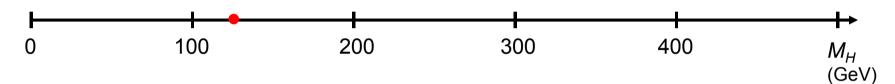
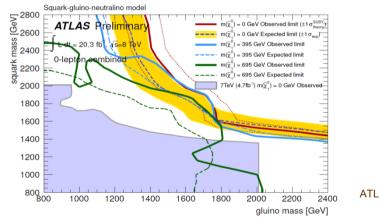
Higgs and Supersymmetry In the Multiverse

Yasunori Nomura


UC Berkeley; LBNL

LHC 7 & 8

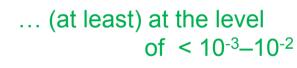

— Discovery of the Higgs boson with $M_H \sim 126 \text{ GeV}$

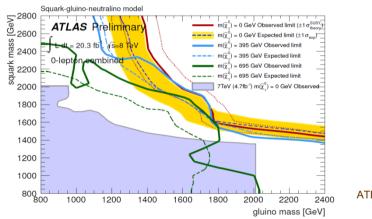
- No new physics
- Great success of the Standard Model

Nature seems to be fine-tuned

... (at least) at the level of $< 10^{-3}$ - 10^{-2}

ATLAS-CONF-2013-047


Can we do better than just the SM? Do/Can we still expect new physics?


LHC 7 & 8

- Discovery of the Higgs boson with $M_H \sim 126 \text{ GeV}$
- No new physics
- Great success of the Standard Model

Nature seems to be fine-tuned

ATLAS-CONF-2013-047

Can we do better than just the SM? Do/Can we still expect new physics? The conventional argument for new physics — Naturalness

... We "must" find
$$M_{\text{New}} \sim v_{\text{EW}}$$

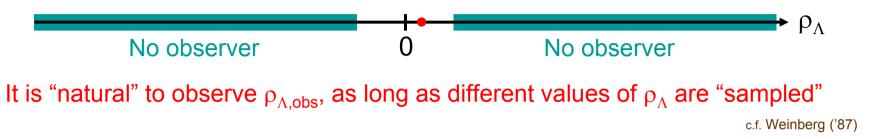
 \implies true?

Shocking news in 1998

Supernova cosmology project; Supernova search team

 $\Lambda \neq 0!$

$$\rho_{\Lambda,obs} \sim (10^{-3} \,\mathrm{eV})^4 \, \ll M_{\rm Pl}^4 \, \text{(or TeV^4)}$$


- Naïve estimates O(10¹²⁰) too large
- There does not seem new gravitational physics at $L \sim (10^{-3} \text{ eV})^{-1}$

More significantly, $\rho_{\Lambda} \sim \rho_{matter}$

— Why now? ... The statement is even time dependent!

Emerging picture

--- Environmental selection in multiple "universes" (the multiverse)

Also suggested by theory

String landscape

Compact (six) dimensions \rightarrow huge number of vacua

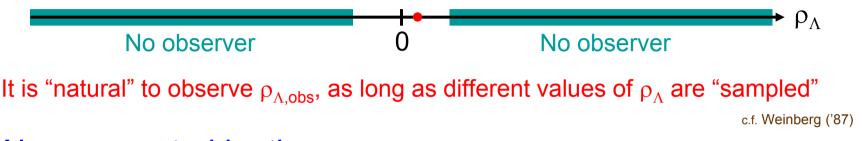
• Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

Significant impacts on the way we think about physics

• Fundamental theory

Predictivity crisis / measure problem \rightarrow A new view of spacetime and gravity


... Multiverse = Quantum many worlds

Y.N., JHEP 11, 063 ('11) [arXiv:1104.2324]

Implications for TeV physics

Emerging picture

--- Environmental selection in multiple "universes" (the multiverse)

Also suggested by theory

String landscape

Compact (six) dimensions \rightarrow huge number of vacua

• Eternal inflation

Inflation is (generically) future eternal \rightarrow populate all the vacua

Significant Impacts on the way we think about physics

• Fundamental theory

Predictivity crisis / measure problem \rightarrow A new view of spacetime and gravity... Multiverse = Quantum many worldsY.N., JHEP 11, 063 ('11) [arXiv:1104.2324]

→• Implications for TeV physics

Two possible scenarios that SUSY can appear at higher scales (than the naïve weak scale)

High Scale Supersymmetry (\tilde{m} » weak scale) L.J. Hall and Y. Nomura, JHEP **03** (2010) 076 [arXiv:0910.2235] $-M_{H} \sim 126$ GeV obtained from supersymmetry at a very high scale

Spread Supersymmetry ($\tilde{m} \sim 10^2 - 10^4 \text{ TeV}$)

L.J. Hall and Y. Nomura, JHEP 01 (2012) 082 [arXiv:1111.4519]

— Gauge coupling unification, $M_H \sim 126$ GeV, (mixed) wino dark matter

... similar scenarios also (later) called mini-split, pure gravity mediation, simply unnatural, ...

