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Introduction

• With the discovery of the Higgs with a mass of 125 
GeV we are left with the following three possibilities: 

1. The Higgs is a fundamental scalar and it is 
fine-tuned 

2. The Higgs is a fundamental scalar and SUSY 
explains is lightness 

3. The Higgs is some type of composite object.



• I will take the avenue of SUSY and devote myself to 
the MSSM. 

• The lack of signals at the LHC is pushing the 
spectrum of colored sparticles to around 1 TeV. 

• On the other hand the soft mass of the Higgs is 
related to the mass of the Z unless there is a 
cancellation with the μ-term.
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• Since the soft mass of the Higgs gets corrected 
through the RGE evolution one has two 
possibilities: 

1. The value of the soft mass of the Higgs is much 
smaller than the rest in order not to reintroduce 
fine-tuning. 

2. There is a ‘little hierarchy’ problem that requires 
a large value of μ.



• This solution to the RGE evolution where the soft 
mass of the Higgs vanishes at low energies was 
called by Feng et. al a focus point. 

• It requires that the different contributions coming 
from squarks, gauginos, A-terms and Higgses to 
cancel. 

• Since the solution of a RGE is homogenous in the 
different masses, one can rescale the boundary 
conditions retaining the effect.



• In this talk I will suppose that SUSY is broken at a 
high scale M. 

• I will then analyze for which boundary conditions 
and value of M I can have a vanishing soft mass for 
the Higgs at low energy. 

• I will also study the possibility of having also a very 
light stop as a consequence of the RGE.



General Focus Point Solution

• The general solution for the soft mass of the Higgs 
as a function of a scale Q can be written as: 

!

!

• So the focus point solution is written as:

established for arbitrary boundary conditions and an arbitrary scale M . We also provide the
(very simple) contributions that should be added for non-vanishing values of the hypercharge
D-term. In Sec. 3 we have applied the general equations to some of the most popular models,
including CMSSM and gravity mediated models, gauge mediated models and mirage models.
We did not exhaust the different possible models (or made scatter plots on all models) as it
should be trivial to apply our formulae to any particular model. Finally in Sec. 4 we present
our conclusions. Some technical details of the calculation are postponed to App. A.

2 General Focus Point

We will assume that the MSSM soft-breaking terms, in particular (m2
Q, m

2
U , m

2
HU

, Ma, At),
are generated at the high-scale M . The value of m2

HU
at the scale Q can then be computed

on general grounds as

m2
HU

(Q) = m2
HU

+ ηQ[Q,M ](m2
Q +m2

U +m2
HU

) +
∑

a

ηa[Q,M ]M2
a

+
∑

a̸=b

ηab[Q,M ]MaMb +
∑

a

ηaA[Q,M ]MaAt + ηA[Q,M ]A2
t +∆Y,HU

(2.1)

where the soft breaking terms on the right-hand side are defined at the scale M and the
coefficients ηX depend on the scales M and Q, and the last term represents the hypercharge
D-term contribution. This expression describes the one-loop evolution of the Higgs square
mass parameter m2

HU
, when the bottom and tau Yukawa couplings are small, as happens

for moderate values of tanβ. The hypercharge D-term vanishes in all the supersymmetry
breaking schemes that we analyze in this article, and therefore we shall not consider it in
our analysis. However, for completeness, in the Appendix we provide the expression of the
additional corrections induced by ∆Y,HU

.
In particular if we fix the low scale as the scale where supersymmetric particles decouple

Q = Q0 (in the few TeV range) we can write the focus point scale as the scale where the
condition m2

HU
(Q0) = 0 is satisfied, i.e.

0 = m2
HU

+ η0Q(M)(m2
Q +m2

U +m2
HU

) +
∑

a

η0a(M)M2
a

+
∑

a̸=b

η0ab(M)MaMb +
∑

a

η0aA(M)MaAt + η0A(M)A2
t (2.2)

where now the coefficients η0X(M) only depend on the (messenger) scale M at which super-
symmetry breaking is transmitted. These coefficients are computed semi-analytically [13]–
[15] and their explicit expressions can be found in the Appendix. In fact if we choose a value
of Q0 = 2 TeV they are can be fitted by an expression as

η0X(M) =
∑

n≥0

anX yn(M), y(M) ≡ log10(M/GeV ) (2.3)
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• The focus point stays the same if one rescale all 
boundary conditions by the same factor. But the 
caveat is the value of Q. 

