Searching evidences of new physics in the light of the $\mu\nu$ SSM

Pradipta Ghosh (IFT/UAM)

PG, Daniel E. López-Fogliani, Vasiliki A. Mitsou, Carlos Muñoz and Roberto Ruiz de Austri

Hunting physics beyond the standard model with unusual W^{\pm} and Z decay \star arXiv:1403.3675 [hep-ph] \star

Probing the μ-from-ν supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC ★ Phys. Rev. D 88 (2013) 015009, arXiv:1211.3177 [hep-ph] ★

The Standard Model, The LHC and us

★ At last a new scalar PLB 716(2012) 1, 30 ★ μ (ATLAS) = 1.30^{+0.18}_{-0.17}, μ (CMS) = 1.00^{+0.13}_{-0.13} ATLAS-CONF-2014-009, CMS-PAS-HIG-14-009 ★ m_{Higgs} (ATLAS) = 125.36^{+0.41}_{-0.41}, m_{Higgs} (CMS) = 125.03^{+0.29}_{-0.31} PRD 90 (2014) 052004, CMS-PAS-HIG-14-009

The Standard Model, The LHC and us

 $\begin{array}{l} \bigstar \ \Gamma_{H} < 22 \ \text{MeV} \quad \text{PLB 736 (2014) 64} \\ \bigstar \ Br(\mathrm{H} \rightarrow X_{\mathrm{BSM}} X_{\mathrm{BSM}}) < 0.41 \ (\text{ATLAS}), \\ < 0.58 \ (\text{CMS}) \\ \text{ATLAS-CONF-2014-009, EPJ. C74 (2014) 2980} \\ \bigstar \ \text{Large window for } \mu(\mathrm{H} \rightarrow b\bar{b}) \\ \bigstar \ \text{An extension beyond the SM is still} \\ \text{necessary} \end{array}$

Beyond the SM with supersymmetry....

★ Need two Higgs doublets...

★ Higgs mass is protected with super-partners

★ The lightest supersymmetric particle as cold dark matter candidate

SUPERSYMMETRY

★.....

Standard particles

SUSY particles

SUSY force

Not the end of story....

$W^{\text{MSSM}} = \epsilon_{ab} (Y_u^{ij} \hat{H}_u^b \hat{Q}_i^a \hat{u}_j^c + Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{d}_j^c + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{e}_j^c - \mu \hat{H}_d^a \hat{H}_u^b)$

★ μ determine EW-scale higgsino masses.. enters into EWSB ⇒ μ must be around EW scale

★ μ belongs to superpotential.. respects SUSY ⇒ μ can be as high as M_{Planck} So why the scale of $\mu \ll M_{Planck}$ ⇒ μ -problem Kim, Nilles, PLB 138 (1984) 150 ★ m_{ν} ⇒ extra fields or broken R_{ρ}

★ bilinear \mathcal{R}_{P} , MSSM + $\epsilon^{i} \hat{L}_{i}^{a} \hat{H}_{u}^{b}$ ϵ -problem... Loop corrections are essential.. ★ trilinear \mathcal{R}_{P} , MSSM + $\frac{1}{2} \lambda_{ijk} \hat{L}_{i}^{a} \hat{L}_{j}^{b} \hat{e}_{k}^{c}$

and/or $\lambda'_{ijk} \hat{L}^a_i \hat{Q}^b_j \hat{d}^c_k$ Loop generated $m_{\nu} \dots$, Many parameters, Less predictive....

Need an economic way to accommodate everything together...