... depending on the statistics in the multiverse

Should the weak scale be natural? -- No!

ex. Stability of complex nuclei Agrawal, Barr, Donoghue, Seckel ('97)

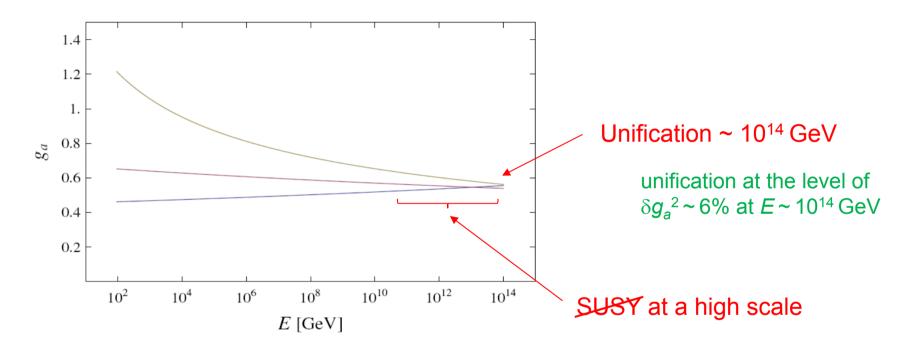
For fixed Yukawa couplings,

no complex nuclei for $v \ge 2 v_{obs}$ Damour, Donoghue ('07)

... The origin of the weak scale may very well be anthropic / environmental!

Does this mean that there is no weak scale supersymmetry? -- No

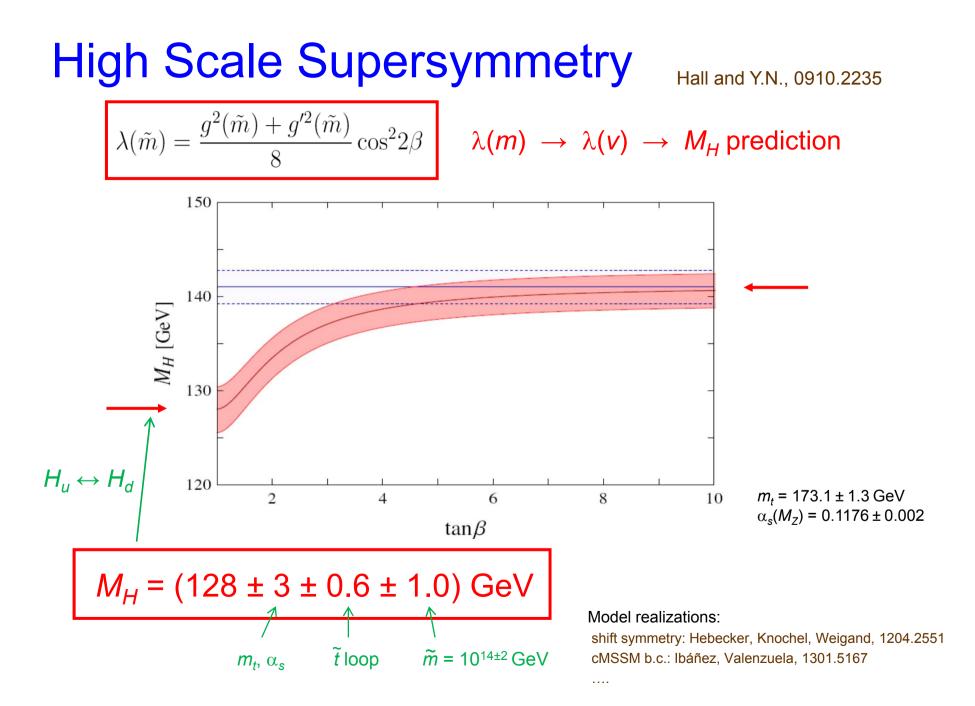
The scale of superparticle masses determined by statistics

