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In quantum process the probability of a radiation pattern to occur 
is described by the matrix element

All reconstruction methods (observables) are trying to access 


matrix element 



as directly as possible

Signal vs Background using Event Deconstruction


= fully automated event pattern matching method

why not calculate the matrix element weight directly for given final state and 
perform hypothesis test on full radiation profile?

Idea:

(face recognition for LHC events)

[Soper, MS ‘11]
[Soper, MS ‘12]
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[Soper, MS ‘14]

we will have the best statistical significance for a measurement if we make �C(B) as small as
possible. Thus we seek to choose the cut so as to minimize �C(B) with �C(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant ⇥MC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = ⇥MC({p, t}N)� ⇥0 (8)

for some ⇥0. If we make any small adjustment to this by removing an infinitesimal region
with ⇥MC({p, t}N) > ⇥0 from the cut and adding a region having the same signal cross
section but with ⇥MC({p, t}N) < ⇥0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N) to
define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on ⇥MC to separate signal from background, one could
imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that method
in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N), we would need two things:
the di�erential cross section to find microjets {p, t}N in background events and then the
di�erential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this di�erential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ⇥ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate ⇥MC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate ⇥MC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N) that is an approximation to ⇥MC({p, t}N) such
that we can calculate ⇥({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

⇥({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)

6

In other words: Perform calculation to discriminate signal from background

Observable to calculate:
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Protons

ISR

ISR

FSR

FSR

O(1000) 
particles

UE

UE

Is it possible to perform such hypothesis test given complexity of LHC events?

At least full event generators do a good job reproducing data...
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Summary of shower approximation:
The probability weights in the evolution from the hard interaction scale 
to the hadronization scale are given by Sudakov factors and splitting 
functions.

Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

pµ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,

y =
1

2
ln

✓
E + cpL
E � cpL

◆
=

1

2
ln

✓
1 + � cos(✓)

1� � cos(✓)

◆
,

where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1

y = � ln


tan

✓
✓

2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition
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hard scale

hadronization


scale

propagator-lines = Sudakov factors
vertices = Splitting functions
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ISR jet

ISR jet

electron

b-jet

b-jet

b-jet

b-jet

jet

jet
jet

ISR jet
neutrino

(missing energy)

To obtain a weight which indicates if a specific final state was 
more likely to be initiated by signal or background we have to 

sum over all possibilities
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the
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the
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p
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⇤
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p
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⇤
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⇥
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⇤
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a
function
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=
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the
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=
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the
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⇤
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caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
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parton
k
=
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⇤
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=
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of
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dep
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on
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w
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p
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s �
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⇤
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s �
⇤
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=
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=
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=
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=
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=
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=
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w
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approxim
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p
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e
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=
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=
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=
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=
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p
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=
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p
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⇤
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⇤
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more likely to be initiated by signal or background we have to 

sum over all possibilities
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=
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parton
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w
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needed
w
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w
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use
the
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k(s)

instead
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,
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start
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dip

ole
approxim
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for

the
squared

m
atrix

elem
ent
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µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥
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A �
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p
h · p
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p
s · p
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2
p
s · p

k

.
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W
e
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2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]
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k
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s �

y
h ) 2

+
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s �
⇤
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k
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h
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2sh
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p
s · p

k ⇥
k
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k
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p
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k
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⌅
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b
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b
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p
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C
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sh
ow
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A
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S
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b
a
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g
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g
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T
h
e
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g
vertex
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a
Q
C
D

sp
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g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)
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g is represented by a function H
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and we suppose that the daughter partons are labelled
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and B, where A

caries the 3̄ color of the mother and is drawn on the left, while B
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To obtain a weight which indicates if a specific final state was 
more likely to be initiated by signal or background we have to 

sum over all possibilities
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the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
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it
parton

k.
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s
=
A
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em

itting
dipole
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form
ed
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parton

h
=
B
and

parton
k
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k(J

)
L , w
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if
s
=
B
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the
em

itting
dipole
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form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
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choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
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2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
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2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
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(31)
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b
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⌅
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splitting
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⌅
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+
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is
represented

by
a
function
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as

illustrated
in

F
ig. 6.
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call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
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other

parton
has

not
split

already
at

a
higher

virtuality.

L
et
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exam
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w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
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carry
the
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el

J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries
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3̄
color

of
the

m
other

and
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draw

n
on

the
left,

w
hile

B
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the
3
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of
the
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other

and
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draw
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the
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form
of

the
splitting
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dep
ends

on
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hich

of
the
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daughter
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is

the
softer.
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let
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b
e
the

lab
el

of
the

harder
daughter
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and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
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y
definition,
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k
h .
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look
at

the
splitting
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lim
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then
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inated
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w
hich
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em
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from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call
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parton

k.
If
s
=

A
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then

the
em

itting
dip

ole
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form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole
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form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
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choice
of

k
dep

ends
on

w
hich

of

the
tw
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partons
is
parton
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w
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w
e
w
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notation
k(s)
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H
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w
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dip

ole
approxim

ation
for

the
squared

m
atrix

elem
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µ
2s
=

µ
2h
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0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k
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p
s · p

h
2
p
s · p

k
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(30)

W
e
use
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p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]
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k
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h [(y
s �

y
h ) 2

+
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s �
⇤
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2sh

,
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p
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,
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and
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draw
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of
the
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and
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form
of

the
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on
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hich

of
the
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partons
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W
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let
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b
e
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lab
el

of
the

harder
daughter
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and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
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B
y
definition,

k
s
<

k
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W
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first

look
at

the
splitting

in
the

lim
it
k
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k
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T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)
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T
he

choice
of

k
dep

ends
on

w
hich

of

the
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daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
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F
or

H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
A �

s

2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k

.

(30)

W
e
use

2
p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2]

=
k
s k

h
⇥
2sh

,

2
p
s · p

k ⇥
k
s k

k
⇥
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p
h · p
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k
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k
⇥
2h
k
,
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,
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of
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and
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of
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and
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form
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the
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probability

dep
ends

on
w
hich

of
the

tw
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partons
is
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softer.

W
e
let

h
b
e
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lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<

k
h .

B
y
definition,

k
s
<

k
h .

W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=

B
and

parton
k
=

k(J
)
L ,

w
hile

if
s
=

B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=
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and

parton
k
=

k(J
)
R .

