Selected Topics in Flavour Physics

Alexander Lenz

IPPP Durham

Outline

- Motivation for Flavour Physics
 - Search for the Origin of Matter in the Universe
 - Identify New Physics (NP) Effects
 - Constrain Models for New Physics
- Highlights What did we really learn so far?
 - The SM rules
 - Test of our theoretical Tools
 - Still Space for sizable New Physics Effects
 - Several interesting Deviations are still there
- Some Roads to follow
 - Higher Precision necessary
 - New Observables in the Search for New Physics
- Conclusion

Flavour Physics

There are (at least) six kinds (=flavours) of quarks

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} q = +2/3 \\ q = -1/3 \end{pmatrix}$$

• Proton $p = |uud\rangle$

■ (Heavy) Flavour Physics describes hadrons with a charm- or a bottom-quark

	$D^0 = (\bar{u}c)$	$D^+ = (\bar{d}c)$	$D_s^+ = (\bar{s}c)$	$\Lambda_c = (udc)$
Mass (GeV)	1.86486	1.86962	1.96850	2.28646
Lifetime (ps)	0.4101	1.040	0.500	0.200

	$B_d = (\bar{b}d)$	$B^+ = (\bar{b}u)$	$B_s = (\bar{b}s)$	$B_c^+ = (\bar{b}c)$	$\Lambda_b = (udb)$
Mass (GeV)	5.27958	5.27926	5.3667	6.2745	5.6194
Lifetime(ps)	1.519	1.638	1.512	0.500	1.451

Motivation

Motivation - Baryon Asymmetry

symmetric initial conditions (Inflation: initial asymmetry is wiped out)

 $\Rightarrow N_{matter} = N_{antimatter}$

But we exist and stars and...

Search for annihilation lines, nucleo synthesis, CMB,...

Motivation - Baryon Asymmetry

Search for annihilation lines, nucleo synthesis, CMB,...

Motivation - Baryon Asymmetry

Search for annihilation lines, nucleo synthesis, CMB,...

$$\eta_B = \frac{n_B - n_{\bar{B}}}{n_{\gamma}} \approx 6 \cdot 10^{-10}$$

How can this be created from symmetric initial conditions?

1967 Sakharov: The fundamental laws of nature must have several properties, in particular

CP-violation: Kaons: 1964 indirect (NP '80), 1999 direct B_d : 2001 indirect, 2006 direct Charm: 2011 direct? (no indirect yet) B^+ : 2012 direct; B_s : 2013 direct (no indirect yet)

Can our fundamental theory cope with these requirements?

Motivation - Our fundamental Theory

The Standard Model = elegant description of nature at per mille precision

20th IFT Xmas Workshop, maunu

A. Lenz, December 11th 2014 - p. 8

The Standard Model of Particle Physics

Matter (spin 1/2, fermions, 3 families)

Quarks (all interactions)

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} q = +2/3 \\ q = -1/3 \end{pmatrix}$$

Leptons (weak and em interaction)

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \begin{pmatrix} q = 0 \\ q = -1 \end{pmatrix}$$

Forces (spin 1, bosons)

Interaction		M	R	
Em	Photon γ	0	∞	
Strong	Gluon g	0	$10^{-15}m$	Proton $\equiv uud\rangle, m_P = 1$ GeV
Weak	W^{\pm}, Z^0	100 GeV	$10^{-18}m$	$n \rightarrow p + e^- + \bar{\nu}_e$

Generation of mass: Higgs particle *h*: (spin 0, boson), discovered 2012 at LHC by ATLAS and CMS $M_h = 125.7$ GeV

... Englert, Brout; Higgs; Guralnik, Hagen, Kibble; ...

Motivation - Our fundamental Theory

SM seems to be complete now - first electro-weak fit

Eberhardt et al., 1209.1101 See also GFitter 1209.2716

Contains our fundamental Theory CP-violation?

The CKM matrix describes the coupling of quarks to the charged W-bosons

The amplitude of this decay is proportional to

$$\frac{g_2}{2\sqrt{2}}V_{cb}^*\cdot\ldots\cdot\frac{g_2}{2\sqrt{2}}V_{cs}$$

An imaginary part of the CKM elements is equivalent to CP violation! V_{ub} and V_{td} have most "space" for an imaginary part; both appear in B-meson decays

Motivation - Our fundamental Theory

Implementation of CP violation in the CKM matrix - need at least 3 families 1972 only u,d and s known, Kobayashi and Maskawa postulated six quarks!

 $|V_{CKM}| = \begin{pmatrix} 0.974235^{+0.00080}_{-0.000158} & 0.22551^{+0.00068}_{-0.00034} \\ 0.22537^{+0.00068}_{-0.00035} & 0.973395^{+0.00095}_{-0.000176} \\ 0.00855^{+0.00018}_{-0.00030} & 0.04062^{+0.00070}_{-0.00125} \end{pmatrix}$

 $0.999138^{+0.000052}_{-0.000030}$

Fit from CKMfitter 2014, see also UTfit ...

 $0.00357\substack{+0.00016\\-0.00015}$

 $0.04136\substack{+0.00071\\-0.00128}$

Motivation - CKM works perfect

But amount of CP violation seems to be too small for baryon asymmetry

$$\frac{J}{(100\,{\rm GeV})^{12}}\approx 10^{-20}$$

Better look in the lepton sector?

•

Open Questions in the SM

The SM is extremely successful, but it leaves many questions unanswered:

- What is dark matter?
- What is dark energy?
- How is gravity quantised?
- Why are there 3 families of particles?
- How was matter created in the universe? CP-violation in the SM is not sufficient!

Search for new physics:

- Motivated by theory: "Model-building"
- Motivated by experiment: Direct search for new effects
- Motivated by phenomenology: Search for Deviations from precise SM predictions

Why Flavour Physics?

CP violation till now only found in quark flavour physics

- Theoretically clean: $\alpha_s(m_b) \approx 0.2 \approx \Lambda/m_b$
- many processes strongly suppressed in the SM due to quantum corrections:
 - $B_s \rightarrow \mu\mu$ or $b \rightarrow s\gamma$: Flavor Changing Neutral Currents

Strong constraints on many NP models

■ Many experiments, e.g. LHCb, ATLAS, CMS; Super-Belle, Panda, LINAC, TLEP,...

Outline

- Motivation for Flavour Physics + State of the Art
 - Search for the Origin of Matter in the Universe
 - Identify New Physics (NP) Effects
 - Constrain Models for New Physics
- Highlights What did we really learn so far?
 - The SM rules
 - Test of our theoretical Tools
 - Still Space for sizable New Physics Effects
 - Several interesting Deviations are still there
- Some Roads to follow
 - Higher Precision necessary
 - New Observables in the Search for New Physics
- Conclusion

The SM rules

Huge # of flavour observables are SM-like, e.g. lifetimes, hadronic decays,...
 Unitarity triangle is SM like HFAG, CKMfitter (at CKM 2014), UTfit

 $\sin 2\beta^{direct} = 0.679 \pm 0.020 \qquad \gamma^{direct} = \left(73.2^{+6.3}_{-7.0}\right)^{\circ}$ $\sin 2\beta^{indirect} = 0.774^{+0.017}_{-0.036} \qquad \gamma^{indirect} = \left(66.4^{+1.3}_{-2.5}\right)^{\circ}$

There is still space for sizable NP effects

- Even very rare processes are SM-like, e.g.
 - $B_s \to \mu \mu$
 - $b \rightarrow s\gamma$
 - B-mixing: ΔM_q , $\Delta \Gamma_s$, a_{sl}^q
 - ٠.

