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The gluon fusion cross section

® [f we want to reduce the theory uncertainty on the Higgs
cross section at the LHC—14, we need to compute the gluon-

fusion cross section to N3LO in QCD.

= State-of-the-art already reviewed 1n Anastasiou’s talk

this morning.

® This talk:

= Provide some details on recent computation of N3LO

cross section at threshold.

= Give outlook/perspectives results away from

threshold.

® N3LO is uncharted territory, with new challenges!



The gluon fusion cross section

® At N3LO, there are five contributions:
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Higgs production at threshold

® First milestone recently achieved! The soft-virtual term
describing Higgs production at threshold at N3LO:
m
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® The soft-virtual term receives contributions from a ‘pole’
at 2 ~ 1:
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® The N3O soft-virtual term includes:

= The full three-loop corrections to gluon fusion.
= The real corrections from the emission of soft gluons.

g Only the gluon channel contributes.



The soft-virtual approximation

® There is a consistent way to compute the soft-virtual
contribution to the cross section:

= Expand the integrals in soft momenta.
= All final-state momenta are soft.
= [.oop momenta are either soft of hard.

= The expanded objects can be interpreted as loop
diagrams themselves!

N.B.: The plus-distribution terms were computed already
some years ago by Moch and Vogt from splitting functions.

= Did not include three-loop corrections.



The soft-virtual approximation

® All the integrals can be computed analytically!

= 22 three-loop.
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[ Baikov, Chetyrkin, Smirnov, Smirnov, Steinhauser;

Gehrmann, Glover, Huber, Ikizlerli, Studerus]

3 double-virtual-real.

10 double-real-virtual.

8 triple real.

In addition, one needs:

oop splitting functions.

loop beta function.

nree-|

loop Wilson coefficient.

[CD, Gehrmann; Li, Zhu]

[ Anastasiou, CD, Dulat, Herzog, Mistlberger;

Kilgore]
[ Anastasiou, CD, Dulat, Furlan,
Herzog, Mistlberger]

[ Anastasiou, CD, Dulat, Mistlberger]

[Moch, Vogt, Vermaseren]

[ Tarasov, Vladimirov, Zharkov;
Larin, Vermaseren |

[ Chetyrkin, Kniehl, Steinhauser; Schroder,

Steinhauser; Chetyrkin, Kuhn, Sturm]



The integrals

® LEvery integral i1s individually divergent, and gives rise to
poles in dimensional regularisation.

® Many integrals are trivial to compute:
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The integrals

® Other integrals are ... ‘less trivial ...

E ['(12 — 66)I'(3 — 3e)I'(1 — €
Ni - F(5—)6(6)F(2—)€§4 70209 +Toa(e)

00 1
Zg1(€) = — / dty dto / dxq dxo dxs t%_% (1+ t1)€_1 t%_QE
0 0

x 27 (1 —21)* i T3 (1 — a0) T w3 (1 + tows)' % (1 + tomoxs)S

3e—3
X (t1t%$1$2$3 + t3x0x3 + t1low1xo + titoxy + tamoxy + to + 1 + 1) ’

)

oo 1
z-9,2(6) — /() dtq dto /0 dxr1 dxo dajg t%_4€ (1 -+ tl)e_l t%_Qe

X 217 (1 — o) 273 (1 — 20) 25 (14 taxz)' 7 (1 + tozoxs)©

3e—3
X (tlt%.ilflﬂ?gﬂ?g -+ t%xlxgxg + tox1 + t1tox129 + t1toxs + tox1x203 + 11 + 331) )



The integrals

® LEvery integral i1s individually divergent, and gives rise to
poles in dimensional regularisation.

® Many integrals are trivial to compute:
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The integrals

® There are criteria from number theory that allow to
decide when integrals can be evaluated in the ‘naive way’
by doing one integration at the time. [Brown]

Basic 1dea: find a sufficient condition such that we can
Integrate over each variable using the basic definition of

multiple polylogarithms:

G(al,...,an;z)z/ di G(ag,...,an;t)
0

t—a1

Moreover, number theory also tells you how to do this in
an algorithmic way!

= (Can simply integrate out one variable at a time.



The integrals

® At the end of this procedure, one finds
!
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® Upshot: we can compute all integrals we need!

= Computation would have been impossible with the
insight from modern number theory!

® Putting all the bits and pieces together, we see that all the
poles cancel, and we get the final result.



Higgs soft-virtual @ N3LO
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Going beyond threshold

® Can we do better..?

® Computing the full result requires the computation of

probably 1000’s of integrals...
= NNLO: 28 integrals.

= Huge jump in complexity!

® Two possible approaches:

= Compute all contributions exactly.

= (Compute more terms in the threshold expansion.

® In the last couple of minutes: review/outlook of where we
stand.



Single-emission contributions

[Anastasiou, CD, Dulat, Herzog, Mistlberger] = [Dulat, Mistlberger; CD, Gehrmann]

® These contributions can easily be calculated exactly!

[ Gehrmann, Glover,

- Two-loop matrix elements are known. Jaquier, Koukoutsakis]

® We have computed these contributions in several ways:

= Perform phase-space integration over special
functions appearing in loops, after subtracting all
collinear and soft singularities.

= [BP reduction followed by differential equations for

master integrals.



Towards next-to-soft

® The next-to-soft corrections to the triple-real contribution
are already known. [ Anastasiou, CD, Dulat, Mistlberger]

= Sufficient to expand one order higher in soft momenta.

= 2 new Integrals appear.

® For double-emission at one-loop a new complication arises:

= Recelves contributions from regions where the virtual
gluon 1s collinear to an incoming parton.

= Needs some rethinking of the technology.



Conclusion

® Computing the gluon-fusion cross section at N3LO is
challenging!
= 1000’s of very complicated integrals.

= Threshold contribution achieved, more to follow!

® Excellent laboratory to eXplore new ideas and techniques

for multi-loop computations!

= [Expansion by regions, new methods from number theory

to do loop integrals, etc.

® We are slowly getting there!

= Stay tuned!






