Towards explaining WW excess at the LHC

Krzysztof Rolbiecki

J.S. Kim, KR, K. Sakurai, J. Tattersall arXiv:1406.0858 KR and K. Sakurai, JHEP 1309 (2013) 004

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

'Only a selection of the available mass limits on new states or phenomena is shown. All limits qualed are observed minus for theoretical signal crass section uncertainty.

▲□▶▲圖▶▲필▶▲필▶ / 1211日 / 2000

K. Rolbiecki (IFT Madrid)

Good overall agreement of SM measurements

Standard Model Production Cross Section Measurements Section And American

WW cross section at the LHC

- SM NLO prediction: $\sigma = 46 \pm 2 \text{ pb} @ 7 \text{ TeV}$ $\sigma = 57.3^{+2.4}_{-1.6} \text{ pb} @ 8 \text{ TeV}$
- ATLAS and CMS reported an excess in SM *WW* cross section measurements

• 7 TeV, full data set:

$$\sigma = 51.9 \pm 2.0 \text{ (stat)} \pm 3.9 \text{ (syst)} \pm 2.0 \text{ (lumi) pb ATL-2012-242}$$

 $\sigma = 52.4 \pm 2.0 \text{ (stat)} \pm 4.5 \text{ (syst)} \pm 1.2 \text{ (lumi) pb CMS-12-005}$
• 8 TeV, $\mathcal{L} = 3.54 \text{ fb}^{-1}$:
 $\sigma = 69.9 \pm 2.8 \text{ (stat)} \pm 5.6 \text{ (syst)} \pm 3.1 \text{ (lumi) pb arXiv:1301.4698}$

New from ICHEP

- full 8 TeV data set from ATLAS gives: $\sigma = 71.4 \pm 1.2 \text{ (stat)}_{-4.4}^{+5.0} \text{ (syst)}_{-2.1}^{+2.2} \text{ (lumi) pb ATL-2014-033}$
- theory prediction: $\sigma = 58.7^{+3.0}_{-2.7} \text{ pb}$
- with different contribution calculated at: $q\bar{q} \rightarrow WW$ NLO MCFM; $gg \rightarrow WW$ LO MCFM; $gg \rightarrow H \rightarrow WW$ NNLO+NNLL
- statistical error negligible
- consistent excess in all lepton channels
- the main systematic uncertainty originating from jet veto efficiency

Slight excess in 3-lepton electroweakinos?

- constraints on chargino/neutralino parameter space are also becoming serious
- typically tri-lepton channel most constraining

 $pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0 \to \ell'^{\pm} \tilde{\chi}_1^0 \ell^+ \ell^- \tilde{\chi}_1^0$

- still some parameter space allowed around $m_{\tilde{\chi}^{\pm}_{+}} \sim 200 \; {\rm GeV}$
- the final word at $\sqrt{s} = 8 \text{ TeV}$ but will be significantly improved at 14 TeV
- the bounds can be relaxed if e.g. $\frac{\mathsf{BR}(\tilde{\chi}_2^0 \to h^{(*)} \tilde{\chi}_1^0)}{\mathsf{significant}}$

Outline

- Pinning down the stops
- 3 SUSY or SM?

-

< E

Outline

Introduction

WW cross section measurements

Iooking for

 $pp \to W^+W^- \to \ell^+ \nu \ell'^- \nu$

- final state: two opposite-sign leptons and missing energy
- basic selection:
 - \Rightarrow jet veto to suppress $t\bar{t}$
 - \Rightarrow lepton $p_T \gtrsim 20 \text{ GeV}$
 - ⇒ projected $E_T^{\text{miss}} \gtrsim 40 \text{ GeV}$ (depends on channel) to suppress Drell-Yan
 - \Rightarrow Z veto for same flavor states
- main backgrounds:
 - \Rightarrow top
 - \Rightarrow Drell-Yan
 - ⇒ W+jets
 - \Rightarrow diboson