There is still space for sizable NP effects

The SM rules: $B_s \rightarrow \mu \mu$

CMS 1307.5025 $(4.3\sigma, 25fb^{-1})$ and LHCb 1307.5024 $(4.0\sigma, 3fb^{-1})$

$$Br(B_s \to \mu\mu) = (2.8^{+0.7}_{-0.6}) \cdot 10^{-9} \quad \textbf{1411.4413} \quad (6.2\sigma)$$
$$Br(B_d \to \mu\mu) = (3.9^{+1.6}_{-1.4}) \cdot 10^{-10} \quad \textbf{1411.4413} \quad (3.2\sigma)$$

agrees with the SM prediction - huge success of the SM

 $Br(B_s \to \mu\mu) = 3.65 \pm 0.23 \cdot 10^{-9}$ Bobeth et al. 1311.0903 $Br(B_d \to \mu\mu) = 1.06 \pm 0.09 \cdot 10^{-10}$ Bobeth et al. 1311.0903

Remark: SM prediction depends on value of V_{cb} Buras; Knegjens There is still space for sizable NP effects

The SM rules: B-mixing

Mixing is a common effect in particle physics! (interaction eigenstate \neq mass eigenstate)

- "Unification" of electromagnetic and weak interaction
- Neutrino oscillations
- Quark mixing via the CKM matrix
- Mixing of neutral mesons macroscopic quantum effect!

It was observed in

- *K*⁰-system: 1950s (see text books, regeneration...)
- B_d -system: 1986 ΔM_d ; ??? $\Delta \Gamma_d$
- B_s -system: 2006 ΔM_s ; 2012 $\Delta \Gamma_s$
- D^0 -system: 2007, 2012 ΔM_D , $\Delta \Gamma_D$

Strongly suppressed in the SM (higher order in weak interaction) New physics effects might be of comparable size

The SM rules: B-mixing

 $|M_{12}|$, $|\Gamma_{12}|$ and $\phi = \arg(-M_{12}/\Gamma_{12})$ can be related to three observables:

- Mass difference: $\Delta M := M_H M_L \approx 2|M_{12}|$ (off-shell) $|M_{12}|$: heavy internal particles: t, SUSY, ...
- Decay rate difference: $\Delta \Gamma := \Gamma_L \Gamma_H \approx 2|\Gamma_{12}| \cos \phi$ (on-shell) $|\Gamma_{12}|$: light internal particles: u, c, ... (almost) no NP!!!

Flavor specific/semi-leptonic CP asymmetries: e.g. $B_q \rightarrow X l \nu$ (semi-leptonic)

$$a_{sl} \equiv a_{fs} = \frac{\Gamma(\overline{B}_q(t) \to f) - \Gamma(B_q(t) \to \overline{f})}{\Gamma(\overline{B}_q(t) \to f) + \Gamma(B_q(t) \to \overline{f})} = \left|\frac{\Gamma_{12}}{M_{12}}\right| \sin\phi$$

The SM rules: B-mixing

Calculating the box diagram with an internal top-quark yields

$$M_{12,q} = \frac{G_F^2}{12\pi^2} (V_{tq}^* V_{tb})^2 M_W^2 S_0(x_t) B_{B_q} f_{B_q}^2 M_{B_q} \hat{\eta}_B$$

- 1 loop calculation $S_0(x_t = m_t^2/M_W^2)$
- 2-loop perturbative QCD corrections $\hat{\eta}_B$

- Inami, Lim, '81 Buras, Jamin, Weisz, '90
- Hadronic matrix element: $\frac{8}{3}B_{B_q}f_{B_q}^2M_{B_q} = \langle \bar{B}_q | (\bar{b}q)_{V-A} | \bar{b}q \rangle_{V-A} | B_q \rangle$ FLAG

Theory A.L., Nierste 1102.4274 vs. Experiment : HFAG 14

$\Delta M_d = 0.543 \pm 0.091 \ {\rm ps}^{-1}$	$\Delta M_d = 0.510 \pm 0.003 \ {\rm ps}^{-1}$
$\Delta M_s = 17.30 \pm 2.6 \ {\rm ps}^{-1}$	$\Delta M_s = 17.761 \pm 0.022 \ { m ps}^{-1}$

- Perfect agreement with SM
- Important bounds on the unitarity triangle and NP
- Dominant SM uncertainty = Lattice

There is still space for sizable NP effects

Decay rate difference: Second OPE = Heavy Quark Expansion (HQE)

$$\Gamma_{12} = \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi}\Gamma_3^{(1)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \dots\right) + \left(\frac{\Lambda}{m_b}\right)^5 \left(\Gamma_5^{(0)} + \dots\right) + \dots$$

'96: Beneke, Buchalla; '98: Beneke, Buchalla, Greub, A.L., Nierste; '03: Beneke, Buchalla, A.L., Nierste; '03: Ciuchini, Franco, Lubicz, Mescia, Tarantino; '06; '11: A.L., Nierste; '07 Badin, Gabianni,Petrov

HQE might be questionable - relies on quark hadron duality Energy release is small \Rightarrow naive dim. estimate: series might not converge

- Mid 90's: Missing Charm puzzle $n_c^{\text{Exp.}} < n_c^{\text{SM}}$, semi leptonic branching ratio
- Mid 90's: Λ_b lifetime is too short, i.e. $\tau(\Lambda_b) \ll \tau(B_d) = 1.519$ ps
- before 2003: $\tau_{B_s}/\tau_{B_d} \approx 0.94 \neq 1$
- 2010/2011: dimuon asymmetry too large

Theory arguments for HQE

- \Rightarrow calculate corrections in all possible "directions", to test convergence
- \Rightarrow test reliability of HQE via lifetimes (no NP effects expected)

(Almost) all discrepancies disappeared:

- '12: $n_c^{2011PDG} = 1.20 \pm 0.06$ vs. $n_c^{SM} = 1.23 \pm 0.08$ Krinner, A.L., Rauh 1305.5390
- HFAG '03 $\tau_{\Lambda_b} = 1.229 \pm 0.080 \text{ ps}^{-1} \longrightarrow$ HFAG '14 $\tau_{\Lambda_b} = 1.451 \pm 0.013 \text{ ps}^{-1}$ Shift by $2.8\sigma!$
- **HFAG 2014:** $\tau_{B_s}/\tau_{B_d} = 0.995 \pm 0.006$
- **2010/2011:** dimuon asymmetry too large Test Γ_{12} with $\Delta \Gamma_s$!

