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Main objectives of 
LHC experiments

• A major objective achieved: the discovery 
of the Higgs boson


• LHC-13..14 has a lot more to do


• Precision Higgs physics


• Discover or exclude particle candidates 
of dark matter. 


• Precision studies of particles making up 
dark matter, or other particles if we are 
lucky. 


• LHC is a precision physics machine: 
 experimental and theoretical 
uncertainties are comparable.

MONOPHOTON – EVENT DISPLAY
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PRECISION BEFORE DISCOVERY

0

2

4

6

10
2

10
3

mH [GeV]

�
�2

Preliminary

theory uncertainty

0

2

4

6

10 10
2

10
3

Excluded

mH [GeV]

�
�2

Preliminary

theory uncertainty

Precision measurements, precision theory predictions and a 
Standard Model assumption gave before the discovery   

estimates of the Higgs mass.
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Precision after the 
discovery

• From the measurement in many channels, 
the experiments can infer a “total” Higgs 
cross-section.


• Similarly, they can infer the couplings of the 
Higgs boson and SM fermions and bosons.


• The  theoretical uncertainty is already at the 
same level of accuracy as statistical and 
systematic uncertainties. 


• Agreement with the Standard Model would 
have been very difficult to establish had we 
not have precise QCD predictions for the 
signal.  

16 4 Results

SMσ/σBest fit 
-4 -2 0 2 4 6

 ZZ (2 jets)→H 
 ZZ (0/1 jet)→H 

 (ttH tag)ττ →H 
 (VH tag)ττ →H 

 (VBF tag)ττ →H 
 (0/1 jet)ττ →H 

 WW (ttH tag)→H 
 WW (VH tag)→H 

 WW (VBF tag)→H 
 WW (0/1 jet)→H 

 (ttH tag)γγ →H 
 (VH tag)γγ →H 

 (VBF tag)γγ →H 
 (untagged)γγ →H 
 bb (ttH tag)→H 
 bb (VH tag)→H 

 0.13± = 1.00 µ       
Combined

CMS
Preliminary

 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb
 = 125 GeVH m

SMσ/σBest fit 
0 0.5 1 1.5 2

 0.29± = 1.00 µ       
 ZZ tagged→H 

 0.21± = 0.83 µ       
 WW tagged→H 

 0.24± = 1.13 µ       
 taggedγγ →H 

 0.27± = 0.91 µ       
 taggedττ →H 

 0.49± = 0.93 µ       
 bb tagged→H 

 0.13± = 1.00 µ       
Combined CMS

Preliminary

 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb
 = 125 GeVH m

SMσ/σBest fit 
0 1 2 3 4

 0.99± = 2.76 µ       
ttH tagged

 0.38± = 0.89 µ       
VH tagged

 0.27± = 1.14 µ       
VBF tagged

 0.16± = 0.87 µ       
Untagged

 0.13± = 1.00 µ       
Combined CMS

Preliminary

 (7 TeV)-1 (8 TeV) +  5.1 fb-119.7 fb
 = 125 GeVH m

Figure 4: Values of the best-fit s/sSM for the combination (solid vertical line), for individual
channels, and for subcombinations by predominant decay mode or production mode tag. The
vertical band shows the overall s/sSM uncertainty. The s/sSM ratio denotes the production
cross section times the relevant branching fractions, relative to the SM expectation. The hori-
zontal bars indicate the ±1 standard deviation uncertainties in the best-fit s/sSM values for the
individual modes; they include both statistical and systematic uncertainties. (Top) Subcom-
binations by predominant decay mode and additional tags targeting a particular production
mechanism. (Bottom left) Subcombinations by predominant decay mode. (Bottom right) Sub-
combinations by analysis tags targeting individual production mechanisms; the excess in the
ttH-tagged subcombination is largely driven by the ttH-tagged H ! gg and H ! WW chan-
nels as can be seen in the top panel.

Coupling deviations summaries 
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!  Summary of the fits of six 
benchmarks models 
probing: 
!  Fermions and vector bosons. 
!  Custodial symmetry. 
!  Up/down fermion coupling 

ratio. 
!  Lepton/quark coupling ratio. 
!  BSM in loops: gluons and 

photons. 
!  Extra width: BRBSM. 