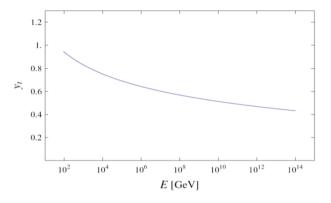

$$d \mathscr{N} \sim f(\widetilde{m}) \frac{v^2}{\widetilde{m}^2} d\widetilde{m} \qquad f(\widetilde{m}) \sim \widetilde{m}^{p-1}$$

For p < 2, weak scale SUSY results, but for p > 2, \tilde{m} prefers to be large...

Results from LHC may be suggesting this...

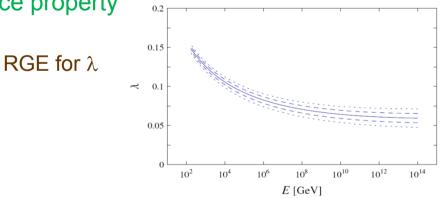
(I) What if \tilde{m} shoots up?


Standard Model:

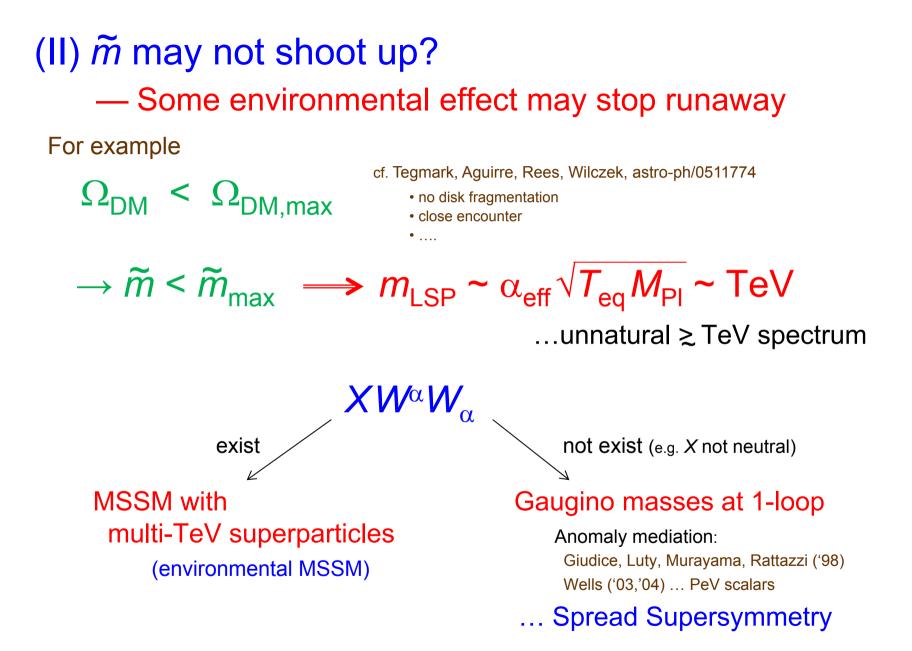

Dark matter can be axions $-\theta_{QCD} \ll 1 \dots$ still need mechanism

Doesn't seem that bad...

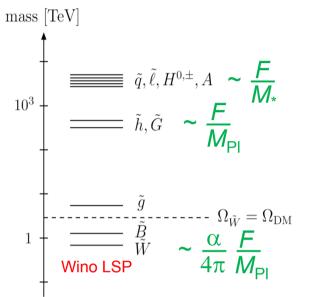
- nothing left at low energies?



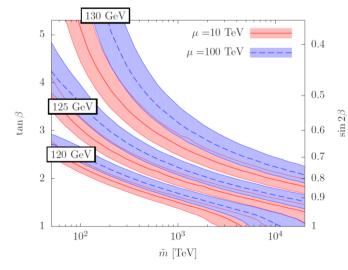
Lucky "accidents"


 $y_t(\widetilde{m}) \approx 0.5 y_t(v)$

- ... very small stop loop corrections (proportional to y_t^4)
- Small gauge and Yukawa couplings \rightarrow extreme insensitivity to \widetilde{m}
- Infrared convergence property


Implications

- No new physics at LHC14
- No LSP dark matter (presumably axion dark matter)



Gauge coupling unification as in the MSSM

Spread Supersymmetry

Higgs mass is "automatic"

Hall and Y.N., 1111.4519

 $\tilde{m} \sim (10^2 - 10^4)$ TeV — can eliminate a need of flavor symmetry, *CP*, ...