Theory arguments for HQE

 \Rightarrow calculate corrections in all possible "directions", to test convergence

$$\Delta \Gamma_s = \Delta \Gamma_s^0 \left(1 + \delta^{\text{Lattice}} + \delta^{\text{QCD}} + \delta^{\text{HQE}} \right) \Rightarrow \text{looks ok!}$$

= 0.142 ps⁻¹ (1 - 0.14 - 0.06 - 0.19)

 \Rightarrow test reliability of HQE via lifetimes (no NP effects expected) $\Rightarrow \tau(B^+)/\tau(B_d)$ experiment and theory agree within hadronic uncertainties

Dominant uncertainties: Lattice + NNLO-QCD

Finally $\Delta \Gamma_s$ is measured! E.g. from $B_s \rightarrow J/\psi \phi$ LHCb Moriond 2012, 2013, 2014; ATLAS; CMS; CDF; DO

$$\begin{array}{lll} \Delta \Gamma^{\rm Exp}_{s} &=& (0.091 \pm 0.008) \, {\rm ps}^{-1} \\ \Delta \Gamma^{\rm SM}_{s} &=& (0.087 \pm 0.021) \, {\rm ps}^{-1} \end{array} \begin{array}{l} {\rm HFAG~2014} \\ {\rm A.L.,Nierste~1102.4274} \end{array}$$

Cancellation of non-perturbative uncertainties in ratios

$$\left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm Exp} / \left(\frac{\Delta\Gamma_s}{\Delta M_s}\right)^{\rm SM} = 1.02 \pm 0.09 \pm 0.19$$

Dominant uncertainty = NNLO-QCD + Lattice

Most important lesson?: HQE works also for Γ_{12} !

- HQE works for the decay $b \rightarrow c \bar{c} s$
- Energy release $M_{B_s} 2M_{D_s} \approx 1.4 \text{ GeV}$ (momentum release: 3.5 GeV)
- Quark hadron duality works: theoreticians fought for 35 years

How precise does it work? 20%? 10%?

Still more accurate predictions and data needed! LHCb, ATLAS, CMS?, TeVatron, Super-Belle

- 1. Apply HQE also to $b \to c \bar c s$ transitions and lifetimes
- 2. Apply HQE to quantities that are sensitive to NP
- 3. Apply HQE also to quantities in the charm system?
- 4. Do lattice determination & NNLO-QCD, in progress, e.g. FNAL/MILC; HPQCD

The SM rules: Lifetimes Summary

$$\frac{\tau(B_s)}{\tau(B_d)}^{\text{SM}} = 1.001 \pm 0.002 \qquad \frac{\tau(B_s)}{\tau(B_d)}^{\text{Exp}} = 0.995 \pm 0.006$$
$$\frac{\tau(B^+)}{\tau(B_d)}^{\text{SM}} = 1.04_{-0.01}^{+0.05} \pm 0.02 \qquad \frac{\tau(B^+)}{\tau(B_d)}^{\text{Exp}} = 1.076 \pm 0.004$$
$$\frac{\tau(\Lambda_b)}{\tau(B_d)}^{\text{SM}} = 0.935 \pm 0.054 \qquad \frac{\tau(\Lambda_b)}{\tau(B_d)}^{\text{Exp}} = 0.955 \pm 0.009$$
$$\frac{\bar{\tau}(\Xi_b^0)}{\bar{\tau}(\Xi_b^+)}^{\text{SM}} = 0.94 \pm 0.04 \pm ??? \qquad \frac{\tau(\Xi_b^0)}{\tau(\Xi_b^-)}^{\text{Exp}} = 0.924 \pm 0.035$$
$$\frac{\bar{\tau}(\Xi_b^0)}{\tau(\Lambda_b)}^{\text{SM}} \approx 1 \qquad \frac{\tau(\Xi_b^0)}{\tau(\Lambda_b)}^{\text{Exp}} = 1.006 \pm 0.018 \pm 0.010$$
$$\frac{\tau(\Lambda_b)}{\bar{\tau}(\Xi_b^+)}^{\text{SM}} = 0.95 \pm 0.06 \pm ??? \qquad \frac{\tau(\Lambda_b)}{\tau(\Xi_b^-)}^{\text{Exp}} = 0.918 \pm 0.026 \pm 0.011$$

Theory: AL 1405.3601

Exp.: HFAG 2014, LHCb 1405.7223, 1409.8568

...

The SM rules: improved Predictions

All lifetime predictions are strongly limited by our knowledge of the hadronic matrix elements of 4-quark operators

List of lattice predictions:

- $\tau(B^+)/\tau(B_d)$: Becirevic, hep-ph/0110124
- $\tau(\Lambda_b)/\tau(B_d)$: DiPierro, Sachrajda, Michael, 1999 Exploratory study
- $\tau(\Xi_b^0)/\tau(\Xi_b^+)$: UNKNOWN
- $\tau(D^+)/\tau(D^0)$: UNKNOWN

Typical form of the 4-quark operators:

$$\frac{1}{2m_{\Lambda_b}} \langle \Lambda_b | \bar{b}_L \gamma_\mu q_L \cdot \bar{q}_L \gamma^\mu b_L | \Lambda_b \rangle =: -\frac{f_B^2 m_B}{48} r$$

Also colour-octett, and S-P,...

The SM rules: semi-leptonic Asymmetries

SM predictions: A.L., U. Nierste, 1102.4274; A.L. 1108.1218

$$a_{fs}^{s} = (1.9 \pm 0.3) \cdot 10^{-5}, \qquad a_{fs}^{d} = -(4.1 \pm 0.6) \cdot 10^{-4},$$

$$A_{sl}^{b} = 0.406a_{sl}^{s} + 0.594a_{sl}^{d} = (-2.3 \pm 0.4) \cdot 10^{-4},$$

$$\beta_{s} = 0.018 \pm 0.0006, \qquad \left|\frac{\Delta\Gamma_{d}}{\Gamma_{d}}\right| = (4.2 \pm 0.8) \cdot 10^{-3}.$$

Experimental bounds: HFAG 14; D0,1106.6308

$$a_{fs}^{s} = -(77 \pm 42) \cdot 10^{-4} \qquad a_{fs}^{d} = -(9 \pm 21) \cdot 10^{-4}$$
$$A_{sl}^{b} = -(7.87 \pm 1.72 \pm 0.93) \cdot 10^{-3} \qquad \left|\frac{\Delta\Gamma_{d}}{\Gamma_{d}}\right| = (1 \pm 10) \cdot 10^{-3}$$
$$\phi_{s}^{c\bar{c}s} = -2\beta_{s} = 0.00 \pm 0.07$$

There is still room for sizable deviations

The SM rules

Model independent analysis: A.L., Nierste, '06

$$\Gamma_{12,s} = \Gamma_{12,s}^{\mathrm{SM}}, \qquad M_{12,s} = M_{12,s}^{\mathrm{SM}} \cdot \Delta_s; \qquad \Delta_s = |\Delta_s| e^{i\phi_s^{\Delta}}$$

$$\Delta M_s = 2|M_{12,s}^{\rm SM}| \cdot |\Delta_s|$$

$$\Delta \Gamma_s = 2|\Gamma_{12,s}| \cdot \cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)$$

$$\frac{\Delta \Gamma_s}{\Delta M_s} = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\cos\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$a_{fs}^s = \frac{|\Gamma_{12,s}|}{|M_{12,s}^{\rm SM}|} \cdot \frac{\sin\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{|\Delta_s|}$$

$$\sin(\phi_s^{\rm SM}) \approx 1/240$$

For $|\Delta_s| = 0.9$ and $\phi_s^{\Delta} = -\pi/4$ one gets the following bounds in the complex Δ -plane:

The SM rules not!!!