!  No significance deviations 
from SM. 

[CMS-PAS-HIG-14-009] [arXiv:1307.1347] 

λxy = κx/κy  
 

Same sign 
dimuons 

Signal strength 

@CMSexperiment @ICHEP2014 a.david@cern.ch 
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!  Grouped by production 
tag and dominant decay: 
! χ2/dof = 10.5/16 
! p-value = 0.84 

(asymptotic) 

!  ttH-tagged 2.0σ above 
SM. 
! Driven by one channel. 

[CMS-PAS-HIG-14-009] 



• There is no dark matter in the Standard Model.  
But it is easy or necessary to have in extensions of it.  
 
 
 
 
 
 
 

•  
 
 
 
 
 
What is the model? Can we be agnostic of it and still discover dark matter? 

• How strong are the interactions of DM particles and Standard Model particles? 

Name Operator Coefficient

D1 χ̄χq̄q mq/M3
∗

D2 χ̄γ5χq̄q imq/M3
∗

D3 χ̄χq̄γ5q imq/M3
∗

D4 χ̄γ5χq̄γ5q mq/M3
∗

D5 χ̄γµχq̄γµq 1/M2
∗

D6 χ̄γµγ5χq̄γµq 1/M2
∗

D7 χ̄γµχq̄γµγ5q 1/M2
∗

D8 χ̄γµγ5χq̄γµγ5q 1/M2
∗

D9 χ̄σµνχq̄σµνq 1/M2
∗

D10 χ̄σµνγ5χq̄σµνq i/M2
∗

D11 χ̄χGµνGµν αs/4M3
∗

D12 χ̄γ5χGµνGµν iαs/4M3
∗

D13 χ̄χGµνG̃µν iαs/4M3
∗

D14 χ̄γ5χGµνG̃µν αs/4M3
∗

D15 χ̄σµνχFµν M

D16 χ̄σµνγ5χFµν D

M1 χ̄χq̄q mq/2M3
∗

M2 χ̄γ5χq̄q imq/2M3
∗

Name Operator Coefficient

M3 χ̄χq̄γ5q imq/2M3
∗

M4 χ̄γ5χq̄γ5q mq/2M3
∗

M5 χ̄γµγ5χq̄γµq 1/2M2
∗

M6 χ̄γµγ5χq̄γµγ5q 1/2M2
∗

M7 χ̄χGµνGµν αs/8M3
∗

M8 χ̄γ5χGµνGµν iαs/8M3
∗

M9 χ̄χGµνG̃µν iαs/8M3
∗

M10 χ̄γ5χGµνG̃µν αs/8M3
∗

C1 χ†χq̄q mq/M2
∗

C2 χ†χq̄γ5q imq/M2
∗

C3 χ†∂µχq̄γµq 1/M2
∗

C4 χ†∂µχq̄γµγ5q 1/M2
∗

C5 χ†χGµνGµν αs/4M2
∗

C6 χ†χGµνG̃µν iαs/4M2
∗

R1 χ2q̄q mq/2M2
∗

R2 χ2q̄γ5q imq/2M2
∗

R3 χ2GµνGµν αs/8M2
∗

R4 χ2GµνG̃µν iαs/8M2
∗

TABLE I: Operators coupling WIMPs to SM particles. The operator names beginning with D, M,

C, R apply to WIMPs that are Dirac fermions, Majorana fermions, complex scalars or real scalars

respectively.

where we refer to the coefficients of these two operators as D and M , respectively. As we

shall see, these operators are probed particularly well by searches for gamma ray lines due

to the direct coupling of the dark matter to the photon [30–34]. We note that there has been

recent interest in dark matter with dipole interactions, which have the potential to reconcile

the DAMA signal while remaining consistent with the null search results from CDMS and

XENON [35–39].