T
he

choice
of

k
dep

ends
on

w
hich

of
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o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
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ply
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F
or

H
,
w
e
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w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),
H

d
ip
ole ⇥

C
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2
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p
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k

2
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h
2
p
s · p

k
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(30)

W
e
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p
s · p

h
=

2k
s k

h [cosh(y
s �

y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k
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s �

y
h ) 2
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(⇤

s �
⇤
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2
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k
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k
,
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p
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s �
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⇤
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s �
⇤
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In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
s k

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
s k

h[(y
s�

y
h)

2
+
(⇤

s�
⇤
h)

2]
=

k
s k

h
⇥
2sh

,
2
p
s·p

k
⇥

k
s k

k
⇥
2sk

,
2
p
h·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

Proton

Proton Anti-top

gluon

top

W

W

electron

b-jet

b-jet

b-jet

b-jet

jet

jet

FIG
.6:Splitting

functionsforfinalstate
Q
CD

splittingsthatare
m
odeled

asg⌅
g+

g

V
I.

FIN
A
L
STAT

E
Q
C
D
SH

O
W
ER

SP
LIT

T
IN
G
S

In
thissection,wedefinethem

ain
partofthesim

plified
shower,QCD

showersplittings.

A
.

Splitting
probability

for
g⌅

g+
g

Thesplitting
vertex

fora
QCD

splitting
g⌅

g+
g
isrepresented

by
a
function

H
ggg
as

illustrated
in
Fig.6.W

ecallthesetheconditionalsplittingprobabilities.Herethecondition

isthatthem
otherparton

hasnotsplitalready
ata

highervirtuality.

Letusexam
ine

whatwe
should

choose
forH

ggg
fora

g⌅
g+

g
splitting.

W
e
take

the

m
otherparton

to
carry

the
labelJ

and
we

suppose
thatthe

daughterpartonsare
labelled

A
and

B
,whereA

cariesthe3̄
colorofthem

otherand
isdrawn

on
theleft,whileB

caries

the
3
colorofthe

m
otherand

isdrawn
on

the
right.

The
form

ofthe
splitting

probability

dependson
which

ofthe
two

daughterpartonsisthe
softer.

W
e
leth

be
the

labelofthe

harderdaughterparton
and

s
bethelabelofthesofterdaughterparton:ks

<
kh.

By
definition,ks

<
kh.W

efirstlook
atthesplitting

in
thelim

itks⇤
kh.Thesplitting

probabilityisthen
dom

inated
bygraphsin

which
parton

sisem
itted

from
adipoleconsisting

ofparton
J
and

som
e
otherparton,callitparton

k.
Ifs

=
A,then

the
em
itting

dipole
is

form
ed
from

parton
h
=
B
and

parton
k
=
k(J)L,whileifs=

B
,then

theem
itting

dipole

isform
ed
from

parton
h
=
A
and

parton
k
=
k(J)R.

The
choice

ofk
dependson

which
of

thetwo
daughterpartonsisparton

s,so
whereneeded

wewillusethenotation
k(s)instead

ofsim
ply

k.

For
H
,we

start
with

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(with

µ
2
s
=
µ
2
h
=
0),

H
dipole⇥

C
A�s

2

2ph·pk

2ps·ph
2ps·pk

.

(30)

W
euse

2ps·ph
=
2kskh[cosh(ys�

yh)�
cos(⇤s�

⇤h)]

⇥
kskh[(ys�

yh)
2+

(⇤s�
⇤h)

2]

=
kskh

⇥
2
sh
,

2ps·pk⇥
kskk⇥

2
sk
,

2ph·pk⇥
khkk⇥

2
hk
,

(31)

13

jet

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+
g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.

L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+
g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep
en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h.

B
y
d
efi
n
ition

,
k
s
<

k
h.

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s⇤

k
h.

T
h
e
sp
littin

g

p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g

of
p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If
s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is

form
ed

from
p
arton

h
=

B
an

d
p
arton

k
=

k
(J
)L,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J
)R
.
T
h
e
ch
oice

of
k
d
ep
en
d
s
on

w
h
ich

of

th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h
·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
u
se

2
p
s·p

h
=

2k
sk

h[cosh
(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]
=

k
sk

h
⇥
2sh

,
2
p
s·p

k
⇥

k
sk

k
⇥
2sk

,
2
p
h
·p

k
⇥

k
hk

k
⇥
2h
k

,
(31)

13

ISR jet

neutrino

F
IG

.
6:

S
p
littin

g
fu
n
ction

s
for

fi
n
al

state
Q
C
D

sp
littin

gs
th
at

are
m
od

eled
as

g
⌅

g
+

g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
th
is
section

,
w
e
d
efi
n
e
th
e
m
ain

p
art

of
th
e
sim

p
lifi

ed
sh
ow

er,
Q
C
D

sh
ow

er
sp
littin

gs.

A
.

S
p
littin

g
p
ro

b
a
b
ility

fo
r
g
⌅

g
+

g

T
h
e
sp
littin

g
vertex

for
a
Q
C
D

sp
littin

g
g
⌅

g
+
g
is
rep

resented
by

a
fu
n
ction

H
g
g
g
as

illu
strated

in
F
ig.

6.
W
e
call

th
ese

th
e
con

d
ition

al
sp
littin

g
p
rob

ab
ilities.

H
ere

th
e
con

d
ition

is
th
at

th
e
m
oth

er
p
arton

h
as

n
ot

sp
lit

alread
y
at

a
h
igh

er
virtu

ality.
L
et

u
s
exam

in
e
w
h
at

w
e
sh
ou

ld
ch
oose

for
H

g
g
g
for

a
g
⌅

g
+

g
sp
littin

g.
W
e
take

th
e

m
oth

er
p
arton

to
carry

th
e
lab

el
J
an

d
w
e
su
p
p
ose

th
at

th
e
d
au

ghter
p
arton

s
are

lab
elled

A
an

d
B
,
w
h
ere

A
caries

th
e
3̄
color

of
th
e
m
oth

er
an

d
is
d
raw

n
on

th
e
left,

w
h
ile

B
caries

th
e
3
color

of
th
e
m
oth

er
an

d
is

d
raw

n
on

th
e
right.

T
h
e
form

of
th
e
sp
littin

g
p
rob

ab
ility

d
ep

en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is

th
e
softer.