Combine all data before summer 2010 and neglect penguins fit of Δ_d and Δ_s A.L., Nierste, CKMfitter 1008.1593

- **Iarge new physics effects in the** B_s -system
- some new physics effects in the B_d -system

3

<

The SM rules

Combine all data till FPCP 2013 and neglect penguins fit of Δ_d and Δ_s ; update of A.L., Nierste, CKMfitter 1203.0238v2

SM seems to be perfect

Still some sizable space for NP effects

Deviations - Overview

- 1. Huge # of flavour observables are SM-like
- 2. Still some sizable space for NP effects
- 3. There are several interesting deviations in the present data

Tree-level observables

- V_{ub} and V_{cb} about 3 σ
- $B \rightarrow \tau \nu$ about 2 σ
- Lepton universality: $R(D^{(*)})$ 3.4 σ
- direct/indirect determination of the CKM angle γ

Loop-induced observables

- direct/indirect determination of the CKM angle β ; about 2 σ
- The dimuon asymmetry about 3 σ
- $B \rightarrow K^{(*)}ll$ Br, P_5' up to 4 σ
- $B_s \rightarrow \phi ll$ Br
- Lepton universality: $Br(B^+ \to K^+ \mu \mu)/Br(B^+ \to K^+ ee)$ deviates by 2.6 σ
- $Br(B_d \rightarrow \mu\mu)/Br(B_s \rightarrow \mu\mu)$ deviates by 2.3 σ 1411.4413

Observables in the Charm-sector

CPV in D-decays?

Deviations: V_{ub}

Exclusive	$ V_{ub} = 0.00323 \pm 0.00031$
Inclusive	$ V_{ub} = 0.00441 \pm 0.00021$
$B \to \tau \nu$	$ V_{ub} = 0.00504 \pm 0.00064$
Fit	$ V_{ub} = 0.00357 \pm 0.00015$

HFAG; HPQCD 2007; MILC Fermilab 2008;Ball/Zwicky 2005; Lange/Neubert/Paz 2005; Andersen/Gardi 2006,2008; Gambino/Giordano/Ossola/Uraltsev 2007; Aglietti/Di Lodovico/Ferrera/Ricciardi 2009; Aglietti/Ferrera/Ricciardi 2007; Bauer/Ligeti/Luke 2001,...

- V_{ub} is actually of order λ^4 and not λ^3 : $0.00355 = (0.22457)^{3.77673}$
- Hadronic uncertainties (lattice, LCSR) underestimated?
- **Soni and Lunghi:** do not to use V_{ub} in the global fit
- **Crivellin0907.2461; Buras/Gemmler/Isidori 1007.1993:** RH currents \Rightarrow *incl.* \neq *excl.*
- New Physics in $B \rightarrow \tau \nu$ vs. B_d -mixing

see e.g. G. Ricciardi, Dec 2014, talk in Pisa

Deviations: $B \rightarrow \tau \nu$

New results from Belle 1208.4678 confirm the SM (new BaBar still large?)

Is there a similar problem in $B \rightarrow D^{(*)} \tau \nu$? BaBar 1303.0571, Belle preli. Or also hadronic uncertainties Becirevic et al 1206.4977

BUT: The experimental number is larger than "possible"! A.L. 1205.1444, 1106.3200

- 1. Huge (= several 100 %) duality violations in Γ_{12}^s ? \rightarrow NO! see $\Delta \Gamma_s$
- 2. Huge NP in Γ_{12} ? \rightarrow NO! this also affects observables like τ_{B_s}/τ_{B_d} , n_c , ... But still some sizable NP possible - investigate e.g. n_c Bobeth, Haisch 1109.1826
- 3. Look at experimental side
 - Statistical fluctuation D0 update 1310.0447
 - Cross-check via individual asymmetries LHCb, D0, BaBar
 - \Rightarrow consistent with SM, but not yet in conflict with A^b_{sl}
 - Some systematics neglected Borissov, Hoeneisen 1303.0175 Discrepancy still more than 3σ - also dependence on $\Delta\Gamma_d$

 $\Rightarrow A^b_{sl}$ points towards effects in a^d_{sl}, a^s_{sl} and $\Delta \Gamma_d$ - look also somewhere else
Deviations: Di-muon Asymmetry

New measurements for the individual semi leptonic CP asymmetries

a^d_{sl}	=	$-0.39\pm0.35\pm0.19\%$	BaBar 1411.1842
a^d_{sl}	=	$-0.02\pm 0.19\pm 0.30\%$	LHCb 1409.8586
a_{sl}^s	=	$-0.06\pm 0.50\pm 0.36\%$	LHCb 1308.1048
a_{sl}^s	=	$-1.12\pm0.74\pm0.17\%$	D0 1207.1769
a^d_{sl}	=	$+0.68\pm 0.45\pm 0.14\%$	D0 1208.5813
a_{sl}^d	=	$+0.06\pm0.17^{+0.38}_{-0.32}\%$	BaBar 1305.1575

All numbers are consistent with the SM (no confirmation of large new physics effects) but also consistent with the value of the dimuon asymmetry more data urgently needed

New interpretation of the dimuon asymmetry Borissov, Hoeneisen 1303.0175

$$A_{sl}^b = C_d a_{sl}^d + C_s a_{sl}^s + C_{\Gamma} \frac{\Delta \Gamma_d}{\Gamma_d} + ??? (\text{e.g. Nierste CKM2014; AL et al.})$$

There is still space for sizable NP effects in $\Delta\Gamma_d$

Fits of penguins via $B_s \to \mu\mu$, $B \to K^{(*)}ll$, $b \to s\gamma$,...

1. Descotes-Genon, Matias, Virto - 1307.5683

Fits of penguins via $B_s \to \mu\mu$, $B \to K^{(*)}ll$, $b \to s\gamma$,...

2. Altmannshofer, Straub - 1308.1501

Fits of penguins via $B_s \to \mu\mu$, $B \to K^{(*)}ll$, $b \to s\gamma$,...

3. Beaujean, Bobeth, van Dyck - 1310.2478

Fits of penguins via $B_s \to \mu\mu$, $B \to K^{(*)}ll$, $b \to s\gamma$,...

4. Horgan, Liu, Meinel, Wingate - 1310.3887

Deviations: Charm

D-mixing rate is large (HFAG 2014)

$$\frac{\Delta M}{\Gamma} = 0.39^{+0.16}_{-0.17}\% \qquad \frac{\Delta \Gamma}{2\Gamma} = 0.67^{+0.07}_{-0.08}\%$$

First single $> 5 = 9.3\sigma$ measurement by LHCb 1211.1230!