Pradipta Ghosh (IFT/UAM)

Introducing $\mu\nu$ SSM

$$W = W^{\text{MSSM}} - \epsilon_{ab} \mu \hat{H}_{d}^{a} \hat{H}_{u}^{b} + \epsilon_{ab} \left(\underbrace{\frac{m_{D_{ij}} = Y_{\nu_{ij}} \langle H_{u}^{0} \rangle}{Y_{\nu_{ij}} \hat{H}_{u}^{b} \hat{L}_{i}^{a} \hat{\nu}_{j}^{c}}}_{\epsilon_{eff}^{i} = Y_{\nu_{ij}} \langle \bar{\nu}_{j}^{c} \rangle} - \underbrace{\frac{\lambda_{i} \hat{\nu}_{i}^{c} \hat{H}_{d}^{a} \hat{H}_{u}^{b}}{\lambda_{u}^{c} \hat{\mu}_{d}^{c} \hat{H}_{u}^{d}}}_{\mu_{eff} = \lambda_{i} \langle \bar{\nu}_{i}^{c} \rangle} + \underbrace{\frac{R_{\rho} \text{ with } \Delta L = 3}{\frac{3}{2} \kappa_{ijk} \hat{\nu}_{i}^{c} \hat{\nu}_{j}^{c} \hat{\nu}_{k}^{c}}}_{m_{\nu_{ij}}^{c} = 2 \kappa_{ijk} \langle \bar{\nu}_{k}^{c} \rangle}$$

López-Fogliani, Muñoz, PRL 97 (2006) 041801 Escudero, López-Fogliani, Muñoz, Ruiz de Austri, JHEP 12 (2008) 099

VEVs after EWSB:
$$\langle H_d^0 \rangle = v_d$$
, $\langle H_u^0 \rangle = v_u$, $\langle \tilde{\nu}_i \rangle = \nu_i$, $\langle \tilde{\nu}_i^c \rangle = \nu_i^c$
soblem is solved with \not{R}_P term \Rightarrow
 $H_{\mathbf{p}}^0 = H_{\mathbf{p}}^0$
 $H_{\mathbf{p}}^0 = H_{\mathbf{p}}^0$

PG, Roy JHEP 04 (2009) 069; Fidalgo, López-Fogliani, Muñoz, Ruiz de Austri JHEP 08 (2009) 105; PG, Dey, Mukhopadhyaya, Roy JHEP 05 (2010) 087

 μ -pr

Particle spectrum of the $\mu\nu$ SSM

 \mathcal{R}_{P} + new superfields \Rightarrow enhanced mass spectrum

$$\begin{array}{l} \bigstar \ h^{0}, \ H^{0} \ + \ 3 \ \widetilde{\nu}_{i}^{c} \ + \ 3 \ \widetilde{\nu}_{L}^{i} \Longrightarrow 8 \ \mathsf{CP}\text{-even states } h_{\alpha} \\ \bigstar \ A^{0} + \ 3 \ \widetilde{\nu}_{i}^{c} \ + \ 3 \ \widetilde{\nu}_{L}^{i} \Longrightarrow 7 \ \mathsf{CP}\text{-odd states } P_{\alpha} \\ \bigstar \ H^{\pm} \ + \ 3 \ \widetilde{e}_{L}^{i} \ + \ 3 \ \widetilde{e}_{R}^{i} \Longrightarrow 7 \ \mathsf{charged states } S_{\alpha}^{\pm} \\ \bigstar \ \widetilde{H}_{u,d}^{0}, \ \widetilde{W}_{3}^{0}, \ \widetilde{B}^{0} \ + \ 3 \ \nu_{R_{i}} \ + \ 3 \ \nu_{L_{i}} \Longrightarrow 10 \ \mathsf{neutralinos } \widetilde{\chi}_{\alpha}^{0} \\ \bigstar \ \widetilde{H}_{u,d}^{\pm}, \ \widetilde{W}^{\pm} \ + \ 3 \ e_{L,R}^{i} \Longrightarrow 5 \ \mathsf{charginos } \widetilde{\chi}_{\alpha}^{\pm} \end{array}$$

 $\widetilde{\chi}^0_{1, 2, 3} \equiv \nu_{L_i}$ and $\widetilde{\chi}^{\pm}_{1, 2, 3} \equiv e, \mu, \tau$ Lightest neutralino $\widetilde{\chi}^0_4$ and Lightest chargino $\widetilde{\chi}^{\pm}_4$

Novel signals with the $\mu\nu$ SSM...... The proposal ...