Introduction

Di-lepton signal from $\tilde{t}_1 \tilde{t}_1^*$

- large QCD cross section $\mathcal{O}(20 \text{ pb})$ for $m_{\tilde{t}_1} \sim 200 \text{ GeV}$
- for small mass difference, $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}}$, *b*-jets are soft, $p_T^b \lesssim 20 \text{ GeV}$
- jet veto would not have effect
- observed final state similar to WW: $\ell^+\ell'^- + E_T^{\text{miss}}$

KR, Sakurai arXiv:1303.5696

Kim, KR, Sakurai, Tattersall arXiv:1406.0858

 another possibility with stops and sbottoms, see:

Curtin, Meade, Tien arXiv:1406.0848

Introduction

Di-lepton signal from $\tilde{t}_1 \tilde{t}_1^*$

- large QCD cross section $\mathcal{O}(20 \text{ pb})$ for $m_{\tilde{t}_1} \sim 200 \text{ GeV}$
- for small mass difference, $m_{\tilde{t}_1} - m_{\tilde{\chi}_1^{\pm}}$, *b*-jets are soft, $p_T^b \lesssim 20 \text{ GeV}$
- jet veto would not have effect
- observed final state similar to WW: $\ell^+\ell'^- + E_T^{\text{miss}}$

KR, Sakurai arXiv:1303.5696

Kim, KR, Sakurai, Tattersall arXiv:1406.0858

 another possibility with stops and sbottoms, see:

Curtin, Meade, Tien arXiv:1406.0848

LHC vs stops

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Outline

- Pinning down the stops 2

< 17 ▶

Simulation

simplified model assumes a decay chain

 $\tilde{t}_1 \to \tilde{\chi}_1^{\pm} \ b \to \tilde{\chi}_1^0 \ W^{(*)} \ b \to \tilde{\chi}_1^0 \ \ell \ \nu \ b$

- fix $m_{\tilde{t}_1} m_{\tilde{\chi}_1^\pm} = 7~{
 m GeV}$ or $15~{
 m GeV}$ to ensure "invisible" b
- at this point everything is fixed by $m_{\tilde{t}_1}$ and $m_{\tilde{\chi}_1^0}$
- simulation using Herwig++ 2.7.0 and CheckMATE/ATOM see a talk by Jong Soo Kim tomorrow
- includes production of $pp \to \tilde{t}_1 \tilde{t}_1^*, pp \to \tilde{\chi}_1^{\pm} \tilde{\chi}_2^0, pp \to \tilde{\chi}_1^{+} \tilde{\chi}_1^{-}$
- experimental studies covered: SM measurements (WW, WZ), Higgs, SUSY-EW searches (di-lepton, tri-lepton), stop searches (1-2 leptons), squark and gluino searches (1-2 leptons)
- at each point of the $(m_{\tilde{t}_1},m_{\tilde{\chi}_1^0})$ grid, likelihood ratio statistic is calculated

イロト 不得 トイヨト イヨト 正言 ろくの

Searches included in the scan

Description	\sqrt{s}	Luminosity	Number	Refs.
	[TeV]	$[fb^{-1}]$	of SR	
Atlas W^+W^-	7	4.6	1	[arXiv:1210.2979]
CMS W^+W^-	7	4.9	1	[arXiv:1306.1126]
CMS W^+W^-	8	3.5	1	[arXiv:1301.4698]
Atlas Higgs	8	20.7	2	[ATLAS-CONF-2013-031]
Atlas Electroweak (2ℓ)	8	20.3	13	[arXiv:1403.5294]
Atlas \tilde{q} and \tilde{g} (1-2 ℓ)	8	20.1	19	[ATLAS-CONF-2013-062]
Atlas \tilde{q} and \tilde{g} razor (2 ℓ)	8	20.3	6	[ATLAS-CONF-2013-089]
Atlas Electroweak (3ℓ)	8	20.3	20	[arXiv:1402.7029]
Atlas \tilde{t} (1 ℓ)	8	20.7	8	[ATLAS-CONF-2013-037]
Atlas \tilde{t} (2 ℓ)	8	20.3	12	[arXiv:1403.4853]
CMS $W^{\pm}Z^0$	8	19.6	4	[CMS-PAS-12-006]
Atlas $W^{\pm}Z^0$	8	13.0	4	[ATLAS-CONF-2013-021]
Atlas $\tilde{t} \to b \nu_{\tau} \tilde{\tau}_1$	8	20.3	1	[ATLAS-CONF-2014-014]