■ Direct CP violation in hadronic Charm decays seen! (Naive SM: 10⁻⁴)

 $\Delta A_{CP}^{dir} = -0.253 \pm 0.104\%$

LHCb; CDF; Belle

The crucial question: Can this be described within the SM or is it NP? HQE seems to work well in the B-sector \Rightarrow Try to apply it for Charm Standard argument: the energy release is much too small, but

> $m_{B_s} - 2m_{D_s} \approx 1.43 \text{ GeV} (\text{momentum release: } 3.5 \text{ GeV})$ $m_D - 2m_K \approx 0.9 \text{ GeV} (\text{momentum release: } 1.6 \text{ GeV})$ $m_D - 2m_\pi \approx 1.6 \text{ GeV} (\text{momentum release: } 1.8 \text{ GeV})$

Outline

- Motivation for Flavour Physics + State of the Art
 - Search for the Origin of Matter in the Universe
 - Identify New Physics (NP) Effects
 - Constrain Models for New Physics
- Highlights What did we really learn so far?
 - The SM rules
 - Test of our theoretical Tools
 - Still Space for sizable New Physics Effects
 - Several interesting Deviations are still there
- Some Roads to follow
 - Higher Precision necessary
 - New Observables in the Search for New Physics
- Conclusion

Roads to follow - Summary

- 1. Huge # of flavour observables are SM-like
- 2. Still some sizable space for NP effects
- 3. There are several interesting deviations in the present data

Prepare for detecting smaller (i.e. not huge) deviations from the SM

- 1. Higher precision in theory and experiment NNLO-QCD, Lattice
- 2. Challenge some text-book wisdom, e.g.
 - Penguins are negligible
 - NP effects in tree-level decays are negligible
- 3. Investigate quantities that are difficult to measure, e.g.:
 - $B_q \rightarrow \tau \tau$, inclusive non-leptonic decays, $\Delta \Gamma_d$,
- 4. Look at the charm sector
- 5. Find NP in flavour observables

- NP effects in penguins are quite well studied many fits for C_7 , C_9 , C_{10} ,...
- No NP effects in tree-level decays, i.e. C_1 and C_2 was a reasonable approximation some years ago, but should be challenged in view of the current experimental precision
- First systematic studies of NP effects in C_1 and C_2 in 2014:
 - Effects on $\Delta \Gamma_d$: Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 1404.2531
 - $B \rightarrow K\pi$ -puzzle: Bobeth, Gorbahn, Vickers, 1409.3252
 - Effects on CKM-angle γ : Brod, AL, Tetlalmatzi-Xolocotzi, Wiebusch, 1412.1446
- Look at observables that
 - depend strongly on C_1 and C_2
 - can be reliably predicted
 - are precisely measured
 - \Rightarrow take bounds from

 $B \to D\pi, b \to s\gamma, b \to d\gamma$, lifetimes, $\sin \beta, B \to \pi\pi, \Delta \Gamma_s$ and $a_{sl}^{d,s}$

Roads to follow: NP in tree-level decays

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 1404.2531

Is Im $\Delta C_1 = \pm 0.1$ large or small?

Roads to follow: NP in tree-level decays

Effects on the determination of the CKM angle γ

NP effects in C_1 and C_2 induce a shift $\delta\gamma$ in the determination of γ

$$\delta\gamma = (r_A - r_{A'})\frac{\mathrm{Im}\Delta C_1}{C_2}$$

with the ratios of hadronic matrix elements (different topologies!)

$$r_{A'} = \frac{\langle \bar{D}^0 K^- | Q_1^{\bar{u}cs} | B^- \rangle}{\langle \bar{D}^0 K^- | Q_2^{\bar{u}cs} | B^- \rangle} \qquad r_A = \frac{\langle D^0 K^- | Q_1^{\bar{c}us} | B^- \rangle}{\langle D^0 K^- | Q_2^{\bar{c}us} | B^- \rangle}$$

with naive estimates for r_A and $r_{A'}$ we obtain

$$\mathrm{Im}\Delta C_1 = \pm 0.1 \Rightarrow \delta \gamma = \pm 4^{\circ}$$

This is huge!

Roads to follow: NP in tree-level decays

How to improve the bounds on C_1 and C_2 ?

- Include more observables
- NNLO-QCD to lifetimes and $\Delta \Gamma_s$
- smaller experimental error of $a_{sl}^{q,d}$
- Do a real fit till now only scan
- Investigate more effects of NP in C_1 and C_2 , e.g. $\Delta \Gamma_d$
- Identify NP models with effects in C_1 and C_2

How to improve the bounds on $\gamma \mathbf{?}$

Improved estimates on r_A and $r_{A'}$

Roads to follow: NP in $\Delta\Gamma_d$

- \blacksquare $\Delta\Gamma_s$ cannot be enhanced dramatically by new physics Bobeth, Haisch 2011
- $\Delta \Gamma_d$ could in principle be enhanced dramatically Bobeth, Haisch, A.L., Pecjak, Tetlalmatzi-Xolocotzi 2014

Comparison

- $\Delta\Gamma_s$ dominated by $b \to c\bar{c}s$: $B(b \to c\bar{c}s) = (23.7 \pm 1.3)\%$ Krinner, A.L., Rauh 2013
- $\Delta \Gamma_d$ dominated by $b \to c\bar{c}d$: $B(b \to c\bar{c}d) = (1.31 \pm 0.07)\%$ Krinner, A.L., Rauh 2013
- $\Delta \Gamma_s$ is completely dominated by $b \to c\bar{c}s$, $\Delta \Gamma_d$ has also sizable contributions from $b \to c\bar{u}d$ and $b \to u\bar{u}d$, which cancel to some extent

Enhancement via

- Violations of CKM duality
- New (almost unconstrained) $bd\tau\tau$ operators
- New physics in current-current operators Q_1 and Q_2

A class of (almost) invisible decays

- $b \rightarrow s \tau \tau$ can enhance $\Delta \Gamma_s$ and a_{sl}^s . It is constrained by
 - $B_s \rightarrow \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $B \to X_s \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $\bullet~B^+ \to K^+ \tau \tau < 3.3 \cdot 10^{-3}$ direct from BaBar 2010
 - \Rightarrow Enhancement of up to 35% in $\Delta\Gamma_s$ possible (\approx hadronic uncertainties)
 - \Rightarrow Improve bounds on $b \rightarrow s au au$!

 Γ_{12}^s is dominated by the CKM favoured decay $b \to c\bar{c}s$, a huge effect would be seen everywhere - Γ_{12}^d looks more promising

- $b \to d\tau \tau$ can enhance $\Delta \Gamma_d$ and a_{sl}^d . It is constrained by
 - $B_d \rightarrow \tau \tau < 4.1 \cdot 10^{-3}$ direct from BaBar 2006
 - $B \to X_d \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - $B^+ \to \pi^+ \tau \tau < 2.7\%$ indirect from $\tau(B_s)/\tau(B_d)$
 - \Rightarrow Enhancement of up to 270% in $\Delta\Gamma_d$ possible

This might solve the dimuon asymmetry! \Rightarrow Improve bounds on b o d au au!

