q^2)$ scalar function in decomposition of "Compton tensor"

$$T^{\mu\nu}(q;p',p) = \frac{1}{2} \int d^4x \, e^{iq \cdot x} \langle f(p') | T \left\{ J^{\mu}_{\text{em}}(x) J^{\nu}(0) \right\} | i(p) \rangle = \frac{i \epsilon^{\mu\nu\alpha\beta} p_{\alpha} q_{\beta}}{2M\nu} T_3(\nu, Q^2)$$

- Wick rotation $\nu \rightarrow i\nu$ to perform loop integral
- Not possible in presence of low-lying nuclear states
 - \hookrightarrow example: 3⁺ and 1⁺ levels of ^{10}B in $^{10}\text{C} \rightarrow ^{10}\text{B}$
- Need to subtract residue, but singular for $E_e \rightarrow 0$ Seng, Gorchtein 2023
 - \hookrightarrow enhanced sensitivity to IR scales at odds with EFT power counting?

Toy example

Consider toy example

$$\frac{iT_3^{\text{toy}}(\nu, Q^2)}{M\nu} = \frac{M}{m_N} \frac{g_A g_M}{s - \bar{M}^2 + i\epsilon}$$

with $s = M^2 + \nu^2 - q^2 + 2M\nu$ and $M^2 - \bar{M}^2 = 2M\Delta > 0$

Direct evaluation of loop integral

$$\Box_{\gamma W}^{\text{toy},\Delta} = \frac{3g_A g_M}{4M_F^{(0)}} \frac{\alpha}{\pi} \frac{\Delta}{m_N} \log \frac{2\Delta}{M} + \mathcal{O}(\Delta^2) = \mathcal{O}(\alpha \epsilon_{\text{recoil}})$$

Residue contribution

$$\Box_{\gamma W}^{\text{toy, res}} = \frac{g_A g_M}{M_{\rm F}^{(0)}} \sqrt{\frac{M}{m_N}} \frac{\alpha}{\pi} \sqrt{\frac{2\Delta}{m_N}} + \mathcal{O}\left(\Delta^{3/2}\right) = \mathcal{O}(\alpha \sqrt{\epsilon_{\rm recoil}})$$

Residue violates power counting, but can show explicitly

$$\Box_{\gamma W}^{\text{toy}} = \Box_{\gamma W}^{\text{toy, Wick}} - \Box_{\gamma W}^{\text{toy, res}}$$

 Power-counting-violating terms cancel between residue and Wick-rotated contribution 三日 のへの

M. Hoferichter (Institute for Theoretical Physics)

- To improve SD and even higher responses:
 - Multipole decomposition of one-body terms known with respect to fixed momentum transfer *q* Serot 1978
 - Here: need to combine with bound-state physics
 - \hookrightarrow perform Fourier transform of leptonic current numerically
 - Uncertainty quantification using ab-initio techniques in combination with data input

Two-body corrections

- Known to be important for some channels, e.g., scalar operators Cirigliano et al. 2022
- So far evaluated within approximations ("normal ordering" in Fermi gas)
- Techniques for multipole decomposition of two-body currents becoming available

= nan