• Low mass ($\leq m_W$) unstable LSP ($\tilde{\chi}^0$) decays mainly through $\ell^{\pm}W^{\mp^*}$, νZ^* while $l_{DL} \sim 1/m_{\chi^0}^4$... • When $m_{\chi^0} < 40$ GeV... $l_{DL} \gtrsim 10$ m • $d_{\rm ATLAS} \sim 25$ m \Longrightarrow light $\tilde{\chi}^0$ ($\lesssim 40$ GeV)... R_P is an impostor to $R_p C$

120

Figure . Decay length of the lightest neutralino $\tilde{\chi}^0_1$ in m as a function of its mass $m(\tilde{\chi}^0_1)$ in GeV. Note that the different colors stand for SPS1a' (real singlino, $|\mathcal{N}_{45}|^2 > 0.5$) (gray), SPS1a' (mixture state) (black), SPS3 (real singlino) (blue), SPS3 (mixture state) (red) and SPS4 (mixture state) (green).

Novel signals with the $\mu\nu$ SSM...... The proposal ...

★ A light $\tilde{\chi}^0$ through $\tilde{\chi}^0 \rightarrow h_i/P_i + \nu_L^i$ can yield mesoscopic DV (1 $cm \lesssim l_{DL} \lesssim 3 m$) ★ Light h_i , P_i are possible in the $\mu\nu$ SSM... A very light $\tilde{\chi}^0$ ($\lesssim 20$ GeV) is detectable!.. PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88 (2013) 015009

How about $Z \to \tilde{\chi}^0 \tilde{\chi}^0$, $h_i P_j$, $W^{\pm} \to \tilde{\chi}^0 \tilde{\chi}^{\pm}_{1,2,3}$ at colliders....? PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, arXiv:1403.3675 [hep-ph] And finally Higgs $\to \tilde{\chi}^0 \tilde{\chi}^0$ at the LHC and further... PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88 (2013) 015009

Setting up the convention... the signals

- Small κ , A_{κ} , $\lambda_i \implies$ light singlet-like h_i , P_i , $\tilde{\chi}_{i+3}^0$ (i = 1, 2, 3) Formulas are coming... PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, to appear in arXiv
- h_4 is the lightest doublet-like Higgs while $\tilde{\chi}_4^0$ is the lightest neutralino Fidalgo, López-Fogliani, Muñoz, Ruiz de Austri JHEP 1110, 020 (2011)

Prompt + Displaced yet detectable multi-leptons/jets/photons at the LHC

 $\begin{aligned} Z &\to \widetilde{\chi}_{4}^{0} \widetilde{\chi}_{4}^{0} \to 2h_{i}/P_{i} + 2\nu \to 2\ell_{D}^{+}\ell_{D}^{-}/2q_{D}\bar{q}_{D} + 2\nu \\ Z &\to h_{i}P_{j} \to 2\ell_{P}^{+}\ell_{P}^{-}, \ \ell_{P}^{+}\ell_{P}^{-}q_{P}\bar{q}_{P}...\text{etc...} \\ W^{\pm} \to \widetilde{\chi}_{4}^{0} \widetilde{\chi}_{1,2,3}^{\pm} \to \ell_{D}^{+}\ell_{D}^{-}/q_{D}\bar{q}_{D} + \nu + \ell_{P}^{\pm} \\ \tau \text{ or } b\text{-jet rich signals with } 2m_{\tau} \lesssim m_{S_{i}^{0}, P_{i}^{0}} \lesssim M_{Z}/2 \end{aligned}$

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, arXiv:1403.3675 [hep-ph]

Pradipta Ghosh (IFT/UAM)

New physics with $\mu \nu$ SSM

• Br $(W^{\pm} \rightarrow x_D y_D + \not\!\!\!E_T + \ell_P^{\pm}) \sim \mathcal{O}(10^{-13})$ or less.