• The value of Q is chosen so as one can generate 
the value of 125 GeV relying on heavy squarks and 
possibly an A-term Q=2 TeV 



• The coefficients η can be calculated numerically 
and fitted to a polynomial. Here are the plots as a 
function of M for Q=2 TeV.
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• One can now study the focus point for different 
boundary conditions:

CMSSM: MQ = MU = MHU = m0 Ma = m1/2
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NUHM MQ = MU = m0 Ma = m1/2 MHU = MHD = MH
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Non-universal gaugino masses:
MQ = MU = MHU = m0 Ma = �am1/2M=1016 GeV 
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• Standard gauge mediation does not work, it is a 
very predictive theory: 

!

!

!

!

• It has only one ratio as free parameter plus M.

Another possibility is giving up universality of the gaugino masses. To this end we will
introduce extra parameters δa such that

Ma = δam1/2 (3.3)

where one of the parameters can be fixed to one as it can be reabsorbed in a redefinition
of the parameter m1/2. A nontrivial pattern for the δa-parameters can arise in the effective
theories of string constructions [27]. In particular an analysis of fine-tuning has been done
in Ref. [28] where δ3 = 1 has been fixed. In this case the contours lines of m0/m1/2 for
M = 1016 GeV are shown in Fig. 3 as a function of δ1 and δ2 for At = −2.5m0 (left panel)
and At = 0 (right panel). In the left panel, for At = −2.5m0, the region where gauginos
are heavy, i.e. m0/m1/2 ∈ [0, 1], is much larger than in the right panel, for At = 0, which
corresponds to the external ring. The reason for the change in the position of the ellipses for
which the fine-tuning disappears is again the fact that for At = 0 the overall coefficient in m2

0

is small and positive and therefore it can be cancelled when the overall coefficient on m2
1/2

is negative. On the contrary, for non-vanishing At = −2.5m0, the overall coefficient on m0

is negative and can only be cancelled when the overall coefficient on m2
1/2 becomes positive.

The contour m0/m1/2 = 0 corresponds to the condition under which the overall coefficient
controlling the m2

1/2 dependence of m2
HU

vanishes, and it is the same, independently of the
relation of At with m0, as can be easily seen by comparing the left and right panels of
Fig. 3. When such condition is approximately fulfilled, the dependence on both m2

0 and m2
1/2

becomes small, and then the fine-tuning is greatly reduced, a result that was first pointed
out in Ref. [28].

3.2 Gauge mediation

In gauge mediation models [29], supersymmetry is broken in a hidden sector (X = M +
θ2F ) coupled to a number of messenger fields (charged under the standard model gauge
groups) by the following superpotential coupling W = ΦIXΦ̄I . Supersymmetry breaking is
then communicated to the visible sector via gauge interactions generating the following soft
breaking masses:
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Ma = αaΛG, At = 0 (3.4)

where in minimal models ΛG = NF/4πM and ΛS =
√
NF/4πM , N being the number of

messengers. Vanishing values of the stop mixing parameter at the messenger scale imply
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• One can modify the contribution to the soft mass of 
the Higgses by direct coupling to the messengers:

M2
HU

= (1 + �)M2
L
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• Another possible modification includes different F-
terms for color and EW interactions.
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Figure 4: Left panel: FP lines for constant λ in the (log10[M/GeV],ΛG/ΛS) plane
in the model defined by Eqs. (3.4) and (3.6). Right panel: FP lines in the plane
(log10[M/GeV],Λ2/Λ3) for the model of Eq. (3.7).

A variant of the previous models happens when there are several fields XI in the hidden
sector such that the coupling with the messengers is by the superpotential W = ΦIXIΦ̄I .
In this case different messenger components XI are affected by different breakings FI . A
simple model along these lines was constructed in Refs. [15], [16], where there is a pair of
messengers in the 5 + 5 representation of SU(5) which decompose into the SU(3) triplet
(I = 3) and SU(2) doublet (I = 2) components. Correspondingly there are two fields in
the hidden sector: X3 = M + θ2F3 giving a mass to the gluino and colored scalars and
X2 = M + θ2F2 whose auxiliary component F2 gives a mass to the SU(2)⊗ U(1) gauginos
and scalars. The contribution to the soft breakings at the scale M is given by
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M2 = α2Λ2, M3 = α3Λ3 (3.7)

where ΛI = FI/4πM . The FP results for this model are shown in the right panel of Fig. 4.
Large values of Λ2/Λ3 reduces the stop contributions and lowers the negative dependence on
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• The final model we study is mirage-mediation:

the overall scalar mass parameters, implying the existence of solutions. Since all parameters
are correlated, for each scale M , the solutions occur for a specific value of the ratio Λ2/Λ3.