If thermal & $\Omega_W = \Omega_{DM}$, $M_W \sim 3 \text{ TeV} \dots$ generally **not** the case

In general, $\Omega_a + \Omega_{WIMP} < \Omega_{DM,max}$ \rightarrow multi-component DM !

c.f.

Spread Hall, Nomura, 1111.4519

Pure gravity mediation

Ibe, Yanagida, 1112.2462

Mini-split

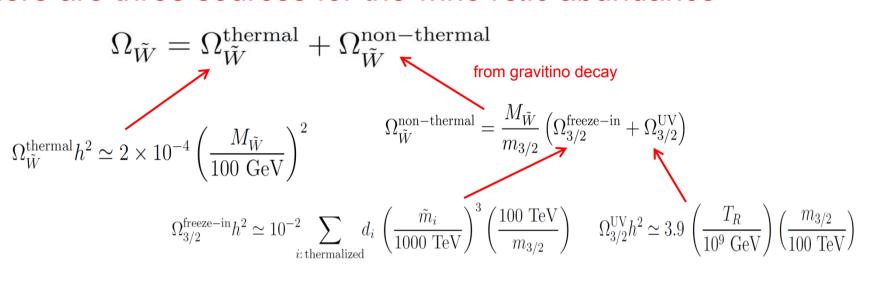
Arvanitaki, Craig, Dimopoulos, Villadoro, 1210.0555

Simply unnatural

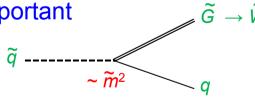
Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski, 1212.6971

Experimental signatures Hall, Y.N., Shirai, 1210.2395 — a lot !

(A) Gaguino spectrum


The gaugino masses arise from anomaly mediation and Higgsino-Higgs loops

 $M_1 = \frac{3}{5} \frac{\alpha_1}{4\pi} (11m_{3/2} + L),$
$$\begin{split} M_2 &= \frac{\alpha_2}{4\pi} (m_{3/2} + L), \\ M_3 &= \frac{\alpha_3}{4\pi} (-3m_{3/2})(1 + c_{\tilde{g}}). \end{split} \text{ correction from heavy squarks}$$
 $L = \mu \sin(2\beta) \frac{m_A^2}{|\mu|^2 - m_A^2} \ln \frac{|\mu|^2}{m_A^2} \sim 2\mu \sin(2\beta) \ln r_* \quad \dots \text{ from Higgsino/Higgs loops} \qquad \mathbf{f_*} \equiv \frac{\mathbf{M_{Pl}}}{\mathbf{M_{Pl}}}$ Here, 10010 Wino non-LSP $|\mu|/m_{3/2}$ Wino LSP Wino LSP 0.1in most parameter space 0.110 1 1001000 r_*


(B) The overall mass scale

— determined by the dark matter abundance through condition $\Omega_{DM} < \Omega_{DM,max}$

There are three sources for the wino relic abundance

Because of large \tilde{m} , the "freeze-in" contribution is important

- ... larger wino abundance
 - \rightarrow smaller wino (gaugino) mass

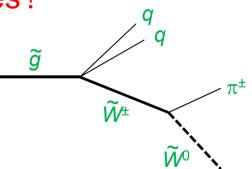
(even smaller mass if significant axion component)

→ The gluino may be within LHC reach!

Gluino signals

Because of large \tilde{m} , the gluino is "long-lived"

$$c\tau_{\tilde{g}} = O(1 \text{ cm}) \left(\frac{M_{\tilde{g}}}{1 \text{ TeV}}\right)^{-5} \left(\frac{\tilde{m}}{1000 \text{ TeV}}\right)^4$$


... $r_* \ge O(10) \rightarrow$ long-lived (displaced) gluino signatures

Winos are (nearly-degenerate) co-LSPs

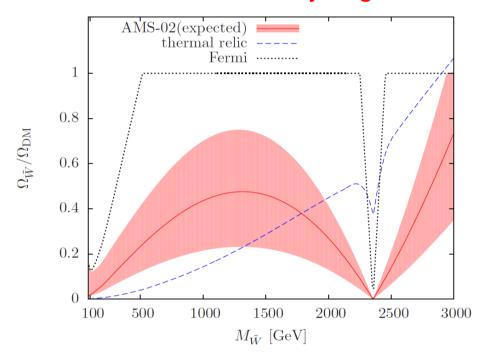
$$M_{\tilde{W}^{\pm}} - M_{\tilde{W}^0} \simeq 160 \text{ MeV} \longrightarrow c\tau_{\tilde{W}^{\pm}} = O(10 \text{ cm})$$