Difficult at the LHC... also in future.. MegaW (linear collider) and OkuW (TLEP) mode
 2 × 10⁶ (MegaW).. 7 × 10⁸ (OkuW) W[±] events/year ⇒ need much lower sensitivity.. ☺

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, arXiv:1403.3675 [hep-ph]

Hope... techniques from flavour observables... ©

LHCb Br $(B_s^0 \rightarrow \mu^+ \mu^-) \sim \mathcal{O}(10^{-10})$

sensitive to η work in progress...

★ Br(Z → 2x_D2y_D + ∉_T) or Br(Z → 2x_P2y_P + ∉_T) $\leq O(10^{-5})..., x, y = \ell, \tau, q, \gamma$ Z → 4b with Br ≈ 10⁻⁵, E_{CM} = 8 TeV, $\mathcal{L} = 20.3 \text{ fb}^{-1}$ 1% detection efficiency N_{event} = 52 events The same with SM ⇒ N_{event} = 1853 ± 669 events Similarly Z → 4ℓ from Z → 4τ (i.e. with $\tau \rightarrow \ell \nu_L \bar{\nu}_L$) with Br ≈ 10⁻⁵ at parton level N_{event} ≈ 77 events while from the SM N_{event} ≈ 2161⁺⁴⁶³₋₄₁₁ Lost within the errors of the SM.... © without proper detection ★ Detection is possible at the LHC... novel future with LC-GigaZ and TLEP-TeraZ modes ★ 2 × 10⁹ (GigaZ)... 7 × 10¹¹ (TeraZ) Z events/year ⇒ sensitive to much lower Br hep-ph/0102083; hep-ex/0106057; JHEP 01 (2014) 164

Experimental attention is needed to constrain $2m_{\tau} \lesssim m_{S_i^0, P_i^0} \lesssim M_Z/2$ region

The signals...contd.. back with Higgs

Masses	Values in GeV
m_{h_4}	125.7
$m_{P_1}, m_{P_2}, m_{P_3}$	3.6, 3.8, 5.5
$m_{h_1}, m_{h_2}, m_{h_3}$	7.5, 8.0, 19.6
$m_{\widetilde{\chi}_4^0}, m_{\widetilde{\chi}_5^0}, m_{\widetilde{\chi}_6^0}$	9.6, 11.5, 11.9

Displaced yet detectable multi-leptons/jets/photons at the LHC

$$gg \rightarrow h_4 \rightarrow \widetilde{\chi}^0_4 \widetilde{\chi}^0_4 \rightarrow 2h_i/P_i + 2\nu \rightarrow 2\tau_D^+ 2\tau_D^- 2\nu$$

Prompt multi-leptons/jets/photons or mixed states are also possible from Higgs to Higgs cascades... $h_4 \rightarrow h_i h_j$, $P_i P_j$... like the NMSSM Cerdeño, PG, Park, JHEP 1306 (2013) 031

au multiplicity... $\mathbf{@8}$ TeV $\mathbf{@20}~\mathbf{fb^{-1}}$

• $e, \mu s$ are from leptonic τ decay.. although $h_i/P_i \rightarrow \mu^+\mu^-$ is possible • $4e, 4\mu s$ from $\tau \sim 1.5\%$ while $4\tau^{had} \sim 18\%$ • Highly collimated QCD jets faking τ^{had} $\implies n^{\tau^{had}} > 4...$ disappears with higher $p_T^{\tau^{had}}$ cut

• $\tau^{had}\,{}^{\prime}{\rm s}$ are clearly the best bet... next one is of course $\mu.....$ careful about PLB 726 (2013) 564

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88 (2013) 015009

• Moderately high $MET \Leftarrow \gtrsim 6$ neutrinos from $\tilde{\chi}_4^0$ and τ decays... • $c\tau_{\tilde{\chi}_4^0} \approx 30$ cm.... large number of events appear inside charge tracker