3.3 Mirage mediation

This scenario is inspired by string compactification with fluxes [33] and it is dubbed as mixed-
modulus-anomaly mediated supersymmetry breaking and also mirage mediation [34, 35] as
gaugino masses ”apparently” unify at a scale much below MGUT. Mirage mediation assumes
that the contributions from gravity mediation [3] and anomaly mediation [36] are comparable
in size. Anomaly mediation assumes that supersymetry breaking is communicated via the
trace anomaly of any non-conformal theory and it is proportional to the RGE evolution of
parameters. Therefore the spectrum at the supersymmetry breaking scale M is given by

m2
HU

= m2
0 +

[
3αt

(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
−

3

2
α2
2b2 −

3

10
α2
1b1

]
m̃2

3/2

m2
Q = m2

0 +

[
αt

(
6αt −

16

3
α3 − 3α2 −
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15
α1

)
−

8

3
α2
3b3 −

3

2
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2b2 −

1

30
α2
1b1

]
m̃2

3/2

m2
U = m2

0 +

[
2αt

(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
−

8

3
α2
3b3 −

8

15
α2
1b1

]
m̃2

3/2

At = A0 −
(
6αt −

16

3
α3 − 3α2 −

13

15
α1

)
m̃3/2

Ma = m1/2 + αabam̃3/2 (3.8)

where m̃3/2 = m3/2/4π and ba = (33/5, 1,−3). It is known that for m0 = 0, the slepton
square masses become negative and therefore no physical solution exist [36]. For positive
values of m0 and m1/2 instead, positive slepton masses may be obtained. It is easy to show
that whenever mHU

(Q0) = 0, the slepton masses become positive at the same scale. It is also
easy to show that in order to find such a solution, the value of m2

HU
at the scale M must be

positive. In Fig. 5 we plot in the plane (m̃3/2, m1/2) contour lines of constant value of A0 for

M = 1016 GeV. Here all masses are normalized to the value of mHU
≡

√
m2

HU
at the scale

M . The solutions are symmetric under a simultaneous change of sign of m1/2, m̃3/2 and A0.
Moreover, solutions may be only obtained for moderate values of A0/mHU

and disappear for
large values of this parameter.

4 Conclusion

In this article we have found the conditions to obtain small values of the soft supersymmetry
breaking parameter of the Higgs field at low energies, even in the case where the high energy
values of the scalar and gaugino supersymmetry breaking parameters are much larger than
the weak scale. These conditions do not depend on the overall scale of the supersymmetry
breaking parameters, and therefore define correlations between the different mass parame-
ters. When these conditions are fulfilled, the proper electroweak symmetry breaking may
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The LSS

• One scenario that has deserved some attention is 
the one where at least one stop is quite light ~200 
GeV. 

• In other for this scenario to be viable one has to 
check the Higgs and flavor phenomenology. 

• Before accommodating a light stop into the focus 
point I am going to show the constrains coming 
from the LHC and B-physics.
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‘Double’ focus point

• Using the generic solution for any soft mass: 

!

!

!

• We can impose the ‘double focus’ point solution:

solution to this little hierarchy problem is if Q0 is additionally a FP of the running m2
UR

(Q),
i.e. if m2

UR
(Q0) ≃ 0. This can be solved by assuming that m2

UR
(Q0) is non zero, but never-

theless its value (as it is small compared to the rest of soft masses) can be neglected in a
first approximation. Since in all the region of parameters consistent with the observed Higgs
mass and m2

QL
(Q0) ≫ m2

UR
(Q0), one obtains m2

t̃1
≃ m2

UR
(Q0), in practice this amounts to

selecting values of mUR of the order of a few hundred GeV, and much smaller than the
characteristic mass parameters at the messenger scale.