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 2014

Bobeth, Haisch 2011

Bobeth, Haisch, AL, Pecjak, Tetlalmatzi-Xolocotzi, 2014

Roads to follow: NP in $\Delta\Gamma_d$

New physics contributions to the current-current operators Q_1 and Q_2

The decays $b \rightarrow c\bar{c}d, c\bar{u}d, u\bar{c}d, u\bar{u}d$ can get different new physics contributions to the Wilson coefficients (the SM-one is universal)

Constraints from $B \to \pi\pi, \rho\pi, \rho\rho, D^*\pi, B \to X_d\gamma$, $\sin 2\beta$ still allow enhancements of $\Delta\Gamma_d$ by more than a factor of five

Roads to follow: very New Physics

Test of the fundamentals of Quantum Mechanics with B-mixing BertImann, Grimus 1997

Test decoherence in Quantum Mechanics

 $O = |A_1 + A_2|^2 = |A_1|^2 + |A_2|^2 + 2Re(A_1A_2^*) \rightarrow |A_1|^2 + |A_2|^2 + 2(1 - \zeta)Re(A_1A_2^*)$

In Quantum Mechanics $\boldsymbol{\zeta}=\boldsymbol{0}$ holds, test experimentally via

$$R = \frac{N^{++} + N^{--}}{N^{+-} + N^{-+}} = \frac{\text{like-sign dilepton events}}{\text{opposite-sign dilepton events}}$$
$$= \frac{1}{2} \left(\left| \frac{p}{q} \right|^2 + \left| \frac{q}{p} \right|^2 \right) \frac{x^2 + y^2 + \zeta \left[y^2 \frac{1+x^2}{1-y^2} + x^2 \frac{1-y^2}{1+x^2} \right]}{2 + x^2 - y^2 + \zeta \left[y^2 \frac{1+x^2}{1-y^2} - x^2 \frac{1-y^2}{1+x^2} \right]}$$

New analysis: x and y from HFAG 2014 and R from ARGUS 1994, CLEO 1993

$c = -0.26^{\pm 0.30}$	δR	$\pm 10\%$	$\pm 5\%$	$\pm 2\%$
$\zeta = -0.20_{-0.28}$	$\delta\zeta$	$+45.2\% \\ -43.8\%$	$+22.8\% \\ -22.4\%$	$+10.0\% \\ -9.98\%$

Hodges, Hulme, Kvedaraite, A.L., Richings, Shen, Waite, 2014

From a theory point the most "simple" quantities are the lifetimes

In the Charm-system huge lifetimes ratios appear, e.g.

$$rac{ au(D+)}{ au(D^0)} = 2.536 \pm 0.019$$
 PDG 12

Can theory cope with this?

Be aware:

- Λ/m_c might be too large ($\Lambda \neq \Lambda_{QCD}!$)
- $\alpha_s(m_c)$ might be too large

Roads to follow: Charm Observables

■ '75-'78: Naive expectations (before first data):

$\tau(D+)/\tau(D^0)\approx 1$

79-'82: Naive expectations (after first data hinting for a large difference)

 $\tau(D+)/\tau(D^0) \approx 6...10$

- Systematic HQE estimates Voloshin, Shifman ('81,'85)
 - LO-QCD, 1/ N_c : $\tau(D+)/\tau(D^0) \approx 2$ Bigi, Uraltsev ('92-...)
 - up-to-date estimate; NLO QCD A.L., Rauh; 1305.3588

 $\frac{\tau(D+)}{\tau(D^0)} = 2.2 \pm 1.7(0.4) (\text{hadronic ME})^{+0.3}_{-0.7}(\text{scale}) \pm 0.1(\text{parametric})$

- Looks promising: huge lifetime difference might be explainable by the HQE
- Hadronic matrix elements of the 4-quark operators urgently needed

Dominant uncertainty: NNLO-QCD + Lattice

Conclusion

- 1. Huge # of flavour observables are SM-like
- 2. Still some sizable space for NP effects
- 3. There are several interesting deviations in the present data

Prepare for detecting smaller (i.e. not huge) deviations from the SM

- 1. Higher precision in theory and experiment NNLO-QCD, Lattice
- 2. Challenge some text-book wisdom, e.g.
 - Penguins are negligible
 - NP effects in tree-level decays are negligible
- 3. Investigate quantities that are difficult to measure, e.g.:
 - $B_q \rightarrow \tau \tau$, inclusive non-leptonic decays, $\Delta \Gamma_d$,
- 4. Look at the charm sector
- 5. Find NP in flavour observables

The SM rules VI: $\tau(B^+)/\tau(B_d)$ in NLO-QCD

$$\frac{\tau_1}{\tau_2} = 1 + \left(\frac{\Lambda}{m_b}\right)^3 \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi}\Gamma_3^{(1)} + \ldots\right) + \left(\frac{\Lambda}{m_b}\right)^4 \left(\Gamma_4^{(0)} + \ldots\right) + \ldots$$

2002: Beneke, Buchalla, Greub, A.L., Nierste; Franco, Lubicz, Mescia, Tarantino

2004: Greub, A.L., Nierste; 2008 A.L.

$$\frac{\tau_{B^+}}{\tau_{B_d}} - 1 = 0.0324 \left(\frac{f_B}{200 \text{MeV}}\right)^2 \qquad [(1.0 \pm 0.2)B_1 + (0.1 \pm 0.1)B_2 - (17.8 \pm 0.9)\epsilon_1 + (3.9 \pm 0.2)\epsilon_2 - 0.26]$$

with non-perturbative input from Becirevic hep-ph/0110124 - 13 years old!!!

$$B_{1} = 1.10 \pm 0.20$$
$$B_{2} = 0.79 \pm 0.10$$
$$\epsilon_{1} = -0.02 \pm 0.02$$
$$\epsilon_{2} = 0.03 \pm 0.01$$

Huge Cancellations appear, see e.g. 1405.3601 ⇒ extreme sensitivity on bag parameters! Update urgently needed!

The SM rules VIII: $\tau(\Lambda_b)/\tau(B_d)$ - Experiment

Year	Ехр	Decay	$ au(\Lambda_b)\left[ps ight]$	$ au(\Lambda_b)/ au(B_d)$
2014	HFAG	average	1.451 ± 0.013	0.955 ± 0.009
2014	LHCb	$J/\psi pK^-$	1.479 ± 0.013	0.974 ± 0.007
2013	CMS	$J/\psi\Lambda$	1.503 ± 0.061	$0.989 \pm 0.040 *$
2012	ATLAS	$J/\psi\Lambda$	1.449 ± 0.040	$0.954 \pm 0.026 *$
2010	CDF	$J/\psi\Lambda$	1.537 ± 0.047	1.020 ± 0.031
2009	CDF	$\Lambda_c + \pi^-$	1.401 ± 0.058	0.922 ± 0.038
2007	D0	$\Lambda_c \mu \nu X$	1.290 ± 0.150	$0.849 \pm 0.099 *$
2007	D0	$J/\psi\Lambda$	1.218 ± 0.137	$0.802 \pm 0.090 *$
2006	CDF	$J/\psi\Lambda$	1.593 ± 0.089	1.049 ± 0.059
2004	D0	$J/\psi\Lambda$	1.22 ± 0.22	0.87 ± 0.17
2003	HFAG	average	1.212 ± 0.052	0.798 ± 0.034
1998	OPAL	$\Lambda_c l$	1.29 ± 0.25	$0.85 \pm 0.16 *$
1998	ALEPH	$\Lambda_c l$	1.21 ± 0.11	$0.80 \pm 0.07 *$
1995	ALEPH	$\Lambda_c l$	1.02 ± 0.24	$0.67 \pm 0.16 *$
1992	ALEPH	$\Lambda_c l$	1.12 ± 0.37	$0.74 \pm 0.24 *$