W
e
let

h
b
e
th
e
lab

el
of

th
e

h
ard

er
d
au

ghter
p
arton

an
d
s
b
e
th
e
lab

el
of

th
e
softer

d
au

ghter
p
arton

:
k
s
<

k
h .

B
y
d
efi
n
ition

,
k
s
<

k
h .

W
e
fi
rst

look
at

th
e
sp
littin

g
in

th
e
lim

it
k
s ⇤

k
h .

T
h
e
sp
littin

g
p
rob

ab
ility

is
th
en

d
om

in
ated

by
grap

h
s
in

w
h
ich

p
arton

s
is
em

itted
from

a
d
ip
ole

con
sistin

g
of

p
arton

J
an

d
som

e
oth

er
p
arton

,
call

it
p
arton

k
.
If

s
=

A
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

B
an

d
p
arton

k
=

k
(J

)
L ,

w
h
ile

if
s
=

B
,
th
en

th
e
em

ittin
g
d
ip
ole

is
form

ed
from

p
arton

h
=

A
an

d
p
arton

k
=

k
(J

)
R
.
T
h
e
ch
oice

of
k
d
ep

en
d
s
on

w
h
ich

of
th
e
tw

o
d
au

ghter
p
arton

s
is
p
arton

s,
so

w
h
ere

n
eed

ed
w
e
w
ill

u
se

th
e
n
otation

k
(s)

in
stead

of
sim

p
ly

k
.

F
or

H
,
w
e
start

w
ith

th
e
d
ip
ole

ap
p
roxim

ation
for

th
e
squ

ared
m
atrix

elem
ent

(w
ith

µ
2s
=

µ
2h
=

0),

H
d
ip
ole ⇥

C
A
�
s

2

2
p
h ·p

k

2
p
s ·p

h
2
p
s ·p

k
.

(30)

W
e
u
se

2
p
s ·p

h
=

2k
s k

h [cosh
(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h )

2
+
(⇤

s �
⇤
h )

2]

=
k
s k

h
⇥
2sh

,

2
p
s ·p

k
⇥

k
s k

k
⇥
2sk

,

2
p
h ·p

k
⇥

k
h k

k
⇥
2h
k
,

(31)

13

ISR jet

ISR jet

To obtain a weight which indicates if a specific final state was 
more likely to be initiated by signal or background we have to 

sum over all possibilities
11Challenges in Face of LHC-14           Madrid      Michael Spannowsky            19.09.2014                   



F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
13

F
IG

.
6:

Splitting
functions

for
final

state
Q
C
D

splittings
that

are
m
odeled

as
g
⌅

g
+
g

V
I.

F
IN

A
L

S
T
A
T
E

Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section,
w
e
define

the
m
ain

part
of

the
sim

plified
show

er,
Q
C
D
show

er
splittings.

A
.

S
p
littin

g
p
ro
b
ab

ility
fo
r
g
⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D

splitting
g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in

F
ig.6.

W
e
callthese

the
conditionalsplitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

L
et

us
exam

ine
w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

lab
el
J
and

w
e
supp

ose
that

the
daughter

partons
are

lab
elled

A
and

B
,
w
here

A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left,

w
hile

B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of

the
splitting

probability

dep
ends

on
w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
b
e
the

lab
el

of
the

harder
daughter

parton
and

s
b
e
the

lab
el
of

the
softer

daughter
parton:

k
s
<
k
h.

B
y
definition,

k
s
<
k
h.

W
e
first

look
at

the
splitting

in
the

lim
it
k
s⇤

k
h.

T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dip

ole
consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=

A
,
then

the
em

itting
dip

ole
is

form
ed

from
parton

h
=
B

and
parton

k
=
k(J

)L,
w
hile

if
s
=
B
,
then

the
em

itting
dip

ole

is
form

ed
from

parton
h
=

A
and

parton
k
=

k(J
)R
.
T
he

choice
of

k
dep

ends
on

w
hich

of

the
tw
o
daughter

partons
is
parton

s,
so

w
here

needed
w
e
w
ill

use
the

notation
k(s)

instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dip

ole
approxim

ation
for

the
squared

m
atrix

elem
ent

(w
ith

µ
2s
=
µ

2h
=
0),

H
d
ip
ole⇥

C
A
�
s

2
2
p
h·p

k
2
p
s·p

h
2
p
s·p

k
.

(30)

W
e
use

2
p
s·p

h
=
2k

sk
h[cosh(y

s�
y
h)�

cos(⇤
s�

⇤
h)]

⇥
k
sk

h[(y
s�

y
h)

2+
(⇤

s�
⇤
h)

2]

=
k
sk

h
⇥
2sh

,

2
p
s·p

k
⇥
k
sk

k
⇥
2sk

,

2
p
h·p

k
⇥
k
hk

k
⇥
2h
k

,

(31)
13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.

Let
us

exam
ine

w
hat

w
e
should

choose
for

H
ggg

for
a
g
⌅

g
+
g
splitting.

W
e
take

the

m
other

parton
to

carry
the

label
J
and

w
e
suppose

that
the

daughter
partons

are
labelled

A
and

B
, w

here
A
caries

the
3̄
color

of
the

m
other

and
is
draw

n
on

the
left, w

hile
B
caries

the
3
color

of
the

m
other

and
is
draw

n
on

the
right.

T
he

form
of
the

splitting
probability

depends
on

w
hich

of
the

tw
o
daughter

partons
is
the

softer.
W
e
let

h
be

the
label

of
the

harder
daughter

parton
and

s
be

the
label of

the
softer

daughter
parton:

k
s <

k
h .

B
y
definition, k

s <
k
h .
W
e
first

look
at

the
splitting

in
the

lim
it
k
s ⇤

k
h .
T
he

splitting

probability
is
then

dom
inated

by
graphs

in
w
hich

parton
s
is
em

itted
from

a
dipole

consisting

of
parton

J
and

som
e
other

parton,
call

it
parton

k.
If
s
=
A
,
then

the
em

itting
dipole

is

form
ed

from
parton

h
=
B
and

parton
k
=
k(J

)
L , w

hile
if
s
=
B
, then

the
em

itting
dipole

is
form

ed
from

parton
h
=
A
and

parton
k
=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
notation

k(s)
instead

of
sim

ply
k.

For
H
,
w
e
start

w
ith

the
dipole

approxim
ation

for
the

squared
m
atrix

elem
ent

(w
ith

µ 2s =
µ 2h =

0),

H
dip

ole ⇥
C

A �
s2

2
p
h · p

k

2
p
s · p

h
2
p
s · p

k .