In this section we will then deduce the relation on the supersymmetric parameters for
Q0 to be a double FP characterized by

m2
HU

(Q0) ≃ m2
UR

(Q0) ≃ 0 (3.1)

In fact we will consider the strict equality in Eq. (3.1) to make general searches on the pa-
rameter space and will introduce small realistic masses m2

UR
(Q0) for the particular examples

we will present in Sec. 4.
We will assume that the MSSM soft breaking terms (mQL, mUR , Ma, mHU , mHD , At, . . . )

are generated at some high-scale M, where they are communicated to the observable sector
by some messenger fields. We use the notation Ma (a = 1, 2, 3) for the Majorana masses
of the SU(3) ⊗ SU(2) ⊗ U(1) gauginos while we deserve the notation QL, UR to the third
generation squark fields 1. The value of m2

Q(Q) for Q = QL, UR, HU can be computed on
general grounds as

m2
Q(Q) = m2

Q + dQ

{

ηQL[Q,M](m2
QL

+m2
UR

+m2
HU

)

+
∑

a

[

ηa[Q,M]− 2

(

caHU
−

caQ
dQ

)

Fa[Q,M]

]

M2
a

+
∑

a̸=b

ηab[Q,M]MaMb +
∑

a

ηaA[Q,M]MaAt + ηA[Q,M]A2
t

}

(3.2)

where the functions ηX from the RGE running have been computed semi-analytically in
Ref. [24]. In particular by taking the value Q0 = 2 TeV a fit of the functions ηX [Q0,M] was
explicitly done in Ref. [8] in a power series of log10(M/GeV). The functions Fa are explicitly
given by

Fa[Q,M] =
1

ba

α2
a(M)− α2

a(Q)

α2
a(M)

=
αa(Q)

2π
log(M/Q)

(

2−
baαa(Q)

2π
log(M/Q)

)

(3.3)

where ba = (335 , 1,−3) and the coefficients are defined, for Q = (QL, UR, HU), as

c3Q = (4/3, 4/3, 0), c2Q = (3/4, 0, 3/4), c1Q = (1/60, 4/15, 3/20)

1Here we are neglecting the Yukawa couplings hb and hτ (as we are never considering too large values of
the parameter tanβ) while the Yukawa couplings of the first two generation are too small and do not play
any role.
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1Here we are neglecting the Yukawa couplings hb and hτ (as we are never considering too large values of
the parameter tanβ) while the Yukawa couplings of the first two generation are too small and do not play
any role.
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• Imposing the two conditions leads to the following 
value of the mass for the squark doublet: 

!

• Gauginos and At can be also calculated as:

dQ = (1/3, 2/3, 1) (3.4)

Assuming that Q0 is the FP defined by m2
HU

(Q0) = 0, i.e.

0 = m2
HU

+ ηQL[Q0,M](m2
QL

+m2
UR

+m2
HU

) +
∑

a

ηa[Q0,M]M2
a

+
∑

a̸=b

ηab[Q0,M]MaMb +
∑

a

ηaA[Q0,M]MaAt + ηA[Q0,M]A2
t (3.5)

one can write the value of m2
UR

(Q0) as given by the expression

m2
UR

(Q0) = m2
UR

−
2

3
m2

HU
+
∑

a

caM
2
aFa[Q0,M] (3.6)

where (c1, c2, c3) =

(

1

3
,−1,

8

3

)

. The double FP defined in Eq. (3.1) then requires the con-

dition that

m2
UR

=
2

3
m2

HU
−
∑

a

caM
2
aFa[Q0,M] (3.7)

The functions Fa then determine when (whether) the LSS FP can be achieved. A plot of
them is given in Fig. 3 from where we can see that (by far and depending on the value of
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Figure 3: Plots of F3 (red solid), F2 (blue dashed) and F1 (dotted) as functions of
log10 (M/GeV).

M) the main contribution is that coming from the gluino sector.
At the LSS FP we can give the prediction of m2

QL
(Q0) as

m2
QL

(Q0) = m2
QL

−
1

2
m2

UR
+
∑

a

daM
2
aFa[Q0,M] (3.8)
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where (d1, d2, d3) =

(

−
7

30
,
3

2
,
4

3

)

, while the prediction of Ma(Q0) is simply given by

Ma(Q0) =
αa(Q0)

αa(M)
Ma (3.9)

Finally and in a similar way we have computed At(Q0) and made a fit as

At(Q0) =
∑

a

γa(Q0,M)Ma(M) + γA(Q0,M)At(M) (3.10)

where we use the fit valid for Q0 = 2 TeV and in the range M ∈ [105, 1016] GeV

γ1(Q0,M) = 0.0149− 0.0054 y(M) + 0.0001 y2(M)

γ2(Q0,M) = 0.0924− 0.0336 y(M) + 0.0008 y2(M)

γ3(Q0,M) = 0.3979− 0.1418 y(M) + 0.0021 y2(M)

γA(Q0,M) = 1.2576− 0.1058 y(M) + 0.0030 y2(M), (3.11)

where y(M) ≡ log(M/GeV).