 $|z_{
m DV}|$ vs $ho_{
m DV}$

• A large fraction of DVs appear within $|z_{\rm DV}|\lesssim 2.5$ m and $\rho_{\rm DV}\lesssim 1$ m, i.e, in the range of inner tracker

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, PRD 88 (2013) 015009

10 10^{5} 10^{4} 10^{4} Vo. of Events 10^{3} 10^{2} 10^{1} 10^{0} 10^{-1} 10^{-2} 10^{-2} 10^{-} 10^{-3} 10^{-1} 10^{0} 10^{1} 10^{2} 50 100 150 200 250 300 $E_T(GeV)$ Decay length (m)

 Moderately high MET ⇐ ≥ 6 neutrinos from [~]χ⁰₄ and τ decays...
 cτ_{~~χ⁰4} ≈ 30 cm.... large number of events appear inside charge tracker

$|z_{ m DV}|$ vs $ho_{ m DV}$

• A large fraction of DVs appear within $|z_{\rm DV}|\lesssim 2.5$ m and $\rho_{\rm DV}\lesssim 1$ m, i.e, in the range of inner tracker

ATLAS-CONF-2013-092

Squark and Slepton pair production... in the $\mu\nu$ SSM

★ No longer required light h_i , P_i and $\tilde{\chi}_{i+3}^0 \Rightarrow$ moderate to large values of λ , κ and A_{κ} parameters remain feasible Also possible with the $\mu\nu {\rm SSM},$ following similar $\widetilde{q},\,\widetilde{\ell}$ decay

Summary and conclusion..... and beyond

 \star Light singlet-sector can produce novel and/or indirect (decays of heavier SM particles) evidence of new physics \implies need experimental attention

 \bigstar $\mu\nu \rm SSM....$ least extension beyond the MSSM to solve the $\mu\text{-problem}$ and reproduce correct neutrino physics

★ Novel signals are well expected with enriched mass spectrum and broken R_p

 \star Displaced and/or soft objects at the LHC \Rightarrow lesser backgrounds.. new signs are well envisaged but with sophisticated collider analyses of soft and/or displaced objects

 \bigstar Unique SUSY signatures (\tilde{l}, \tilde{g}) are also possible

With new data and up-gradation to 14 TeV and beyond..... more phenomenological wonder with $\mu\nu$ SSM are awaiting.....

Dreaming the future...

Loop corrections in SUSY

New one-loop radiative corrections to Higgs boson in SUSY

- $\bullet~$ Certain restrictions on masses and couplings of new states \Longrightarrow radiative correction vanishes
- Symmetry between states of different spin quantum numbers —> Higgs (scalar) mass is protected

R-Parity

- R_p, a discrete symmetry => prevents too fast proton decay through sparticle mediated process
- $R_p = (-1)^{L+3B+2S}$ with L(B) as lepton(baryon) and S as spin

 R_p conserved

 R_p violated

- R_p conservation \implies stable Lightest Supersymmetric Particle (LSP)
- Most general MSSM superpotential with bilinear and trilinear \mathcal{R}_P

 $W = \epsilon_{ab} (Y_u^{ij} \hat{H}_u^b \hat{Q}_i^a \hat{u}_j^c + Y_d^{ij} \hat{H}_d^a \hat{Q}_i^b \hat{d}_j^c + Y_e^{ij} \hat{H}_d^a \hat{L}_i^b \hat{e}_j^c - \mu \hat{H}_d^a \hat{H}_u^b)$ $-\epsilon_{ab} (\underbrace{\epsilon^i \hat{L}_i^a \hat{H}_u^b}_{\Delta L=1,\Delta B=0} + \frac{1}{2} \lambda^{ijk} \hat{L}_i^a \hat{L}_j^b \hat{e}_k^c + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{Q}_j^b \hat{d}_k^c}_{\Delta L=1\Delta B=0} + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{Q}_j^b \hat{d}_k^c}_{\Delta L=1,\Delta B=0} + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{L}_i^a \hat{L}_i^b \hat{Q}_i^b \hat{d}_k^c}_{\Delta L=1,\Delta B=0} + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{L}_i^b \hat{L}_i^b \hat{Q}_i^b \hat{d}_k^c}_{\Delta L=1,\Delta B=0} + \underbrace{\lambda^{ijk} \hat{L}_i^a \hat{L}_i^b \hat$