(30)

W
e
use

2
p
s · p

h
=
2k

s k
h [cosh(y

s �
y
h )�

cos(⇤
s �

⇤
h )]

⇥
k
s k

h [(y
s �

y
h ) 2

+
(⇤

s �
⇤
h ) 2
]

=
k
s k

h ⇥ 2sh
,

2
p
s · p

k ⇥
k
s k

k ⇥ 2sk
,

2
p
h · p

k ⇥
k
h k

k ⇥ 2hk
,

(31)

13

F
IG
. 6:

Splitting
functions

for
final state

Q
C
D
splittings

that
are

m
odeled

as
g ⌅

g
+
g

V
I.

F
IN

A
L
S
T
A
T
E
Q
C
D

S
H
O
W

E
R

S
P
L
IT

T
IN

G
S

In
this

section, w
e
define

the
m
ain

part
of
the

sim
plified

show
er, Q

C
D
show

er
splittings.

A
.

S
p
littin

g
p
rob

ab
ility

for
g ⌅

g
+
g

T
he

splitting
vertex

for
a
Q
C
D
splitting

g
⌅

g
+
g
is
represented

by
a
function

H
ggg

as

illustrated
in
F
ig. 6.

W
e
call these

the
conditional splitting

probabilities.
H
ere

the
condition

is
that

the
m
other

parton
has

not
split

already
at

a
higher

virtuality.
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⌅
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other
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the
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other
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the
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on
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of
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=
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the
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=
k(J

)
R .

T
he

choice
of
k
depends

on
w
hich

of

the
tw
o
daughter

partons
is
parton

s, so
w
here

needed
w
e
w
ill use

the
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⇤
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of
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then
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of
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dep
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on
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of
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w
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p
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Figure 3: A diagram illustrating gluon radiation from an incoming quark. The resulting

cone-like structure persists through hadronisation and, hence, forms a jet. This process

develops similarly if the incoming quark is replaced by a gluon.

It is often advantageous to work in the CM frame of the collision. However, this is not

always coincident with the rest frame of the detector. In light of this, it is sensible to

measure Lorentz invariant quantities. Collisions possess cylindrical symmetry around their

beam axis and, as a consequence, when the CM frame does not coincide with the detector

frame, it will be, on average, boosted along the beam axis. As �, the azimuthal angle,

lies in a plane perpendicular to the beam axis this makes it Lorentz invariant under such

boosts; it is therefore a practical quantity. However, ✓, the angle a particle makes with the

beam axis, is an unsuitable parameter as it is not Lorentz invariant under these boosts; its

transformation, tan(✓0) = � tan(✓), causes �✓0 to be an unpleasant expression. A parameter

with more pleasing properties under these boosts is desired.

Rapidity is a velocity-like parameter that parameterises Lorentz boosts; in fact, it is an

angle of rotation in the hyperbolic plane. Rapidities along the same axis are additive; they

encode the velocity addition formula under standard addition. This additive transformation

property is much more tangible. By considering a particle moving with four-momentum

pµ = (E/c, ~p), as measured in the CM frame, its rapidity along the beam axis, y, can be

obtained. This rapidity corresponds to that of a boost that causes the momentum along the

beam-axis to vanish; the explicit result is,

y =
1

2
ln

✓
E + cpL
E � cpL

◆
=

1

2
ln

✓
1 + � cos(✓)

1� � cos(✓)

◆
,

where pL represents the longitudinal momentum, and ✓ is the angle that the particle makes

with the beam axis. Taking the ultra-relativistic limit,

⌘ ⌘ lim
�!1

y = � ln


tan

✓
✓

2

◆�
(17)

defines the pseudorapidity ⌘; a result that is trivial for massless particles. As this definition

9
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  of	
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  transfer	
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  match	
  jets	
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  partons
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Probability	
  density	
  func=on:

hard	
  scale

hadroniza=on	
  
scale

Event	
  Deconstruc=on	
  vs	
  matrix	
  element	
  method

(or	
  ‘the	
  performance	
  enhancing	
  power	
  of	
  a	
  shower’)
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The	
  form	
  of	
  the	
  transfer	
  func=on:

Complex,	
  high-­‐dimensional	
  gaussian	
  distribu=on!

resolu=on	
  in

Energy

azimuthal	
  angle

rapidity

Transfer	
  func=on	
  introduces	
  new	
  peaks	
  on	
  top	
  of	
  propagators

Event	
  Deconstruc=on	
  vs	
  matrix	
  element	
  method

(or	
  ‘the	
  performance	
  enhancing	
  power	
  of	
  a	
  shower’)
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Shower	
  deconstruc=on	
  vs	
  matrix	
  element	
  method

(or	
  ‘the	
  performance	
  enhancing	
  power	
  of	
  a	
  shower’)

Shortcomings/Problems	
  of	
  the	
  matrix	
  element	
  method:

•	
  A	
  hadronized	
  final	
  state	
  has	
  to	
  be	
  matched	
  to	
  a	
  parton	
  level	
  matrix	
  element

➡	
  Number	
  of	
  final	
  state	
  objects	
  limited	
  to	
  fixed	
  order	
  ME	
  (exclusive)	
  
➡	
  Limited	
  and	
  fix	
  number	
  of	
  final	
  state	
  objects	
  (jets,	
  leptons,	
  ...)	
  
➡	
  Transfer	
  func=on	
  fit	
  dependent	
  (input	
  from	
  experiment)

•	
  Extremely	
  =me	
  consuming	
  calcula=on

➡	
  The	
  more	
  par=cles	
  the	
  higher-­‐dimensional	
  the	
  MC	
  integra=on

All	
  problems	
  solved	
  by	
  pu=ng

•	
  transverse	
  boost	
  used	
  to	
  reduce	
  jet	
  sensi=vity

➡	
  Large	
  systema=c	
  uncertainty	
  +	
  loos	
  informa=on	
  from	
  jets
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Remove dependence on transfer function
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Allow for arbitrary number of final state objects

Use smallest reconstructable objects in event

➡ Only needed when matrix element varies quickly


➡ replace physical Breit-Wigner with experimental


➡ Huge gain in speed!