4 Particular Scenarios of Supersymmetry Breaking

In this section we will consider generic cases where the supersymmetry breaking parameters
(mQL, mUR, Ma, mHU , At) are such that the double FP equation (3.1) is satisfied. The first
(trivial) observation is that in CMSSM-type models characterized by mQL = mUR = mHU ≡
m0, Ma ≡ m1/2 there is no scale Q0 satisfying Eq. (3.1). In fact from Eq. (3.7) and
given that the sum caFa[Q0.M] > 0 (as can be seen from Fig. 3) the condition m2

UR
< 2

3m
2
HU

follows. A simple way out is to give up with the degeneracy ofmUR and/ormHU , as in models
dubbed NUHM [25]. This kind of boundary conditions are generic in string constructions [26]
where the soft breaking mass of a scalar field is fixed by its modular weight. Non-universal
gaugino masses may also be considered [27, 28]. In particular large values of M2, that has
the negative coefficient in F2, Eq. (3.7), can induce positive corrections to the Higgs mass
parameter without affecting the right-handed stop mass parameter, making it possible to
fulfill the double FP condition even for universal scalar masses. However, since very large
values of M2 would be required for this to happen, and string constructions provide, at
tree level, universal gaugino masses, we will only concentrate in the following on the case of
non-universal scalar masses.

4.1 Non-Universal Higgs Masses

We will consider the supersymmetric parameters where at the messenger scale the Higgs
sector has a different mass from the one of the squark-slepton sector, namely the four inde-
pendent parameters at the scale M are

mQL = mUR ≡ m0, At, mHU = mHD ≡ mH , Ma ≡ m1/2 (4.1)
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• NUHM boundary conditions.
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MQ/MH (At/MQ) M3/MQ

m0

mH

At
mH

m1/2

mH

mQL
(Q0)

mH

mUR
(Q0)

mQL
(Q0)

At(Q0)
mQL

(Q0)
M3(Q0)
mQL

(Q0)
M2(Q0)
mQL

(Q0)
M1(Q0)
mQL

(Q0)

0.6 2.35 0.52 0.65 0.22 1.03 1.27 0.74 0.59

Table 1: A particular set of parameters at M = 1010 GeV (left set) and low Q0 energy (right
set) from Figs. 4 and 5.

to mUR(Q0) ≃ 440 GeV, mH ≃ 3.1 TeV and m0 ≃ 1.9 TeV, m1/2 ≃ 1.6 TeV, At ≃ 7.5
TeV. On the other hand the gluino and electroweak gaugino low energy masses Ma(Q0) are
(2.52, 1.48, 1.18) TeV, for a = 3, 2, 1, respectively.

4.2 Non-Universal Scalar Masses

As we have seen in the previous section from the double FP condition, in view of the current
experimental constraints on the Higgs and gluino masses, the transmission of supersymmetry
breaking at the GUT scale MGUT ≃ 2×1016 GeV cannot be achieved for non-universal Higgs
masses and universal gaugino masses. A way out is to give up the universality of the squark
masses, a generic situation which appears on soft breaking terms coming from superstring
theories [26]. Therefore in this section we will consider soft breaking terms characterized by
the five independent parameters defined at the unification scale MGUT

mQL, mUR , At, mHU ≡ mH , Ma ≡ m1/2 (4.4)

on which we will impose the double FP condition (3.7). The results are shown in Figs. 6
and 7. This kind of boundary condition could potentially produce a non-zero Fayet-Iliopoulos
(FI) term in the RGE evolutions of soft masses. As its impact on the present calculation
is proportional to g21 and therefore tiny, we are going to assume in the remaining of this
subsection that the rest of scalar masses are such that the FI cancels.

In the left panel of Fig. 6 we show contour lines of mQL/mH (solid lines) and mUR/mH

(dashed lines) in the plane (m1/2/mH , At/mH) and, as we did in the previous section, we
have selected positive values At > 0, in agreement with phenomenological requirements on
the LSS as we showed in Sec. 2. Contour lines for mQL(Q0)/mH are shown in the right
panel of Fig. 6 (dotted lines) along with the contours of At(Q0)/mQL(Q0) = 1 (lower solid
line) and At(Q0)/mQL(Q0) = 1.8 (upper solid line) such that the available region which can
accommodate the experimental value of the Higgs mass is the shadowed (yellow) region.