The complete list of operators that we consider is shown in Table I. We adopt a naming

convention where the initial letter refers to the spin of χ: D for Dirac fermion, M for
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where, as usual, µ runs over the 4D directions, 0  y  L, zuv  z  zir, z = eky/k. In
Eq. (2.1), we have not explicitly written terms containing the gauge bosons of the group G
or the undoubled fermions. The exchange symmetry constraints m1 = m2 = m ⌘ ck. Notice
that for simplicity we omit a possible mixing term of the form F1F2 in Eq. (2.1). Similarly,
depending on the b.c. chosen for the Z2-odd fields, possible boundary terms can appear.
We assume here that all these operators can be neglected, so that no new parameters are
introduced. In terms of ± fields, we have

e�1L = �1
4
(F 2

+ + F 2
�) +  ̄+(i�MD

M

�m) + +  ̄�(i�MD
M

�m) �

� g
X
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X
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Let us now discuss the boundary conditions for the di↵erent fields. As explained above, X+

inherits the b.c. of the original U(1)
X

gauge boson (that can in general involve in a non-
trivial way the neutral gauge bosons in the group G). The b.c. for the odd combination are
taken to be

X�µ

=
1p
2
(X1 µ

�X2 µ

) ⇠ (+,�) , (2.4)

where +/� denote Neumann/Dirichlet b.c., respectively, with the first/second entry in paren-
thesis referring to the UV/IR boundary (X� 5 satisfies opposite b.c.). These b.c. allow for UV
brane localized kinetic terms characterized by a dimensionful coe�cient r�uv (in the notation
of Ref. [22]). The lightest X� resonance (the LOP) has mass of order

m
X� '

s
2

k(L + r�uv)
µir '

r
2

kL
µir , (2.5)

where µir = k e�kL = 1/zir and the second equality holds whenever the localized term is
small. This mass is parametrically smaller than the KK scale µir. For example, for values of
kL that solve the hierarchy problem, m

X� is about a factor of 10 below the mass of other
gauge resonances, which are of order m

X+ ' 2.5 µir. Note that (�,+) b.c. for X� would
instead give a larger mass, of order m

X+ . It would then be hard to identify X� as the LOP
and get the correct relic density with such a choice of b.c., without the introduction of large
brane kinetic terms. For these reasons, we do not consider this possibility.

Regarding the doubled fermions,  + satisfies the boundary conditions of the original
fermion. The odd combination,  � should obey (+,�) or (�,+) b.c. (for one chirality,
opposite for the other one) so that no fermion zero modes are introduced in the Z2-odd
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which would be too large if Λ is identified with ΛGUT or ΛP lanck. SUSY cures this problem

in the following way. If SUSY were exact, radiative corrections to the scalar masses

squared would be absent because the contribution of fermion loops exactly cancels against

the boson loops. Therefore if SUSY is broken, as it must, we should have

δm2
H = O

( α
4π

)
|m2

B −m2
F | (2)

We conclude that SUSY provides a solution for the the naturalness problem if the masses

of the superpartners are below O(1 TeV). This is the main reason behind all the phe-

nomenological interest in SUSY.

In the following we will give a brief review of the main aspects of the SUSY extension of

the SM, the so–called Minimal Supersymmetric Standard Model (MSSM). Almost all the

material is covered in many excellent reviews that exist in the literature [5, 6].

2 SUSY Algebra, Representations and Particle Con-

tent

2.1 SUSY Algebra

The SUSY generators obey the following algebra

{Qα, Qβ} = 0 (3)

{
Qα̇, Qβ̇

}
= 0 (4)

{
Qα, Qβ̇

}
= 2 (σµ)αβ̇ Pµ (5)

where

σµ ≡ (1, σi) ; σµ ≡ (1− σi) (6)

and α, β, α̇, β̇ = 1, 2 (Weyl 2–component spinor notation). The commutation relations

with the generators of the Poincaré group are

[P µ, Qα] = 0

[Mµν , Qα] = −i (σµν)α
β Qβ

From these relations one can easily derive that the two invariants of the Poincaré group,

P 2 = PαP α

W 2 = WαW α
(7)
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Precision before dark 
matter particle discovery

• Precise  theory predictions and 
precise data are our main tools to 
constrain the mass and couplings of 
particle candidates of dark matter. 


• As for Higgs, QCD corrections can 
be large and tricky. 