➡ Shower approximation removes final state object limitation

➡ More information


➡ Retains sensitivity in boosted final states


➡ Radiation collimated/soft -> need Sudakov factors

➡ For hard matrix element <-> final state object matching needed

Difference between both methods:
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Numerical approach to Event Deconstruction (unpractical)

• Run MC for all possible 4-momenta combinations of final 
state particles and compare observed event with prediction

• Time estimate:
7 microjets, each 4 momentum components divided 
into only 10 bins -> 10  /7! 28 10 24~

If MC takes 1 ms per event -> 10   years to have 1 hit per config.

configurations
13



How can Event Deconstruction be used to tag a 
boosted electroweak-scale resonance



and improve on BDRS?

p p

Higgs boson!?

Tagger implicitly ignores rest of event, i.e. production mechanism
(strictly not correct)
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Fat jet: R=1.2, anti-kT

Build all possible shower histories

signal vs background hypothesis based 
on:

‣ Emission probabilities


‣ Color connection


‣ Kinematic requirements


‣ b-tag information

b
b
- g

ISR

ISR

ISR/UE hard interaction

microjets

b b
-

FI
G.
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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Fat jet: R=1.2, anti-kT

Build all possible shower histories

signal vs background hypothesis based 
on:

‣ Emission probabilities


‣ Color connection


‣ Kinematic requirements


‣ b-tag information

ISR/UE hard interaction

microjets

signal vs background hypothesis based 
on:

g
b
- b

ISR

ISR

b b
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F
IG

.
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]
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2]
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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In this section, we define the main part of the simplified shower, QCD shower splittings.
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)

13

g

FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g
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In this section, we define the main part of the simplified shower, QCD shower splittings.
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VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,
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2
hk ,

(31)
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FIG. 6: Splitting functions for final state QCD splittings that are modeled as g ⌅ g + g

VI. FINAL STATE QCD SHOWER SPLITTINGS

In this section, we define the main part of the simplified shower, QCD shower splittings.

A. Splitting probability for g ⌅ g + g

The splitting vertex for a QCD splitting g ⌅ g + g is represented by a function Hggg as
illustrated in Fig. 6. We call these the conditional splitting probabilities. Here the condition
is that the mother parton has not split already at a higher virtuality.

Let us examine what we should choose for Hggg for a g ⌅ g + g splitting. We take the
mother parton to carry the label J and we suppose that the daughter partons are labelled
A and B, where A caries the 3̄ color of the mother and is drawn on the left, while B caries
the 3 color of the mother and is drawn on the right. The form of the splitting probability
depends on which of the two daughter partons is the softer. We let h be the label of the
harder daughter parton and s be the label of the softer daughter parton: ks < kh.

By definition, ks < kh. We first look at the splitting in the limit ks ⇤ kh. The splitting
probability is then dominated by graphs in which parton s is emitted from a dipole consisting
of parton J and some other parton, call it parton k. If s = A, then the emitting dipole is
formed from parton h = B and parton k = k(J)L, while if s = B, then the emitting dipole
is formed from parton h = A and parton k = k(J)R. The choice of k depends on which of
the two daughter partons is parton s, so where needed we will use the notation k(s) instead
of simply k.

For H, we start with the dipole approximation for the squared matrix element (with
µ2
s = µ2

h = 0),

Hdipole ⇥
CA�s

2

2 ph · pk
2 ps · ph 2 ps · pk

. (30)

We use

2 ps · ph = 2kskh[cosh(ys � yh)� cos(⇤s � ⇤h)]

⇥ kskh[(ys � yh)
2 + (⇤s � ⇤h)

2]

= kskh ⇥
2
sh ,

2 ps · pk ⇥ kskk ⇥
2
sk ,

2 ph · pk ⇥ khkk ⇥
2
hk ,

(31)
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imperfect b-tagging (60%,2%)

Results for Higgs boson:

section but with ⇥MC({p, t}N ) < ⇥0, we raise the total background cross section within the

cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N )

to define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with

a given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio

of the expected number of signal events to the square root of the expected number of

background events. We discuss this further in section 14.

Instead of using an optimized cut on ⇥MC to separate signal from background, one

could imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that

method in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N ), we would need two things:

the di�erential cross section to find microjets {p, t}N in background events and then the

di�erential cross section to find microjets {p, t}N in signal events. In each case, we would

consider this di�erential cross section in a parton shower approximation to the full theory.

Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N
by producing Monte Carlo events at random according to these distributions. If we have 10

microjets described by 4 momentum variables each and we divide each of these 40 variables

into 12 bins, then we have approximately 1240/10! � 1036 total bins (accounting for the

interchange symmetry among the 10 microjets). The parton shower Monte Carlo event

generator will fill these bins with events, but it will be a long time before we have of order

100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each

bin center. Thus it is not practical to calculate ⇥MC({p, t}N ) numerically by generating

Monte Carlo events. It is also not practical to calculate ⇥MC({p, t}N ) analytically using

the shower algorithms in Pythia or Herwig. These programs are very complicated, so

that we have no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

2.4 Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N ) that is an approximation to ⇥MC({p, t}N ) such

that we can calculate ⇥({p, t}N ) analytically for any given {p, t}N . For this purpose, we

define a simple, approximate shower algorithm, which we will call the simplified shower

algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-

crojet configuration {p, t}N in, respectively, signal and background events according to the

simplified shower algorithm. Define

⇥({p, t}N ) =
P ({p, t}N |S)
P ({p, t}N |B) . (2.9)

This function, ⇥({p, t}N ) without the “MC” subscript, is the observable that we use. We

may call the calculation of ⇥({p, t}N ) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.

We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable

approximation to QCD and the rest of the standard model. Furthermore, we can define

the shower so that the deconstruction is as simple as we can make it, even if that means that

– 7 –FIG. 1: d�
MC

(B)/d log� for background events (upper curve) and d�
MC

(S)/d log� for signal
events (lower curve) for samples of signal and background events generated by Pythia. We use
the cuts described in Sec. II A.

This function, �({p, t}N) without the “MC” subscript, is the observable that we use. We
may call the calculation of �({p, t}N) shower deconstruction.