Contour plots for Ma(Q0)/mQL(Q0) are exhibited in Fig. 7. In particular in the left panel
contour lines of the gluino mass ratio M3(Q0)/mQL(Q0) (solid lines) are presented while
the electroweak gaugino mass ratios are exhibited in the right panel for M2(Q0)/mQL(Q0)
(dashed lines) and for M1(Q0)/mQL(Q0) (dotted lines). In all cases the region where the
theory is consistent with the Higgs mass is superimposed with the other contour lines.

Two typical examples are provided in Tabs. 2 and 3 where we present sets of input pa-
rameters in units ofmH , at the scale MGUT (left side of tables) and the corresponding output
parameters at the scale Q0 (right side of tables). We have fixed here m2

UR
(Q0) = 0.005m2

H.

12

M=1010 GeV



• Non-universal scalar boundary conditions.
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Figure 7: Contour lines for MGUT = 2 × 1016 GeV. Left panel: Contour lines of gluino
mass ratios M3(Q0)/mQL(Q0) in the plane (m1/2/mH , At/mH). Right panel: Contour lines
of electroweak gaugino mass ratios M2(Q0)/mQL(Q0) and M1(Q0)/mQL(Q0) in the plane
(m1/2/mH , At/mH). The allowed region by the Higgs mass is superimposed.

m1/2

mH

At
mH

mQL
mH

mUR
mH

mQL
(Q0)

mH

mUR
(Q0)

mQL
(Q0)

At(Q0)
mQL

(Q0)
M3(Q0)
mQL

(Q0)
M2(Q0)
mQL

(Q0)
M1(Q0)
mQL

(Q0)

0.13 1.85 0.66 0.79 0.40 0.18 1.05 0.70 0.28 0.15

Table 3: Another particular set of parameters at high (MGUT ) and low (Q0) energy from
Figs. 6 and 7 leading to lighter electroweak gauginos.

one-loop calculation of the double FP condition, and as it renormalizes by a little amount
because of the bottom Yukawa and electroweak gauge couplings we can assume the relation
mHD ≃ tanβ µ which can then be used to fix mHD or µ.

Imposing the cancellation of the hypercharge FI D-term contribution, the soft supersym-
metry breaking parameter m2

HD
may be determined as a function of the other scalar mass

parameters
m2

HD
= 3

(

m2
QL

− 2 m2
UR

+m2
DR

−m2
LL

+m2
ER

)

+m2
HU

, (4.5)

where the factor 3 comes from the number of generations and we have assumed flavor uni-
versality. For simplicity, we will assume that the mass difference in the slepton sector is zero
or small compared to the ones appearing in the squark and Higgs sector. In such a case,
mHD is simply determined as a function of mHU and the squark mass parameters.

As an example, let us assume that m2
DR

= m2
UR

. Then,

m2
HD

m2
HU

= 3

(

m2
QL

m2
HU

−
m2

UR

m2
HU

)

+ 1. (4.6)
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• Since in most of these scenarios M1 is greater than 
the mass of the stop the LSP will be higgsino-like. 

• It can not be a viable thermal DM, it annihilates to 
efficiently. 

• The stop will primarily decay into chargino-bottom 
and the chargino will decay into neutralino and soft 
leptons therefore the signal will be like a sbottom. 
(b’s+MET) 

• In general as long as the splitting between the stop 
and the LSP is few tens of GeV there is no bound.



When is EWSB compatible 
with the focus point?

• I have analyzed the different situations when, due 
to RGE evolution, the soft mass of the Higgs will be 
‘zero’. 

• This corresponds to a situation where EWSB is 
triggered by a negative mass in one of the 
directions. 

• Is this always possible? Can we draw any 
conclusions on how EWSB is achieved?



•  Lets start with the quadratic potential of the MSSM: 

!

• We can identify two physical degrees of freedom: 

• The SM-tachyonic state 

• The Heavy Higgs 

• Bellow the mass of all SUSY particles (Q0) we 
match to:

in gravity mediated supersymmetry breaking theories. We have considered two examples
with tanβ = 10 and Xt = 0, 2. In agreement with the results of the previous section the
case Xt = 0 is consistent with EWSB and the Higgs mass mH = 126 GeV forM ≃ 1018 GeV,
while the case Xt = 2 requires supersymmetry breaking at low scale M ≃ 106 GeV, hard to
reconcile with gravity mediation. The second case we have considered is the minimal gauge
mediated supersymmetry breaking (GMSB) where the mass of scalars transforming under a
gauge group Ga, with gauge coupling αa, and the corresponding gaugino is proportional to
αa(M)/4π and the trilinear coupling is At(M) = 0. Below M, At is generated by the MSSM
RGE and therefore it gets negative values at the scale Q0, giving then Xt < 0. We have
presented two cases with N = 4 messengers, tanβ = [15, 8] and values of M = [108, 1011]
GeV and Xt = [−1.8,−1.6] which are consistent with perturbative unification at the MSSM
GUT scale. Finally in Sec. 4 we present our conclusions.