• Lead to smaller uncertainties and 
sharper limits on new physics scales.  
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Figure 7: LO and NLO cross sections for DM production in association with a single photon at the 7 TeV
LHC. The solid line indicates the cross section obtained with the default scale µ = m��, the shaded band
represents the deviation from this scale when the scales are varied by a factor of two in each direction. The
phase space cuts described in the text (48) have been applied.

be comparatively large. Note that the ⇤ limit for these operators is expected to be very small, due
to the quark mass suppression, and one expects the full theory to suppress this even further.

We consider the di↵erential /E
T

spectrum at NLO, as an example we consider the axial operator
with m

�

= 100 GeV. Again we compare to the shape of the dominant background (in this case
Z�) using MCFM to obtain both spectra at parton level. Our results for the spectrum and LO
to NLO ratios are shown in Fig. 9 and Fig. 10. Since our explanation of the hardening of the
spectrum for the signal in the monojet case did not invoke any properties of the recoil object we
expect the signal to also be harder for this operator. This is indeed what we observe, the spectrum
for the DM signal is significantly harder than that of the Z� background. Away from the first bin
the K-factor is also fairly stable as a function of the /E

T

. The mismatch of the photon p
T

and the
/E
T

cuts means that at LO there is no contribution to the first bin, since p
T

balance enforces that
the larger photon p

T

cut is also applied to the /E
T

. However, at NLO there can be events, with
lower /E

T

, in the first bin. This accounts for the large (actually infinite) K-factor in the first bin.
At NLO the full fiducial phase space is explored, (/E

T

> 140) resulting in a non-zero cross section
in the first /E

T

bin.

Fox,Williams

0.1

0.2

0.3

0.4

0.5

0.6

0.7

s
Hpp
Æ
j+

ET
,m
is
sL@

pb
D CMS

OV

10 20 50 100 200 500
1.0
1.1
1.2
1.3

mc @GeVD

K
0.1

0.2

0.3

0.4

0.5

0.6

s
Hpp
Æ
j+

ET
,m
is
sL@

pb
D CMS

OV

10 20 50 100 200 500

0.6
0.7
0.8
0.9
1.0

mc @GeVD

K

Figure 1. Left panel: LO (blue) and NLO (red) fixed-order results for the mono-jet cross section
and the corresponding K factor. Right panel: Fixed-order NLO result (red), the inclusive NLOPS
prediction (green) and the NLOPS result with jet veto (purple). The shown predictions correspond
to the vector operator OV and the CMS event selection criteria.

3.1 Vector and axial-vector operators

3.1.1 CMS cuts

We begin our numerical analysis by considering the predictions for the mono-jet cross

section obtained for the vector operator (2.3) by employing the CMS cuts. Our results are

given in figure 1. The left panel shows the fixed-order predictions (i.e. without PS e↵ects)

with the width of the coloured bands reflecting the associated scale uncertainties. One

observes that the scale dependencies of the LO prediction amount to around +25%
�20% and are

reduced to about +9%
�6% after including NLO corrections. The K factor, defined as

K =
�(pp ! j + ET,miss)

⇠=[1/2,2]
NLO

�(pp ! j + ET,miss)
⇠=1
LO

, (3.2)

is roughly 1.1, meaning that NLO e↵ects slightly enhance the mono-jet cross section with

respect to the LO result. Moreover, we find that the K factor is almost independent of the

DM mass. This stability is related to our choice of scales (3.1) and should be contrasted

with the results in [24] that employ µ = m�̄� = µR = µF as the central scale. Compared to

our scale setting the latter choice tends to underestimate the LO cross sections for heavy

DM particles, which leads to an artificial rise of the K factor.

In the right panel of figure 1 we compare the fixed-order NLO prediction with the

NLOPS results obtained in the POWHEG BOX framework using PYTHIA 6.4 [47] for show-

ering and hadronisation. The shown K factors are defined relative to the fixed-order NLO

prediction in analogy to (3.2). To better illustrate the e↵ects of the PS we depict results for

two di↵erent sets of cuts: the green curve and band correspond to an inclusive jet + ET,miss

– 6 –

Haisch,Kahlhoefer,Re



In this talk	

• Fixed order perturbative QCD 

• A few highlights in phenomenology from recent 
breakthroughs from NLO through NNNLO in Higgs 
physics.  

• Mathematical puzzles/methods: strategy of regions.  