The parton state with N microjets is a possible intermediate state in a parton shower.
We seek to determine the probability that this intermediate state with parameters {p, t}N
is generated. We try to build enough into the simpler shower to provide a reasonable ap-
proximation to QCD and the rest of the standard model. Furthermore, we can define the
shower so that the deconstruction is as simple as we can make it, even if that means that
the corresponding shower algorithm is not so practical as an event generator. For instance,
an implementation of the simplified shower algorithm as an event generator might generate
weighted events in a way that makes unweighting the events costly in computer time. Addi-
tionally, probability conservation might be only approximate, so that the generated weights
for di↵erent outcomes do not sum exactly to one. No matter: we are not going to use the
simplified shower algorithm to generate events anyway. Additionally, we can ignore any
factors in P ({p, t}N |S) and P ({p, t}N |B) that are common between them for each {p, t}N
since such factors cancel in �.

Our construction will be far from perfect, and it can be useful even if it is not perfect.
We will use Pythia to measure the cross section d�

MC

(S)/d log� to have signal events with
a given value of � and the corresponding cross section d�

MC

(B)/d log� to have background
events with this value of �. In Fig. 1, we show these two functions for the simplified shower
as defined in the following sections. In this illustration, we see that increasing � favors signal
compared to background.

There is another way to present the results in Fig. 1 that is more informative. Let us

7

FIG. 17: Plot of s2/b versus s, where s and b are defined in Eq. (10). We use samples of signal and
background events generated by Pythia as in Fig. 1. This is the same plot as in Fig. 2 except that
we plot s2/b instead of s/b. The total signal cross section with the cuts used is �

MC

(S) = 1.57 fb.
We also show a point corresponding to a signal cross section �

BDRS

(S) = 0.22 fb and background
cross section �

BDRS

(B) = 0.44 fb that we obtained using the method of Ref. [4].

In Fig. 1, we displayed the � distribution for signal and background. We used this
information to display s/b as a function of s in Fig. 2. In order to understand the statistical
significance of a counting experiment with a simple cut on �, we have seen above that one
wants to look at the maximum of s2/b. For that reason, in Fig. 17, we display the information
from Fig. 2 as a plot of s2/b versus s. We have used here the function �({p, t}N) from our
simplified shower algorithm. If we could somehow use �

MC

({p, t}N), using the same Monte
Carlo that we use to generate events, we would obtain a curve for s2/b versus s that is
everywhere higher. No algorithm could produce a curve above this limiting curve, but we
have no way of determining the limiting curve.

We see in Fig. 17 that one can achieve a fairly good statistical significance with, say,
an integrated luminosity of

R
dL = 30 fb�1. With s2/b ⇡ 0.26 and this luminosity we

have N(S)/
p

N(B) ⇡ 2.8. We can compare to the method of Ref. [4] (BDRS). Applying
this method with our data sample, we find a signal cross section �

BDRS

(S) = 0.22 fb and
background cross section �

BDRS

(B) = 0.44 fb. We have plotted this point in Fig. 17. The
corresponding statistical significance with

R
dL = 30 fb�1 is 1.8. Of course, this analysis

ignores all systematic uncertainties.
In the analysis presented above, we include events with zero, one, and two b-tags. Then

shower deconstruction has to overcome a signal to background ratio of about 1/1700 in the
complete event sample in order to extract a few events with a signal to background ratio of
order 1. One suspects that, in fact, the events with zero or one b-tags do not contribute much
to the discriminating power of the method. Accordingly, we now explore what happens when
we give shower deconstruction an easier job by restricting the event sample to just events in
which there are two b-tagged microjets among the three microjets with the highest transverse

34
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we will have the best statistical significance for a measurement if we make �C(B) as small as
possible. Thus we seek to choose the cut so as to minimize �C(B) with �C(S) held constant.
The solution to this problem is to choose C({p, t}N) such the surface C({p, t}N) = 0 is
a surface of constant ⇥MC({p, t}N). That is, we should use signal and background cross
sections in which the function that defines the cut is taken to be

C({p, t}N) = ⇥MC({p, t}N)� ⇥0 (8)

for some ⇥0. If we make any small adjustment to this by removing an infinitesimal region
with ⇥MC({p, t}N) > ⇥0 from the cut and adding a region having the same signal cross
section but with ⇥MC({p, t}N) < ⇥0, we raise the total background cross section within the
cut while keeping the signal cross section the same. Thus using contours of ⇥MC({p, t}N) to
define our cut is the best that we can do.

What value of ⇥0 should one choose? For a simple optimized cut based analysis with a
given amount of integrated luminosity, one would choose ⇥0 so as to maximize the ratio of the
expected number of signal events to the square root of the expected number of background
events. We discuss this further in Sec. XI.

Instead of using an optimized cut on ⇥MC to separate signal from background, one could
imagine using a log likelihood ratio constructed from ⇥MC. We do not discuss that method
in this paper.

Now we must face the fact that to construct ⇥MC({p, t}N), we would need two things:
the di�erential cross section to find microjets {p, t}N in background events and then the
di�erential cross section to find microjets {p, t}N in signal events. In each case, we would
consider this di�erential cross section in a parton shower approximation to the full theory.
Unfortunately for us, a parton shower produces d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N by
producing Monte Carlo events at random according to these distributions. If we have 10
microjets described by 4 momentum variables each and we divide each of these 40 variables
into 12 bins, then we have approximately 1240/10! ⇥ 1036 total bins (accounting for the
interchange symmetry among the 10 microjets). The parton shower Monte Carlo event
generator will fill these bins with events, but it will be a long time before we have of order
100 counts per bin in order to estimate d�MC(S)/d{p, t}N and d�MC(B)/d{p, t}N at each bin
center. Thus it is not practical to calculate ⇥MC({p, t}N) numerically by generating Monte
Carlo events. It is also not practical to calculate ⇥MC({p, t}N) analytically using the shower
algorithms in Pythia or Herwig. These programs are very complicated, so that we have
no hope of finding PMC({p, t}N |S) and PMC({p, t}N |B) for either of them.