 ${f \bullet}$ The Lagrangian ${\cal L}_{soft},$ containing the soft-supersymmetry-breaking terms is given by

$$\begin{aligned} -\mathcal{L}_{\text{soft}} &= (m_Q^2)_{ij} \widetilde{Q}_i^{a^*} \widetilde{Q}_j^{a} + (m_{u^c}^2)_{ij} \widetilde{u}_i^{c^*} \widetilde{u}_j^c + (m_{d^c}^2)_{ij} \widetilde{d}_i^{c^*} \widetilde{d}_j^c + (m_{\tilde{L}}^2)_{ij} \widetilde{L}_i^{a^*} \widetilde{L}_j^{a} \\ &+ (m_{e^c}^2)_{ij} \widetilde{e}_i^{c^*} \widetilde{e}_j^c + m_{H_d}^2 H_d^{a^*} H_d^a + m_{H_u}^2 H_u^{a^*} H_u^a + (m_{\tilde{\nu}^c}^2)_{ij} \widetilde{\nu}_i^{c^*} \widetilde{\nu}_j^c \\ &+ \epsilon_{ab} \left[(A_u Y_u)_{ij} H_u^b \widetilde{Q}_i^a \widetilde{u}_j^c + (A_d Y_d)_{ij} H_d^a \widetilde{Q}_i^b \widetilde{d}_j^c + (A_e Y_e)_{ij} H_d^a \widetilde{L}_i^b \widetilde{e}_j^c + \text{H.c.} \right] \\ &+ \left[\epsilon_{ab} (A_\nu Y_\nu)_{ij} H_u^b \widetilde{L}_i^a \widetilde{\nu}_j^c - \epsilon_{ab} (A_\lambda \lambda)_i \widetilde{\nu}_i^c H_d^a H_u^b + \frac{1}{3} (A_\kappa \kappa)_{ijk} \widetilde{\nu}_i^c \widetilde{\nu}_j^c \widetilde{\nu}_k^c + \text{H.c.} \right] \\ &\frac{1}{2} \left[M_1 \widetilde{B} \widetilde{B} + M_2 \widetilde{W} \widetilde{W} + M_3 \widetilde{g} \widetilde{g} + \text{H.c.} \right] \end{aligned}$$

 $\begin{array}{l} {\rm Br}(Z \to 4\ell) \lesssim 4.2^{+0.9}_{-0.8} \times 10^{-6} \\ {\rm Br}(Z \to 4b) \lesssim 3.6^{+1.3}_{-1.3} \times 10^{-4} \\ {\rm PDG, PRD 86 \ (2012) \ 010001} \\ {\rm Latest \ LHC \ reporting... \ only \ e, \ \mu} \\ {\rm Br}(Z \to 4\ell) = 3.2^{+0.28}_{-0.28} \times 10^{-6} \\ {\rm PRL \ 112 \ (2014) \ 231806} \end{array}$

The W^{\pm} and Z decays... a broader perspective

• NMSSM + 3 $\hat{\nu}^c$.. DISPLACED & PROMPT Z decays, DISPLACED W[±] decays.... Kitano, Oda, PRD 61 (2000) 113001

Pradipta Ghosh (IFT/UAM)

The $\mu\nu$ SSM.. minimal extension beyond the MSSM \implies distinctive collider signatures + correct neutrino physics

PG, López-Fogliani, Mitsou, Muñoz, Ruiz de Austri, arXiv:1403.3675 [hep-ph]

To kill the backgrounds......Higgs

Mesoscopic displaced vertex.... Displaced charge tracks....