• The temptation and dangers of N..NLOapprox.



Fixed order perturbation theory



!

The NLO revolution
!

• The field of perturbative QCD is 
in one of its finest moments. 


• NLO is reaching maturity with 
very well automated tools 
(aMC@NLO, Blackhat, Rocket, GoSam, 
OpenLoops,…) 


• Helps the experiments to 
investigate confidently 
potential signals over 
backgrounds of multi-particle 
final states.  

Cascioli et al

Bern et al



Why is NLO 
automated?
• Great understanding of QCD 

radiation and one-loop amplitudes.  


• One-loop amplitudes in gauge 
theories = (Tree-amplitudes in 
gauge-theories) and (Integrals in 
scalar field theories)


• Singularities of tree-amplitudes 
due to radiation of a single parton 
understood for arbitrary processes. 



From NLO to NNLO

• A very beautiful structure of perturbation 
theory at NLO, where we can reduce the 
cross-section calculations to a few scalar 
integrals and  LO calculations (infrared 
limits, master integral coefficients)


• It makes one dream that also higher orders 
NNLO, NNNLO, etc may be reduced to a 
few scalar integrals and LO calculations.  


• Such a structure has not arisen yet, but it is 
promising. 


• Progress is fast over the last decade with 
increasingly sophisticated methods.  



Recent NNLO 
computations

Czakon et al



Recent NNLO 
computations

Gehrmann et al

Cascioli et alpp ! ZZ



Recent NNLO 
computations

Gehrmann et al

Chen et al
gluonic

pp ! H + 1jet

Boughezal et al



Recent NNLO 
computations

Currie et al

Catani et alpp ! ��



The start of the NNLO revolution

• Subtraction methods at NNLO are reaching maturity. It is now clearer 
how to combine real corrections and virtual corrections, cancelling 
infrared singularities.  

• Result of persistence to solve a difficult problem and very good ideas. 
Solutions are numerical and applicable to general processes.  

• Now focus turns back to developing even better methods for the 
computation of virtual amplitudes.   

• This is a problem which is customarily attacked on a process by process 
basis. But with powerful new mathematics! (Talk by Claude Duhr)  

• Bright future! This is just the beginning…. 



Strategy of regions



A small puzzle

I =

Z 1

�1
dx

1

(x2 + �

2) [(x� 1)2 + �

2]
=

2⇡

�(1 + 4�2)

An integral depending on a small parameter (             ): � ! 0+

Knowing the analytic result it is easy to expand:

I =
2⇡

�

⇥
1� (4�2) + (4�2)2 � (4�2)3 + . . .

⇤

If we did not know the answer, could we at least get a few terms of 
the expansion in the small parameter? 

NOT EASY: As � ! 0+ the integral diverges!  

Need to expand around an infinite value!
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• Slice the integration region: Hard+SoftA+SoftB 
• Hard: no denominator becomes singular. SoftA,B: one denominator 

becomes singular. 
• In each region, Taylor expansions are legitimate! We can expand the 

integrand and integrate within the boundaries of the region. 



Strategy of regions
Let’s introduce some regulators 

and expand the integrand around the first singular point,  
without restricting the integration within the SoftA region:

Exchanging the summation and integration is illegitimate. 
But let’s go on! The a,b regulators allow to perform all integrations.   
After we do so we find that we can set the regulators to zero. We obtain:               
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Now expand around the second singular point:

Performing, an unrestricted integration and setting the regulators  
to zero:               
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Now expand around a point away from the singularities:
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Strategy of regions

• The total integral is the sum of all of its regions, where each 
one of them is extended to cover the full integration domain.   

• Counterintuitive: the integration domains are overlapping! 
Apparently, the overlaps vanish.  

• Not clear why. Regularisation seems to play a role.  

• This observation appears to hold in general for all sorts of 
Feynman integrals.  

• Basis for the formulation of effective theories such as SCET 
and the proof of factorisation theorems (Beneke,Smirnov,…) 



Application in Higgs 
physics
• The equality of the full integral with the sum of 

regions is a statement valid at all orders in the 
small-parameter expansion, not just the zero 
limit. 


• Can be used to calculate as many sub-leading 
terms in the small parameter as we can 
technically calculate.  