-

< ∃ > < ∃

Pinning down the stops

Scan results

K. Rolbiecki (IFT Madrid)

Best fit compared to SM

Study	SR	Obs	Exp	SM s.d.	Best fit exp	Best fit s.d
Atlas W^+W^- (7 TeV) [arXiv:1210.2979]	Combined	1325	1219 ± 87	1.1 - σ	95	0.1 - σ
CMS W^+W^- (7 TeV) [arXiv:1306.1126]	Combined	1134	1076 ± 62	$0.8-\sigma$	77	0.3 - σ
CMS W^+W^- (8 TeV) [arXiv:1301.4698]	Combined	1111	986 ± 60	$1.8-\sigma$	65	0.9 - σ
Atlas Higgs [ATLAS-CONF-2013-031]	$WW \ CR$ Higgs SR	$3297 \\ 3615$	$3110 \pm 186 \\ 3288 \pm 220$	$\begin{array}{c} 0.9\text{-}\sigma\\ 1.4\text{-}\sigma\end{array}$	293 376	$\begin{array}{c} 0.5\text{-}\sigma\\ 0.2\text{-}\sigma\end{array}$
ATLAS \tilde{q} and \tilde{g} (1-2 ℓ) [ATLAS-CONF-2013-062]	Di-muon	7	1.7 ± 1	$2.5-\sigma$	0.8	2.1 - σ
ATLAS Electroweak (3 ℓ) [arXiv:1402.7029]	$\mathrm{SR}0 au$ a01 $\mathrm{SR}0 au$ a06 $\mathrm{SR}0 au$ a10	36 13 24	23 ± 4 6.6 ± 1.9 16.4 ± 2.4	$\begin{array}{c} 2.1 \hbox{-} \sigma \\ 1.9 \hbox{-} \sigma \\ 1.6 \hbox{-} \sigma \end{array}$	$4.1 \\ 2.2 \\ 0.4$	$\begin{array}{c} 1.4 \text{-} \sigma \\ 1.3 \text{-} \sigma \\ 1.5 \text{-} \sigma \end{array}$

- $\Rightarrow\,$ overall reduction of 12.3 in log-likelihood compared to SM at minimum
- \Rightarrow best fit point:

$$\begin{split} m_{\tilde{t}_1} &= 212^{+35}_{-35} \; {\rm GeV} \\ m_{\tilde{\chi}^0_1} &= 150^{+30}_{-20} \; {\rm GeV} \end{split}$$

Outline

- 2 Pinning down the stops
- 3 SUSY or SM?

4 Summary

Probing production polar angle

 observable using pseudorapidities of the final state leptons

$$\cos\theta_{\ell\ell}^* = \tanh\left(\frac{\Delta\eta_{\ell\ell}}{2}\right) \quad \Delta\eta_{\ell\ell} = \eta_{\ell_1} - \eta_{\ell}$$

Moortgat-Pick, KR, Tattersall, arXiv:1102.0293

• for stop and WW production,

$$pp \rightarrow \tilde{t}_1 \, \tilde{t}_1^* \rightarrow \tilde{\chi}_1^0 \, \ell^+ \, \nu \, b \, \tilde{\chi}_1^0 \, \ell^{\prime-} \, \bar{\nu} \, \bar{b}$$
$$pp \rightarrow W^+ W^- \rightarrow \ell^+ \, \nu \, \ell^{\prime-} \, \bar{\nu}$$