2 The matching and electroweak breaking

The quadratic terms in the MSSM potential can be written as

V2 = m2
1|H1|2 +m2

2|H2|2 +m2
3(H1 ·H2 + h.c.) (2.1)

with H1 ·H2 ≡ Ha
1 εabH

b
2 (ε12 = −1) and we are defining m2

1 = m2
H1

+µ2 and m2
2 = m2

H2
+µ2,

where mHi
is the soft breaking mass for Hi and µ is the supersymmetric Higgsino mass.

They can also be written as

V2 = (H†
1, H̃

†
2)

(
m2

1 m2
3

m2
3 m2

2

)(
H1

H̃2

)
(2.2)

where H̃2 ≡ εH∗
2 . The diagonalization of the mass matrix

M2
0 =

(
m2

1 m2
3

m2
3 m2

2

)
(2.3)

then yields the mass eigenvalues

m2
∓ =

m2
1 +m2

2

2
∓

√(
m2

1 −m2
2

2

)2

+m4
3 (2.4)

2.1 The matching scale

We wish to match the MSSM with the SM at the (common) scaleQ0 ≡ m0 of supersymmetric
masses. In particular we will rotate the MSSM Higgs sector (H1, H̃2) into the basis (H,H)
where H is the SM Higgs doublet and H its heavy orthogonal combination. We then identify
the mass squared of the (light) SM Higgs H with the tachyonic mass m2

− = −m2(Q0) and

4

consequently the mass squared of its (heavy) orthogonal combination H with m2
+ ≡ m2

H =
m2

1 +m2
2 +m2. This can be done by the fixing

m4
3 = (m2

1 +m2)(m2
2 +m2) (2.5)

leading to the mixing angle β given by

tan2 β =
m2

1 +m2

m2
2 +m2

i.e. m2 =
m2

1 −m2
2 tan

2 β

tan2 β − 1
(2.6)

where all quantities are evaluated at the matching scale Q = Q0, which rotates the Higgs
basis (H1, H̃2) into the mass eigenstates (H,H) as

H = cosβH1 − sin βH̃2

H = sin βH1 + cos βH̃2 . (2.7)

The potential for the SM Higgs then reads as

VSM = −m2(Q0)|H|2 +
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|H|4 + · · · (2.8)

In order to make a precise calculation of the Higgs mass we have to first match the SM
quartic coupling λ and the supersymmetric parameters at the scale Q0. We will improve
over the tree-level (ℓ = 0) matching by considering the one-loop (ℓ = 1) and leading two-loop
(ℓ = 2) threshold effects as given by [4]
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and we are using the notation Xt = (At(Q0) − µ(Q0)/ tanβ)/Q0, and sβ ≡ sin β and so
on. For the numerical calculation we are also taking into account the O(y6t s

4
β, . . . ) two-loop

threshold corrections whose explicit expression can be found in Ref. [4]. We are neglecting
the corrections proportional to y4τ as we are not envisaging values of the parameter tanβ
such that yτ is relevant.

5

consequently the mass squared of its (heavy) orthogonal combination H with m2
+ ≡ m2

H =
m2

1 +m2
2 +m2. This can be done by the fixing

m4
3 = (m2

1 +m2)(m2
2 +m2) (2.5)

leading to the mixing angle β given by

tan2 β =
m2

1 +m2

m2
2 +m2

i.e. m2 =
m2

1 −m2
2 tan

2 β

tan2 β − 1
(2.6)

where all quantities are evaluated at the matching scale Q = Q0, which rotates the Higgs
basis (H1, H̃2) into the mass eigenstates (H,H) as

H = cosβH1 − sin βH̃2

H = sin βH1 + cos βH̃2 . (2.7)

The potential for the SM Higgs then reads as

VSM = −m2(Q0)|H|2 +
λ(Q0)

2
|H|4 + · · · (2.8)

In order to make a precise calculation of the Higgs mass we have to first match the SM
quartic coupling λ and the supersymmetric parameters at the scale Q0. We will improve
over the tree-level (ℓ = 0) matching by considering the one-loop (ℓ = 1) and leading two-loop
(ℓ = 2) threshold effects as given by [4]