• Small parameter in Higgs boson production: 
Recoil energy of the Higgs boson: 
 

• Final state gluon radiation is suppressed by this 
factor: 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Higgs cross-section 
at NNNLO

• We have devised a method to 
compute the Higgs cross-
section at NNNLO as an 
expansion in the Higgs energy 
recoil. 


• Based on the strategy of 
regions in combination with 
other techniques for dealing 
with the algebraic complexity 
of such a computation. 


• Novel techniques for 
performing multidimensional 
integrations. 

CA, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger

talk by Claude Duhr
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Temptations of the threshold approximation 
and Higgs production via gluon fusion



Production of a 
heavy system

• A major purpose of the LHC is to 
produce particles or systems of 
particles with a large invariant 
mass. 


• At threshold, the partonic centre 
of mass energy is converted fully 
to the invariant mass of the heavy 
system. Radiation from the initial 
state is emitted with zero energy 
(soft radiation).  


• It is tempting to compute higher 
order corrections to the 
production cross-section in the 
threshold limit.   

HEAVY

Soft

proton

proton



Threshold expansion

• Hadronic cross-section: 

• Threshold expansion: 

• with
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Threshold limit

• Threshold logarithms (and plus distributions) are the remnants of 
cancelations of infrared divergences.  

• They follow a universal pattern.  

• Easier to calculate and can be predicted at a higher order in the 
strong-coupling expansion than the last fully-known perturbative 
order.  

• They can be re-summed at all perturbative orders with various 
methods (SCET,direct QCD,…) 

• Universality of threshold logs tempts us to extrapolate 
phenomenology results from one process to others.   



Threshold limit in Higgs production
• Threshold corrections at NNLO in 2001  (Catani, de Florian, Grazzini; Harlander, Kilgore)  

• Full NNLO computation followed in 2002.  

• NNLL threshold resummation matched to full NNLO result in 2003 (Catani, de Florian, 
Grazzini, Nason) 

• Threshold plus-distributions were inferred from splitting functions in 2005 (Moch, Vogt) 

• SCET resummation of threshold logs and Pi^2 in  2008 (Ahrens, Becher, Neubert, Lin Yang)) 

•  “Combination” of threshold and high energy limits 2013 (Ball, Bonvini, Forte, Marzani, Ridolfi) 

• Threshold corrections at N3LO 2014  (CA, Duhr, Dulat, Furlan, Gehrmann, Herzog, Mistlberger)  

• Some sub-leading logs beyond threshold 2014 (De Florian, Mazzitelli, Moch, Vogt) 

• Comparison of methods for threshold resummation 2014 (Sterman, Zeng; Bonvini, Forte, Ridolfi)



Usefulness of the threshold limit

• The threshold limit is a non-trivial and 
important part numerically of the total 
cross-section 

• If an NxLO correction at threshold is 
large, this is a very important indicator 
that the full NxLO correction is large.  

• Is threshold dominant?  

• A light Higgs boson is produced with 
a significant recoil, but not a very 
large one.  

• Threshold limit is important but sub-
leading corrections are sizeable.  
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N3LO at threshold: z-space
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N3LO at threshold: z-space

• Formal Log hierarchy in the threshold limit is not reflected 
numerically, indicating that kinematically the process is 
not taking place predominantly at threshold.   

• Large cancelations of formally leading against formally 
sub-leading terms.  

• The new delta(1-x) term is as large and of opposite sign 
(+) as all the previously known plus distributions (-).  



Numerical impact
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Mellin space
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• Hadronic cross-section is a convolution of parton 
luminosities and the par tonic cross-sections

• It factorises if we take its Mellin-transform:

• Suited for resummation. Different (equivalent) soft expansion
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N3LO at threshold: Mellin-space

LO NLO NNLO N3LO

constant 100 77.4 32.2 8.04
(delta) (100) (35.1) (1.72) (5.07)
lnN 14.8 12.0 5.14
ln2N 7.16 7.56 4.04
ln3N 1.07 1.09
ln4N 0.18 0.27
ln5N 0.025
ln6N 0.002
SV 100 99.4 53.0 18.6

C2(m2H) 100 19.6 2.05 0.12

Table 1: The individual contributions of the lnk N terms in the N-space coefficient functions c(n≤3)gg at
µR = µF = mH to the Higgs production cross section for mH = 125 GeV, Ecm = 14 TeV, and the central
gluon density and five-flavour αs of Ref. [53]. All results are given as percentages of the LO contribution.
Also shown, in the same manner, is the expansion of the prefactor function [C(µ2R = m2H ]2), calculated in the
on-shell scheme for the top mass with m2t = 3.00 ·104 GeV2.