D. Probabilities according to simplified shower

What we need is an observable ⇥({p, t}N) that is an approximation to ⇥MC({p, t}N) such
that we can calculate ⇥({p, t}N) analytically for any given {p, t}N . For this purpose, we
define a simple, approximate shower algorithm, which we will call the simplified shower
algorithm. We let P ({p, t}N |S) and P ({p, t}N |B) be the probabilities to produce the mi-
crojet configuration {p, t}N in, respectively, signal and background events according to the
simplified shower algorithm. Define

⇥({p, t}N) =
P ({p, t}N |S)
P ({p, t}N |B)

. (9)

6

Analogously for the top decay (more involved as top colored)

top

b

W

full matrix 
element

Conceptional difference compared to Higgs from last year:

• Splitting functions for massive emitter and spectator

• Full matrix element for top decay

� ' 21 pb (85)

� ' 8 pb (86)

� ' 1.8⇥ 105 pb (87)

� ' 4.8⇥ 108 pb (88)

jet� jet (89)

O(↵2) (90)

O(↵2↵s) (91)

O(↵2

s↵
2) (92)

h ! �� (93)

� ⇥BR(mH = 130 GeV) ' 0.04 pb (94)

pT,�,1 > 40 GeV (95)

pT,�,2 > 25 GeV (96)

⌧
3

/⌧
2

(97)

=

P
histories

HISR · · ·P
histories

|M|2H
top

e�St1Hs
tge

�Sg · · ·
P

histories

HISR · · ·P
histories

Hb
ge

SgHggg · · · (98)
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chi distribution for top vs QCD
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Results for top quark tagging:
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bad

good

bad

good



First application of Event Deconstruction

fully hadronic Z’ -> tt

Signal tt dijets

Z ′

q q̄

t̄ t
t̄ t

g g

-

g g

g g
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Event selection:
2 fat jets with pT > 400 GeV

1.73 nb

2.27 pb

jet algorithm CA R=1.5

Cross section after ES:

dijets

ttbar

Hard matrix element generated 
with MadGraph5

Recluster fatjet constituents using


microjets kT R=0.2 pT>10 GeV

mass Z’ = 1500 GeV with width = 65 GeVModel:

Z’ width in Event Dec. 130 GeV

fat jet

fat jet
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Ntotal = Npair +Nsingle (483)

mX = mX(f, y, c1, c2,M ) (484)

mB > 1.5� 2.5 TeV (485)

mB > 930� 940 GeV (486)

mt̃2 �mt̃1 (487)

˜t1 (488)

� =

P (X|Z 0
)

P (X|t¯t+ dijets)

(489)
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side-band analysis possible
sys. and theo. 
uncertainties reduced



Efficiency for tagging Z’
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Event Dec: HTT: eff: 0.104659 
fkr: 0.000259946 
1/fkr: 3846.95

eff : 0.109538  
fkr : 3.20063e-05  
1/fkr : 31243.8
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Full matrix element method


(Event Deconstruction)

Double tag + 


counting in mass window
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[See Tilman’s talk]

[Talk by Schell at BOOST]

HEPTop+multR+BDT (Nsub to come)

• HEPTopTagger at 13 TeV  
ED at 14

• HEP no Detector response 
ED exp. resonance width

Event Deconstruction

Comparison not quite 1:1

Different methods can access 
same amount information,  

but Event Deconstruction in 
first crude implementation 
achieves very high standard

still



Conclusions

‣ Shower/Event deconstruction modular structure: 
Can be fully automated

‣ Matrix Element Methods -> Shower Deconstruction -> 
Event deconstruction = Maximum information approach

‣ Method being tested in data by ATLAS and CMS
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‣ Future improvements:

• Give up fatjet limitation

• Real calculation of ISR

• Trace color flow through hard interaction

• Matrix Elements with larger jet multiplicities (CKKW)
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Backup
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Parton shower in a nutshell

The parton shower bridges the gap from the hard interaction scale 
down to the hadronization scale O(1) GeV

partons from the hard interaction emit 
other partons (gluons and quarks)

These emissions are enhanced if they 
are collinear and/or soft with respect to 
the emitting parton
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Probability enhanced in soft and collinear region due to ~
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p2 · k · ✏A(k)
◆

(452)

dx1dx2 ! 2

s
EgdEgd cos ✓ (453)

� = �0

Z

CF
↵s

2⇡

dEg

Eg
d cos ✓

2(1� cos ✓q̄q
(1� cos ✓qg)(1� cos ✓q̄g)

(454)

Eg ! 0 (455)

32

the matrix element for 

Mqq̄g = Mqq̄gst
a
ij

✓

p1
p1 · k � p2

p2 · k · ✏A(k)
◆

(452)

dx1dx2 ! 2

s
EgdEgd cos ✓ (453)

� = �0

Z

CF
↵s

2⇡

dEg

Eg
d cos ✓

2(1� cos ✓q̄q
(1� cos ✓qg)(1� cos ✓q̄g)

(454)

Eg ! 0 (455)

e+e� ! q̄qg (456)

32

factorizes (Eikonal Current)

Mqq̄g = Mqq̄gst
a
ij

✓

pµ1
p1 · k � pµ2

p2 · k
◆

· ✏µA(k) (452)

dx1dx2 ! 2

s
EgdEgd cos ✓ (453)

� = �0

Z

CF
↵s

2⇡

dEg

Eg
d cos ✓

2(1� cos ✓q̄q)

(1� cos ✓qg)(1� cos ✓q̄g)
(454)

Eg ! 0 (455)

e+e� ! q̄qg (456)

�(Q2, Q2
0) ' exp



�CF
↵s

2⇡
ln

2

✓

Q2

Q2
0

◆�

(457)

kµ ⌧ pµi (458)

32

dipole

Higgs

b

b -

l (439)

Z

ddl

(2⇡)d
lµ

l2(l + p)2(l + q)2
(440)

qµ (441)

pµ (442)

Z

ddl

(2⇡)d
lµ

l2(l + p)2(l + q)2
=

�

pµ qµ
�

✓

C1

C2

◆

(443)

✓

R1

R2

◆

=

✓

[2l · p]
[2l · q]

◆

= G

✓

C1

C2

◆

=

✓

2p · p 2p · q
2p · q 2q · q

◆✓

C1

C2

◆

(444)

[2l · p] =
Z

ddl

(2⇡)d
2l · p

l2(l + p)2(l + q)2
(445)

2l · p (446)

Di (447)

R1 =

Z

ddl

(2⇡)d
2l · p

l2(l + p)2(l + q)2
=

Z

ddl

(2⇡)d
(l + p)2 � l2 � p2

l2(l + p)2(l + q)2
(448)

=

Z

ddl

(2⇡)d
1

l2(l + q)2
�

Z

ddl

(2⇡)d
1

(l + p)2(l + q)2
� p2

Z

ddl

(2⇡)d
1

l2(l + p)2(l + q)2

✓

C1

C2

◆

= G�1

✓

R1

R2

◆

(449)