λ(Q0) =
∑

ℓ≥0

∆(ℓ)λ (2.9)

where

∆(0)λ =
1

4
(g2 + g′ 2)c22β

16π2∆(1)λ = 6y4t s
4
βX

2
t

(
1−

X2
t

12

)
−

1

2
y4bs

4
β(µ/Q0)

2 +
3

4
y2t s

2
β(g

2 + g′2)X2
t c2β

+

(
1

6
c22β −

3

4

)
g4 −

1

2
g2g′2 −

1

4
g′4 −

1

16
(g2 + g′2)2s24β

(16π2)2∆(2)λ = 16y4t s
4
βg

2
3

(
−2Xt +

1

3
X3

t −
1

12
X4

t

)
+O(h6

t s
4
β, g

4, g2g′2, g′4) (2.10)

and we are using the notation Xt = (At(Q0) − µ(Q0)/ tanβ)/Q0, and sβ ≡ sin β and so
on. For the numerical calculation we are also taking into account the O(y6t s

4
β, . . . ) two-loop

threshold corrections whose explicit expression can be found in Ref. [4]. We are neglecting
the corrections proportional to y4τ as we are not envisaging values of the parameter tanβ
such that yτ is relevant.

5



• λ has as boundary condition: 

!

!

!
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• The relation between the parameters of the MSSM 
Higgs potential and the SM one can be written as: 

!

!

• We will calculate the value of Q0 from the known 
mass of the Higgs and suppose that all SUSY 
particles and the second Higgs are degenerate. 

• We will use the previous formula to calculate the 
sign of soft mass of H2.
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Figure 1: Left panel: Contour lines of log10[Q0/GeV] (for the values specified in the plot) in
the plane (tan β, Xt). Right panel: Contour line of m2

2(Q0) = 0, as given by Eq. (2.13), in
the plane (tanβ, Xt). The inner region corresponds to radiative electroweak breaking.

of Q0, ∆Q0 arising from the error in mt(mt) is large (small) for small (large) values of tanβ.
The reason for this behavior is that the error mt(mt) is amplified by the RGE running and
it is consequently large (small) for large (small) running, which means small (large) values
of tanβ. In the same way, as we can see from the right panel of Fig. 2, the error ∆Q0 is
uncorrelated with Xt as it has little influence on the RGE running. This translates into a
big overlapping in the left panel of Fig. 2 for small values of tanβ and different values of
Xt. In fact notice that for the limiting case tan β = 1 and Xt = 0 we have that λ(Q0) ! 0
and the Standard Model potential is unstable. This corresponds, for the central value of the
quark top mass, to Q0 ∼ 1011 GeV. However for the lowest allowed value of the top quark
mass the instability scale can go to Planckian values in agreement with various calculations
in the literature [10, 11]. In this case it has been shown that the Veltman condition [12] (or
absence of quadratic divergences) can also be satisfied [13].

2.2 Electroweak breaking

As we have noticed Eq. (2.6) actually implies the existence of the electroweak minimum in
the SM effective theory and indeed it is reminiscent of the minimum equation in the MSSM 2.
In fact Eq. (2.6) can be traded by the SM minimum equation. It can be written as

m2
2(Q0) =

m2
H(Q0)−m2(Q0) tan2 β

tan2 β + 1
(2.13)

2Were we neglecting the Standard Model RGE running both equations would be equivalent upon identi-
fication of m2

H
↔ m2

Z
.
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• The value of Q0 is determined by the physical mass 
of the Higgs 125 GeV:
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• We can then calculate the value of m2:
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•  We can summarize the results in this plot:
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Conclusions
• The focus point scenario could have a reduce fine-

tuning if…. 

• The boundary conditions necessary come from 
some UV scenario 

• I have analyzed the different boundary conditions 
and SUSY breaking scales where it is possible. 

• In SUGRA inspired models you have plenty of 
room.



• There are solutions with NUHM and also with non-
universal gaugino masses.     

• In GMSB you need to deviate from the minimal set-
up. 

• AMSB also has a focus point solution. 

• There are even situations more restrictive where 
one can realize the LSS with a focus point solution.



• In general these LSS scenarios require the LSP to 
be Higgsino. 

• In the last part of the talk I have studied for which 
part of the parameter space one needs a tachyonic 
mass for the Hu to trigger EWSB. 

• In the simplified model where everything decouples 
at the same scale this kind of braking only occurs 
for tan β>7.