This situation is, in fact, expected from related studies of the DY process [24] and Higgs-
exchange DIS [25]. It is particularly interesting to consider the latter case as the coefficient func-
tions are completely known to N3LO. Thus, in order to estimate the size of the N−1 logarithms
not determined in Eq. (2.15), we compare with Ref. [25] and expand the gluon coefficient function
c(n)DIS(N) of Higgs-exchange DIS up to O(N−1) at both NNLO and N3LO. We find

c(2)DIS
∣∣∣
N−1 lnk N

∝ ln3N+5.732 ln2N+8.244 lnN−3.275 ,

c(3)DIS
∣∣∣
N−1 lnk N

∝ ln5N+12.65 ln4N+52.56 ln3N+92.01 ln2N+18.13 lnN−24.30 (3.1)

for CA = 3, CF = 4/3 and nf = 5, where we have normalized the expressions such that the coeffi-
cient of the leading logarithm is equal to 1. The analogous expressions for Higgs production are

c(2)gg
∣∣∣
N−1 lnk N

∝ ln3N+2.926 ln2N+5.970 lnN+2.007 ,

c(3)gg
∣∣∣
N−1 lnk N

∝ ln5N+5.701 ln4N+
(
17.86+0.00333ξ(3)H

)
ln3N+O(ln2N) . (3.2)

Comparing Eqs. (3.1) and (3.2) an interesting pattern emerges: the size of the coefficients of the
non-leading logarithms for Higgs production is always smaller than that of their analogues for
Higgs-exchange DIS; the ratio is a factor of about 1/2 or (much) less except for the ln1N terms.
Thus we suggest as a conservative estimate of the complete N−1 contribution

c(3)gg
∣∣∣
estimate

N−1 lnk N
∝ ln5N+5.701 ln4N+18.9 ln3N+46 ln2N+18 lnN+9 , (3.3)

where we have used ξ(3)H = 300 as roughly indicated by the physical-kernel coefficients in Ref. [24].
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N3LO at threshold: Mellin-space

• Formal Log hierarchy in the threshold limit is not reflected 
numerically, indicating that kinematically the process is 
not taking place predominantly at threshold.   

• No cancelations of formally leading against formally sub-
leading terms.  

• The new delta(1-x) has a larger impact than what had 
been previously assumed (Moch, Vogt) 

• Sub-leading terms?



IS THE THRESHOLD LIMIT RELIABLE?
• It is ambiguous 
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• Favorite choices of the  
past: 

• “Best” choice at NNLO: 
g(z) = z

• Is there a “correct” g(z)?

g(z) =
1

z
, 1



SCET vs direct QCD resummation

• This type of ambiguity causes the bulk of the difference in the 
numerical predictions between SCET and direct QCD 
resummation. (Sterman, Zeng; Bonvini, Forte, Ridolfi) 

• SCET calculations showed a negligible threshold resummation 
correction with respect to NNLO. (Ahrens, Becher, Neubert, Lin Yang) 

• direct QCD resummations showed a 10% effect from threshold 
resummation. (de Florian, Grazzini) 

• Difference originates from the different methods to invert the 
Mellin transform (before or after folding with parton densities) 

g(z) = 1 vs g(z) ⇡ 1p
z



TREATMENT OF  THE AMBIGUITY
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Herzog, Mistlberger

• Let’s try to learn from the 
NNLO, where we know the full 
result. !

• We truncate the threshold 
expansion to the order indicated 
in the x-axis and compare to the 
full NNLO. !

• Sub-leading terms reduce the 
ambiguity!!

• Threshold expansion converges 
but slowly!