Year	Author	$ au(\Lambda_b)/ au(B_d)$
2014	A.L. 1405.3601	0.935 ± 0.054
2007	Tarantino	0.88 ± 0.05
2004	Petrov et al.	0.86 ± 0.05
2003	Tarantino	0.88 ± 0.05
2002	Rome	0.90 ± 0.05
2000	Körner,Melic	0.810.92
1999	Guberina, Melic, Stefanic	0.90
1999	diPierro, Sachrajda, Michael	0.92 ± 0.02
1999	Huang, Liu, Zhu	0.83 ± 0.04
1996	Colangelo, deFazio	> 0.94
1996	Neubert,Sachrajda	" > 0.90"
1992	Bigi, Blok, Shifman, Uraltsev, Vainshtein	> 0.850.90
x	$only1/m_b^2$	0.98

$$\begin{aligned} \frac{\tau(\Lambda_b)}{\tau(B_d)} &= 1 + \frac{\Lambda^2}{m_b^2} \left(\Gamma_2^{(0)} + \ldots \right) \\ &+ \frac{\Lambda^3}{m_b^3} \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \ldots \right) \\ &+ \frac{\Lambda^4}{m_b^4} \left(\Gamma_4^{(0)} + \ldots \right) + \frac{\Lambda^5}{m_b^5} \left(\Gamma_5^{(0)} + \ldots \right) + \ldots \end{aligned}$$

Leading Term

$$\begin{aligned} \frac{\Lambda^2}{m_b^2} \Gamma_2 &= \frac{\mu_\pi^2(\Lambda_b) - \mu_\pi^2(B_d)}{2m_b^2} + \frac{c_G}{c_3} \frac{\mu_G^2(B_d) - \mu_G^2(\Lambda_b)}{2m_b^2} \\ &= \frac{(0.1 \pm 0.1) \,\text{GeV}^2}{2m_b^2} - 1.1 \frac{0.35 \,\text{GeV}^2 - 0}{2m_b^2} \\ &\approx (0.003 \pm 0.003) - (0.011 \pm 0.003) = -0.008 \pm 0.005 \end{aligned}$$

A.L. 1405.3601 with inputs from Bigi, Mannel, Uraltsev, 2011

$$\frac{\tau(\Lambda_b)}{\tau(B_d)} = 1 - 0.008$$

+ $\frac{\Lambda^3}{m_b^3} \left(\Gamma_3^{(0)} + \frac{\alpha_s}{4\pi} \Gamma_3^{(1)} + \ldots \right)$
+ $\frac{\Lambda^4}{m_b^4} \left(\Gamma_4^{(0)} + \ldots \right) + \frac{\Lambda^5}{m_b^5} \left(\Gamma_5^{(0)} + \ldots \right) + \ldots$

 Γ_3 is a linear combination of perturbative Wilson coefficients and non-perturbative matrix elements

- Wilson coefficient of $\Gamma_3^{(0)}$, e.g. 1996 Uraltsev/ Neubert and Sachrajda Part of $\Gamma_3^{(1)}$ 2002 Franco, Lubicz, Mescia, Tarantino
- Non-perturbative matrix elements of 4-quark operators HQET: only two different matrix elements (instead of four)

$$\frac{1}{2m_{\Lambda_b}} \langle \Lambda_b | \bar{b}_L \gamma_\mu q_L \cdot \bar{q}_L \gamma^\mu b_L | \Lambda_b \rangle =: -\frac{f_B^2 m_B}{48} r$$

Values for r:

r pprox 0.2	$Bag \ model$ Guberina, Nussinov, Peccei, Rückl, 1979
r pprox 0.5	$NR \; quark \; model$ –"–
$r = 0.9 \pm 0.1$	spectroscopy Rosner, 1996
$r = 1.8 \pm 0.5$	spectroscopy -"-
$r = 0.2 \pm 0.1$	$QCD \; sum \; rules \;$ Colangelo, de Fazio, 1996

Neubert, Sachrajda: $\frac{\tau(\Lambda_b)}{\tau(B_d^0)}$ "> 0.9"

$r = 1.2 \pm 0.2 \pm ?$	$lattice\;$ di Pierro, Sachrajda, Michael 1999
$r=2.3\pm0.6$	$QCD \; sum \; rules \;$ Huang, Liu, Zhu, 2000
$r = 6.2 \pm 1.6$	QCD sum rules _"-

$$\underset{\tau(B_d^0)}{!!!} \frac{\tau(\Lambda_b)}{\tau(B_d^0)} - 1 \propto r \quad !!!$$

The SM rules XIII: $\tau(\Lambda_b)/\tau(B_d)$ Matrix Elements

1996 Rosner

$$r = \frac{4}{3} \frac{m_{\Sigma_b^*}^2 - m_{\Sigma_b}^2}{m_{B^*}^2 - m_B^2}$$

In 1996 *b*-baryon masses were hardly known $m_{\Sigma_b^*}^2 - m_{\Sigma_b}^2 \approx m_{\Sigma_c^*}^2 - m_{\Sigma_c}^2 = (0.384 \pm 0.035) \,\text{GeV}^2$ $\Rightarrow r = 0.9 \pm 0.10$

•
$$m_{\Sigma_b^*} - m_{\Sigma_b} = (56 \pm 16) \text{ MeV}$$

$$\Rightarrow r = 1.8 \pm 0.5$$

• Use the values from PDG 2014: $\tau_{\Lambda_b}/\tau_{B_d} = 0.935 \pm 0.054$

AL 1405.3601

$$\Rightarrow r = 0.62 \pm 0.06$$

1999 DiPierro, Sachrajda, Michael: currently the only lattice determination!

- 15 years old!
- The authors call their study exploratory:
 - Larger lattice should be used
 - Larger sample of gluon configurations should be used
 - Matching to continuum only at leading order
 - No chiral extrapolation attempted
 - Penguin contractions are missing

1999 Huang, Liu, Zhu:

QCD sum rule result, which is up to a factor of 31 larger than the one by Colangelo and DeFazio and by accident fitted the low experimental number of that time...

The SM rules XV: clean Ratio $\tau(\Xi_b^0)/\tau(\Xi_b^+)$

- Disconnected contributions cancel in $\tau(\Xi_b^0)/\tau(\Xi_b^+)$ as in $\tau(B^+)/\tau(B_d)$
- No matrix elements for Ξ_b available assume they are equal to the Λ_b \Rightarrow ???: unknown systematic hadronic errors
- Get rid of unwanted $s \to u$ -transitions $\overline{\Gamma}(\Xi_b) = \Gamma(\Xi_b) \Gamma(\Xi_b \to \Lambda_b + X)$.

$$\frac{\bar{\tau}(\Xi_b^0)}{\bar{\tau}(\Xi_b^+)} = 0.94 \pm 0.04 \pm ??? \qquad \frac{\tau(\Xi_b^0)}{\tau(\Xi_b^-)} = 0.924 \pm 0.035$$
$$\bar{\tau}(\Xi_b^0) = \tau(\Lambda_b) \qquad \frac{\tau(\Xi_b^0)}{\tau(\Lambda_b)} = 1.006 \pm 0.018 \pm 0.010$$
$$\frac{\tau(\Lambda_b)}{\bar{\tau}(\Xi_b^+)} = 0.95 \pm 0.06 \pm ??? \qquad \frac{\tau(\Lambda_b)}{\tau(\Xi_b^-)} = 0.918 \pm 0.026 \pm 0.011$$

Theory: AL 1405.3601 based on Beneke, Buchalla, Greub, AL, Nierste 2002 Exp.: LHCb 1405.7223, 1409.8568