• $\cos \theta_{\ell\ell}^*$ is sensitive to the angular distributions of the initial state *W*'s and \tilde{t}_1 's

Asymmetry of $\cos heta_{\ell \ell}^*$

• define an asymmetry using $\cos \theta^*_{\ell\ell}$

 $\mathcal{A} = \frac{N(|\cos\theta^*_{\ell\ell}| > 0.5) - N(|\cos\theta^*_{\ell\ell}| < 0.5)}{N_{\rm tot}}$

- forward vs central region
- stops asymmetry: $A_{\tilde{t}_1} = -0.52$, SM only: $A_{SM} = 0.12$, stops and SM: $A_{SM+\tilde{t}_1} = -0.04$
- after 5 fb⁻¹ a 5- σ discrimination achievable at $\sqrt{s} = 13$ TeV
- at $\sqrt{s} = 8 \text{ TeV}$ a 3- σ difference with full data sample
- less prone to systematic errors than cross section alone

Missing higer orders?

- jet veto efficiency crucial for understanding WW measurement
- other di-boson cross sections do not suffer from this problem
- including NNLL transverse momentum resummation could decrease discrepancy by 3-7% but cannot account for the whole excess Meade, Ramani, Zeng arXiv:1407.4481
- employing soft collinear effective theory reduces scale variation and renders theory prediction compatible with experiment

Jaiswal, Okui arXiv:1407.4537

The NNLO story

T. Gehrmann ea arXiv:1408.5243

$\frac{\sqrt{s}}{\text{TeV}}$	σ_{LO}	σ_{NLO}	σ_{NNLO}	$\sigma_{gg \to H \to WW^*}$
7	$29.52^{+1.6\%}_{-2.5\%}$	$45.16^{+3.7\%}_{-2.9\%}$	$49.04^{+2.1\%}_{-1.8\%}$	$3.25^{+7.1\%}_{-7.8\%}$
8	$35.50^{+2.4\%}_{-3.5\%}$	$54.77^{+3.7\%}_{-2.9\%}$	$59.84^{+2.2\%}_{-1.9\%}$	$4.14^{+7.2\%}_{-7.8\%}$
13	$67.16^{+5.5\%}_{-6.7\%}$	$106.0^{+4.1\%}_{-3.2\%}$	$118.7^{+2.5\%}_{-2.2\%}$	$9.44^{+7.4\%}_{-7.9\%}$
14	$73.74^{+5.9\%}_{-7.2\%}$	$116.7^{+4.1\%}_{-3.3\%}$	$131.3^{+2.6\%}_{-2.2\%}$	$10.64^{+7.5\%}_{-8.0\%}$

- fully inclusive $pp \rightarrow WW + X$
- NNLO account for $\sim 10\%$ increase in cross section
- note that formally NNLO gg → WW was included in previous estimates
- apparent improvement in explaining exp results
- 8 TeV still slightly high

	$VV_{\rm th}$	ATLAS WZ	CMS WZ	ATLAS ZZ	CMS ZZ	ATLAS WW	CMS WW
$\frac{\sigma(8 \text{TeV})}{\sigma(7 \text{TeV})}$	~ 1.22	1.07 ± 0.09	1.19 ± 0.08	1.06 ± 0.13	1.23 ± 0.18	1.38 ± 0.06	1.33 ± 0.07

- the ratio of cross sections stable across the channels and orders in perturbation theory
- WW systematically higher than prediction
- NNLO calculation of $pp \rightarrow ZZ + X$ overshoots measured cross-sections, in particular for ATLAS8
- the experiments measure fiducial cross sections rather than the fully inclusive cross sections
- especially true for WW: efficiency < 10% ($\sim 50\%$ for ZZ)
- differential calculation should settle the issue

One more hint

- 2.6-sigma excess in SF
- consistent with light gauginos/sleptons
- light states preferred by *g* − 2 and DM

Outline

- 2 Pinning down the stops
- 3 SUSY or SM?