A guess of structure 
of sub-leading terms

• Resum combinations of logs which 
do not spoil the analytic properties 
of the cross-section in Mellin-space 
in the opposite (high energy) limit. 


• This criterion does not fix the sub-
leading terms uniquely. 


• It is “validated” numerically at 
NNLO. 


• But the same holds for other 
prescriptions (g(z)=z, SVC-
approximation, naive N-space, 
SCET) which can claim a similar 
success at NNLO, diverging from  
each other in their N3LO predictions.
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Figure 1. Dependence of the N3LO cross section on the renormalization scale µR. Two common choices of
renormalization scale are shown as vertical bars. The approximate N3LO curves are, from top to bottom,
our best approximation, the N -soft approximation, the N3LO truncation of the NNLL resummed result of
Ref. [8], and the soft-0 approximation (see text for details). In all cases, the full result with finite top mass
is included through NNLO. The known LO, NLO and NNLO results are also shown. The red band provides
an estimate of the uncertainty on our result, obtained with the procedure of Ref. [4].

increase of the NNLO by about 6% at the same scale. Note that the (in principle infinite) series of
higher orders included in the resummation only adds an extra 2% to this.

This truncated NNLL resummed result di↵ers from our approximation in three respects: the value
of the constant (which in Ref. [8] corresponds to g0,3 = 0); the coe�cient of the single-logarithmic
term (both the constant and the single log would only appear in next=to-next-to-next-to-leading log
(N3LL) resummation); and the fact that the constraints due to matching to high-energy resummation
and analyticity are not taken into account. The e↵ect of the single logarithmic term is completely
negligible, so the di↵erence is due in roughly equal proportion to each of the other two reasons. This
is also illustrated in Fig. 1: the N -soft (see Ref. [4] for the precise definition) curve corresponds to
using the exact constant (and single-logarithmic term), but otherwise only including in the same form
the N3LO terms as in the resummation (i.e. without matching and analyticity). This prediction is
seen to indeed lie half-way between our approximation and the truncated NNLL resummed result.

Finally, we also show in Fig. 1 the so-called soft-0 approximation (again, see Ref. [4] for a precise
definition). This basically amounts to only keeping soft contributions, but in z space rather than in
N space, and it would predict a suppression, rather than an enhancement, of the N3LO cross section
in comparison to the NNLO one, for a wide range of values of µR. In the soft limit this approximation
coincides with the other approximations discussed here, but away from the limit it di↵ers from them by
large corrections suppressed by powers of 1

N [or (1� z)]; it is known [4,9] to fail at NLO and NNLO,
essentially because it does not respect longitudinal momentum conservation (albeit by subleading
terms) [10]. The result found using this soft-0 approximation was explicitly given in Ref. [3].

3

• Ball, Bonvini, Forte, Marzani, Ridolfi)



N3LO beyond 
threshold

• We are performing a calculation of 
the full N3LO cross-section without 
using the threshold approximation.  


• In the mean time, some sub-
leading logs for the next term in the 
threshold expansion were 
determined using QCD 
factorization.  


• Other undetermined logs have 
been guessed, based on other 
processes and previous orders. 
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Figure 5: The dependence of the Higgs production cross section on the factorization scale µF for µR = mH
(top), the renormalization scale µR for µF = mH (middle), and on µ ≡ µF = µR (bottom) at Ecm = 14 TeV.
Our N3LO band defined by the SV and SV+N−1 approximations for the coefficient function c(3)gg (N) is
compared to the LO, NLO and NNLO results for the respective PDFs and αs values of Ref. [53].
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Remarks on the status of the precision of the 
Higgs cross-section at N3LO. 

• Threshold limit is too ambiguous.  

• Need sub-leading terms.  

• Guessing them is risky, given that we are aiming to a precision of 
below 5%.  

• Guessing cannot substitute genuine calculations.    

• We should not fall in love with our formalisms and approximations. 
Need to be critical of their validity.   

• Need complete calculations of sub-leading terms in the threshold 
expansion or even better the full un-approximated N3LO correction. 



outlook

The achievements in perturbative QCD 
of the last few years are amazing.

!
We have fulfilled some of our wildest 
dreams (especially at NLO)

!
This is the dawn of precision QCD at 
the LHC! 