→ Decay chain with two long-lived particles!

$$\tilde{g} \xrightarrow[]{\text{long-lived}} q\bar{q}(\tilde{W}^{\pm} \xrightarrow[]{O(10 \text{ cm})} \tilde{W}^0 \pi^{\pm})$$

q

a


... allows us to measure masses & lifetimes of these particles

Measuring flavors of quarks from \widetilde{g} decay,

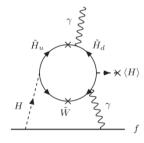
we can probe the flavor structure of the squark sector ! e.g. $\tilde{g} \rightarrow b\bar{s}\tilde{\chi}, t\bar{c}\tilde{\chi}$

Cosmic / astrophysical signals

Good prospect for indirect detection because of relatively large wino annihilation section

- Fermi gamma ray search already constrains the model
- AMS-02 antiproton search will probe significant parameter space

Direct detection is challenging


$$\sigma_{\rm SI} \simeq (0.6 - 2) \times 10^{-46} \text{ cm}^2 \sin^2(2\beta) \left(\frac{|\mu|}{5 \text{ TeV}}\right)^{-2} \left(\cos(\arg(M_2\mu)) + \left|\frac{M_2}{\mu}\right|\right)^2$$

Many things to expect/consider

- CMB measurements (recombination history)
 - ... can probe the region

$$m_{\tilde{W}} \lesssim \left(\frac{\Omega_{\tilde{W}}}{\Omega_{\rm DM}}\right)^{2/3} \times \begin{cases} 230 \text{ GeV} \quad (\text{WMAP7}) \\ 460 \text{ GeV} \quad (\text{Planck forecast}) \\ 700 \text{ GeV} \quad (\text{cosmic variance with } \ell_{\rm max} = 2500) \end{cases}$$
Galli, locco, Bertone, Melchiorri ('09); Slatyer, Padmanabhan, Finkbeiner ('09)

• Electric dipole moments

$$d_e \simeq 3 \times 10^{-29} \ e \ \mathrm{cm} \times \sin(2\beta) \ \sin(\mathrm{arg}(M_2\mu)) \ \left(\frac{|\mu|}{10 \ \mathrm{TeV}}\right)^{-1} \left(\frac{M_{\tilde{W}}}{200 \ \mathrm{GeV}}\right)^{-1} f(m_h^2/M_{\tilde{W}}^2)$$

Arkani-Hamed, Dimopoulos, Giudice, Romanino ('04)

current bound: $d_e < 1.05 imes 10^{-27} \ e \ {
m cm}$, expected to become $\ d_e \sim 10^{-31} \ e \ {
m cm}$

Possible flavor / CP signatures

flavor, CP: Moroi, Nagai, 1303.0668; Moroi, Nagai, Yanagida, 1303.7357; Altmannshofer, Harnik, Zupan, 1308.3653 nuclear EDMs: McKeen, Pospelov, Ritz, 1303.1172 flavor at colliders (from gluino decays):

Proton decays

d=5 in minimal SU(5): Hisano, Kobayashi, Kuwahara, Nagata, 1304.3651 enhanced d=6: Hall, Y.N., 1111.4519 Cosmological signatures

gravitational wave: Saito, 1201.6589

Summary

Accelerated cosmic expansion, (eternal) inflation, string theory, etc suggest

Does this affect our considerations of TeV physics? ... depends on the distribution of parameters in the multiverse

The LHC results (so far) seem to suggest that it does.

This does **not** mean that we cannot make progress or there is no new physics at the TeV scale

Supersymmetry may exist at scales higher than naïvely imagined

High scale supersymmetry

- \tilde{m} » weak scale
- $M_H \sim 126 \text{ GeV}$ predicted
- axion dark matter

Spread supersymmetry

- \tilde{m} ~ 10²–10⁴ TeV
- $M_H \sim 126 \,\text{GeV}$ natural, gauge coupling unif.
- (mixed) wino dark matter, many signals, ...

(Hopefully) experiments will guide us further