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Summary

- \Rightarrow ATLAS and CMS observed consistent excesses in WW production
 - certainly not a statistical fluctuation
 - systematics cannot be ruled out yet, missing NNLL?
- \Rightarrow another hint from tri-lepton search and Higgs measurements
- \Rightarrow can be attributed to new physics, e.g. supersymmetric stops
- \Rightarrow light stops markedly improve agreement with data
- \Rightarrow different searches point to the same region in parameter space
- \Rightarrow distinction from the SM possible using angular distributions
- \Rightarrow outlook:
 - study of other simplified models, decay chains, etc.
 - including additional constraints: dark matter, low energy, EWPT

ELE DOG

BACKUP

K. Rolbiecki (IFT Madrid)

IFT, 16.09.2014 1 / 7

21= 990

イロト イヨト イヨト イヨト

LHC vs light stops

- LHC started constraining light stops
- for us the channel with intermediate chargino is interesting
- m_{T2} used to suppress $t\bar{t}$ background
- this limits sensitivity of the search in region with (almost) off-shell *W*
- more constraints on 3-body, 4-body, FV stop decays also from non-stop searches e.g. Yu ea, arXiv:1211.2997; Krizka ea, arXiv:1212.4856

Rapidity and pseudorapidity

Rapidity

$$y = \frac{1}{2} \log \left(\frac{E + p_L}{E - p_L}\right) = \log \left(\frac{E + p_L}{\sqrt{m^2 + p_T^2}}\right)$$

- Rapidity is additive under Lorentz boosts along the beam direction
- The difference in rapidity of two particles is invariant under boosts along the beam axis
- For massless particles we have

$$y = \frac{1}{2} \log \left(\frac{1 + \cos \theta}{1 - \cos \theta} \right) = -\log \tan \frac{\theta}{2}$$

Define pseudorapidity as

$$\eta = -\log \tan \frac{\theta}{2}$$

Modified distributions

Modified distributions

Other constraints

- the heavy Higgs boson requires large stop contribution
 - \Rightarrow can be achieved if the stops are split:
 - $\Rightarrow m_{\tilde{t}_{R}} = 195 \text{ GeV}, m_{\tilde{t}_{L}} = 2000 \text{ GeV}, A_{t} = 2000 \text{ GeV}$
 - $\Rightarrow m_h = 125.6 \text{ GeV}, \text{ bonus: } R_{\gamma\gamma} = 1.05 \cdot R_{\gamma\gamma}^{\text{SM}}$
- gaugino parameters for correct chargino and LSP

 $\Rightarrow M_1 = 105 \text{ GeV}, M_2 = 190 \text{ GeV}, \mu = 2500 \text{ GeV}$ and $\tan \beta = 15$

Ight stuff having the following masses:

 $\Rightarrow m_{\tilde{t}_1} = 203.7 \text{ GeV}, m_{\tilde{\chi}_1^0} = 104.9 \text{ GeV} \text{ and } m_{\tilde{\chi}_1^\pm} = 189.5 \text{ GeV}$

- low energy observables evaluated as
 - \Rightarrow BR $(B \rightarrow X_s \gamma) = 3.7 \times 10^{-4}$ and BR $(B_s \rightarrow \mu \mu) = 3.45 \times 10^{-9}$
 - \Rightarrow needs $m_{\tilde{b}_R} = 1000 \text{ GeV}$
- basic consistency can be ensured
- dark matter relic density could be regulated by light right-handed sleptons

SUSY-2013-15

< □ > < □ > < □ > < Ξ > < Ξ > < Ξ = ・ ○ < ○