Irreducible impostor NMSSM + $3\nu^{c}$... Kitano, Oda, PRD 61, 113001 (2000) • All SM (e.g. ZZ^*)/SUSY backgrounds (e.g. $h_1 \rightarrow P_1P_1 \rightarrow 2\ell^+ 2\ell^-$ @NMSSM), with prompt ℓ are effaced ... also long-lived b/c meson decays

• NMSSM with $10^{-3} \lesssim \lambda \lesssim 10^{-2}$... light NLSP \rightarrow LSP + h/P, with $h/P \rightarrow \ell^+ \ell^- \Longrightarrow$ a possible impostor.. Ellwanger, Hugonie, Eur. Phys. J. C 5, 723 (1998); Eur. Phys. J. C 13, 681 (2000) • NLSP \rightarrow LSP + h/P, never produces mesoscopic decay length.... Eur. Phys. J. C 13, 681 (2000)

• Options.. e.g. MSSM $+\frac{1}{2}\lambda^{ijk}\hat{L}_i\hat{L}_j\hat{E}_k^c$.. difficult with, LEP (and LHC) results... but not impossible Dreiner, Kim, Lebedev, PLB 715 (2012) 199

Bandyopadhyay, PG, Roy, PRD 84, 115022 (2011)

Pradipta Ghosh (IFT/UAM)

To kill the backgrounds......Higgs

Mesoscopic displaced vertex.... Displaced charge tracks....

Irreducible impostor NMSSM + $3\nu^{c}$... Kitano, Oda, PRD 61, 113001 (2000) • All SM (e.g. ZZ^*)/SUSY backgrounds (e.g. $h_1 \rightarrow P_1P_1 \rightarrow 2\ell^+ 2\ell^-$ @NMSSM), with prompt ℓ are effaced ... also long-lived b/c meson decays

• NMSSM with $10^{-3} \lesssim \lambda \lesssim 10^{-2}$... light NLSP \rightarrow LSP + h/P, with $h/P \rightarrow \ell^+ \ell^- \Longrightarrow$ a possible impostor.. Ellwanger, Hugonie, Eur. Phys. J. C 5, 723 (1998); Eur. Phys. J. C 13, 681 (2000) • NLSP \rightarrow LSP + h/P, never produces mesoscopic decay length.... Eur. Phys. J. C 13, 681 (2000)

• Options.. e.g. MSSM $+\frac{1}{2}\lambda^{ijk}\hat{L}_{i}\hat{L}_{j}\hat{E}^{c}_{k}$.. difficult with, LEP (and LHC) results... but not impossible Dreiner, Kim, Lebedev, PLB 715 (2012) 199

Bandyopadhyay, PG, Roy, PRD 84, 115022 (2011)

Probing DVs

- \textit{H}_{T}^{ℓ} is moderately high for larger lepton multiplicity

Charge track mass vs n_{trk}

$H_{\mathrm{T}}^{\ell}~(\equiv \sum p_{\mathrm{T}}^{\ell})$ distribution

- A very useful event selection criteria
- \odot Sensitive for \textit{n}_{trk} >4 and vertex mass
- $> 10~{\rm GeV}...$ atlas-conf-2013-092
- Room for development... sensitivity to low vertex mass
- Life is better with jets

- $H_{\rm T}^\ell$ is moderately high for larger lepton multiplicity

 $H^\ell_{\mathrm{T}}~(\equiv \sum p^\ell_{\mathrm{T}})$ distribution

- A very useful event selection criteria
- \odot Sensitive for $n_{trk} > 4$ and vertex mass
- $> 10~{
 m GeV}$... Atlas-conf-2013-092
- Room for development... sensitivity to low vertex mass
- Life is better with jets