R2 (450)

|Mqq̄g|2 = |Mqq̄|2g2sCF
2p1 · p2

p1 · k p2 · k (451)

31

In the large Nc limit most radiation occurs in a 
cone between colour partners

Example
+

[Marchesini, 
Webber]
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e+e� ! 3 jets (208)

d�ee!3j ⇡ �ee!2j

X

j2{q,q̄}

↵s

2⇡

d✓2jg
✓2jg

P (z) (209)

dPa!bc =
↵s

2⇡

d✓2

✓2
Pa!bc(z)dz (210)

Pq!qg = CF
1 + z2

1� z
(211)

Pg!gg = CA
(1� z(1� z))2

z(1� z)
(212)

Pg!qq̄ = TRnf (z
2

+ (1� z)2) (213)

t ⇠ ✓2 (214)

m2 ⇡ z(1� z)E2✓2 (215)

k2? ⇡ z2(1� z)2E2✓2 (216)

d✓2

✓2
⇡ dk2?

k2?
⇡ dm2

m2

(217)

P
nothing

(0 < t  T ) = lim

n�>1
⇧

n�1

i=0

P
nothing

(Ti < t  Ti+1

) (218)

15

e+e� ! 3 jets (208)

d�ee!3j ⇡ �ee!2j

X

j2{q,q̄}

↵s

2⇡

d✓2jg
✓2jg

P (z) (209)

dPa!bc =
↵s

2⇡

d✓2

✓2
Pa!bc(z)dz (210)

Pq!qg = CF
1 + z2

1� z
(211)

Pg!gg = CA
(1� z(1� z))2

z(1� z)
(212)

Pg!qq̄ = TRnf (z
2

+ (1� z)2) (213)

t ⇠ ✓2 (214)

m2 ⇡ z(1� z)E2✓2 (215)

k2? ⇡ z2(1� z)2E2✓2 (216)

d✓2

✓2
⇡ dk2?

k2?
⇡ dm2

m2

(217)

P
nothing

(0 < t  T ) = lim

n�>1
⇧

n�1

i=0

P
nothing

(Ti < t  Ti+1

) (218)

= exp

 

�
Z T

0

dP
something

(t)

dt
dt

!

(219)

15

e+e� ! 3 jets (208)

d�ee!3j ⇡ �ee!2j

X

j2{q,q̄}

↵s

2⇡

d✓2jg
✓2jg

P (z) (209)

dPa!bc =
↵s

2⇡

d✓2

✓2
Pa!bc(z)dz (210)

Pq!qg = CF
1 + z2

1� z
(211)

Pg!gg = CA
(1� z(1� z))2

z(1� z)
(212)

Pg!qq̄ = TRnf (z
2

+ (1� z)2) (213)

t ⇠ ✓2 (214)

m2 ⇡ z(1� z)E2✓2 (215)

k2? ⇡ z2(1� z)2E2✓2 (216)

d✓2

✓2
⇡ dk2?

k2?
⇡ dm2

m2

(217)

P
nothing

(0 < t  T ) = lim

n�>1
⇧

n�1

i=0

P
nothing

(Ti < t  Ti+1

) (218)

= exp

 

�
Z T

0

dP
something

(t)

dt
dt

!

(219)

dP
first

(T ) = dP
something

(T ) exp

 

�
Z T

0

dP
something

(t)

dt
dt

!

(220)

15

Sudakov form factor:

Mqq̄g = Mqq̄gst
a
ij

✓

pµ1
p1 · k � pµ2

p2 · k
◆

· ✏µA(k) (452)

dx1dx2 ! 2

s
EgdEgd cos ✓ (453)

� = �0

Z

CF
↵s

2⇡

dEg

Eg
d cos ✓

2(1� cos ✓q̄q)

(1� cos ✓qg)(1� cos ✓q̄g)
(454)

Eg ! 0 (455)

e+e� ! q̄qg (456)

�(Q2, Q2
0) ' exp



�CF
↵s

2⇡
ln

2

✓

Q2

Q2
0

◆�

(457)

kµ ⌧ pµi (458)

s(mH) = L�SM(mH) (459)

n = µ · s(mH) + b (460)

µ =

L · �(mH)

L · �(mH)

=

�(mH)

�SM(mH)

(461)

Hµ (462)

H0 (463)

H1 (464)

ps+b (465)

ps+b < 5% (466)

= lim

n!1
⇧

n�1
i=0 (1� Psomething(Ti < t  Ti+1)) (467)

32

Factorization of emissions and Sudakov factors allow semiclassical 
approximation of quantum process:

Q2
1

Q2
2

Q2
3

Q2
4 Q2

5

Sudakov form factor provides
“time” ordering of shower:
lower Q2 ⇐⇒ longer times

Q2
1 > Q2

2 > Q2
3

Q2
1 > Q2

4 > Q2
5

etc.

Sudakov regulates singularity for first emission . . .

Q

dP/dQ

ME

PS
?

. . . but in limit of repeated soft
emissions q → qg (but no g → gg)
one obtains the same inclusive
Q emission spectrum as for ME,
i.e. divergent ME spectrum
⇐⇒ infinite number of PS emissions
Proof: as for veto algorithm (what is
probability to have an emission at Q
after 0, 1, 2, 3, . . . previous ones?)

Sudakov form factor provides “time” 
ordering of shower: 

Q   > Q   > Q2 2 2
1 2 3

low Q longer time2
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Event Deconstruction can be used to measure parameter of the theory, 
e.g. W mass.

Significance for different hypotheses for Mw:

Proofs that Event Deconstruction 
provides direct link between Lagrangian 

and radiation profile
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HEPTopTagger

Event Deconstruction
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Z ′ input mass [GeV]
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True Z’ mass is 1500 GeV

Vary Z’ mass in Event Deconstruction


(keep width fix = 130 GeV)
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htemp
Entries  6920
Mean     1488
RMS     264.1

h_mtt
500 1000 1500 2000 2500 3000 3500 40000

100

200

300

400

500

600

700

htemp
Entries  6920
Mean     1488
RMS     264.1

h_mtt

htemp
Entries  7087
Mean     1393
RMS     198.4

h_mtt
500 1000 1500 2000 2500 30000

100

200

300

400

500

600

htemp
Entries  7087
Mean     1393
RMS     198.4

h_mtt

Invariant mass for fatjets j1+j2

with ISR/UE

without ISR/UE

Difference between true and tested Z’ mass understandable
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