• $\tau(B_s)/\tau(B_d)$: Almost perfect cancellation of all spectator quark contributions in the HQE

HFAG 2014 VS. AL 1405.3601

$$\frac{\tau(B_s)}{\tau(B_d)}^{\text{Exp}} = 0.995 \pm 0.006$$
 $\frac{\tau(B_s)}{\tau(B_d)}^{\text{SM}} = 1.001 \pm 0.002$

- Gives model independent bounds on invisible NP contributions
- $\Phi_s, \Delta \Gamma_s$ can also be extracted from effective B_s lifetimes Dunietz PRD52(1995)3048, hep-ph/9501287

Untagged B_s -decays - fit the two exponentials with one Hartkorn, Moser 1999

$$\frac{\Gamma[f,t] + \Gamma[\bar{f},t]}{2} = Ae^{-\Gamma_L t} + Be^{-\Gamma_H t} = \Gamma_f e^{-\Gamma_f t} \text{ with } \Gamma_f = \frac{\frac{A}{\Gamma_L} + \frac{B}{\Gamma_H}}{\frac{A}{\Gamma_L^2} + \frac{B}{\Gamma_H^2}}$$
see also Dunietz, Fleischer, Nierste PRD63 (2001) 114015, hep-ph/0012219

The SM rules XVII: Effective Lifetimes

$$\tau_{B_q \to f} = \frac{1}{\Gamma_q} \frac{1}{1 - y_q^2} \left(\frac{1 + 2\mathcal{A}_{\Delta\Gamma_q}^f y_q + y_q^2}{1 + \mathcal{A}_{\Delta\Gamma_q}^f y_q} \right)$$
$$\mathcal{A}_{\Delta\Gamma_q}^f = -\frac{2\text{Re}(\lambda_f)}{1 + |\lambda_f|^2} , \qquad \lambda_f = \frac{q}{p} \frac{\bar{A}_f}{A_f} , \qquad y_q = \frac{\Delta\Gamma_q}{2\Gamma_q}$$

with

• Flavour-specific $\mathcal{A}^f_{\Delta\Gamma_q} = 0$

$$au(B_s \to \pi^+ K^-) = 1.60(6)(1) \text{ ps}$$
 LHCb1406.7204
 $au(B_s \to D_s^+ D^-) = 1.52(15)(1) \text{ ps}$ LHCb1312.1217

• $\mathcal{A}^{f}_{\Delta\Gamma_{a}}$ from Fleischer, Knegjens 2010,11

 $\tau(B_s \to K^+ K^-) = 1.407(16)(7) \text{ ps}$ LHCb1406.7204

CP-even τ_L

$$\tau(B_s \to D_s^+ D_s^-) = 1.406(18) \text{ ps}$$
 LHCb1406.7204

CP-odd au_H

$$\tau(B_s \to \psi f_0) = 1.656(33) \text{ ps}$$
 HFAG2014

The SM rules XVIII: further Lifetimes

- $\tau(B_c)$: three contributions 1. *c*-quark decays
 - 2. *b*-quark decays
 - 3. b c-annihilation

 $au(B_c) = 0.500 \pm 0.013 \, \text{ps}$ HFAG 2014 $au(B_c)_{\text{LO}} = 0.52^{+0.18}_{-0.12} \, \text{ps}$ Beneke, Buchalla 1996

Roads to follow I - Higher Precision in Γ_{12}

Calculating the following diagrams

Roads to follow II - Higher Precision in Γ_{12}

one gets Wilson coefficients of the following operators

$$Q = (\bar{b}_{i}s_{i})_{V-A} \cdot (\bar{b}_{j}s_{j})_{V-A}$$
$$\tilde{Q}_{s} = (\bar{b}_{i}s_{j})_{S-P} \cdot (\bar{b}_{i}s_{j})_{S-P}$$
$$\langle \bar{B}_{s}|Q|B_{s}\rangle = \frac{8}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}B$$
$$\langle \bar{B}_{s}|\tilde{Q}_{S}|B_{s}\rangle = \frac{1}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}\tilde{B}_{s}' = \frac{1}{3}f_{B_{s}}^{2}M_{B_{s}}^{2}\frac{M_{B_{s}}^{2}}{(\bar{m}_{b}+\bar{m}_{s})^{2}}\tilde{B}_{s}$$

 f_{B_s} , B and \tilde{B}_S have to be determined non-perturbatively!

Roads to follow III - Higher Precision in Γ_{12}

Expanding also in the small *s* momenta one get contributions of dimension 7

$$R_{0} = Q_{s} + \tilde{Q}_{S} + \frac{1}{2}Q$$

$$R_{1} = \frac{m_{s}}{m_{b}}(\bar{b}_{i}s_{i})_{S-P}(\bar{b}_{j}s_{j})_{S+P}$$

$$R_{2} = \frac{1}{m_{b}^{2}}(\bar{b}_{i}\overleftarrow{D}_{\rho}\gamma^{\mu}(1-\gamma_{5})D^{\rho}s_{i})(\bar{b}_{j}\gamma_{\mu}(1-\gamma_{5})s_{j})$$

$$R_{3} = \frac{1}{m_{b}^{2}}(\bar{b}_{i}\overleftarrow{D}_{\rho}(1-\gamma_{5})D^{\rho}s_{i})(\bar{b}_{j}(1-\gamma_{5})s_{j})$$

$$\tilde{R}_{i} = \tilde{R}_{i}(R_{j})$$

There exist no non-perturbative determinations of these operators A first estimate with QCD sum rules was made by Mannel, Pecjak, Pivovarov Current estimates rely on vacuum insertion approximation

Roads to follow IV - Higher Precision in Γ_{12}

Improvement in theoretical accuracy

$\Delta\Gamma_s^{ m SM}$	2011	2006
Central Value	$0.087{ m ps}^{-1}$	$0.096{\rm ps}^{-1}$
$\delta(\mathcal{B}_{\widetilde{R}_2})$	17.2%	15.7%
$\delta(f_{B_s})$	13.2%	33.4%
$\delta(\mu)$	7.8%	13.7%
$\delta(\widetilde{\mathcal{B}}_{S,B_s})$	4.8%	3.1%
$\delta(\mathcal{B}_{R_0})$	3.4%	3.0%
$\delta(V_{cb})$	3.4%	4.9%
$\delta(\mathcal{B}_{B_s})$	2.7%	6.6%
•••	••••	• • •
$\sum \delta$	24.5%	40.5%

Angular analysis of $B_s \rightarrow J/\psi \phi$ at CDF, D0 and LHCb:

 $S_{\psi\phi}^{\rm SM} = 0.0036 \pm 0.0012 \rightarrow \sin\left(2\beta_s - \phi_s^{\Delta} - \delta_s^{\rm Peng,SM} - \delta_s^{\rm Peng,NP}\right) = 0.00 \pm 0.07$

HFAG 2014

Is this a contraction to the dimuon asymmetry?

Depends on the possible size of penguin contributions

- SM penguins are expected to be very small e.g $\leq 1\%$ for $B_d \rightarrow J/\psi K_s$ Jung 1206.2050 but see also Faller, Fleischer; Mannel 2008
- NP penguins might be larger
- Experimental cross-check! e.g. $B_s \rightarrow \phi \phi$ LHCb Moriond 2013

But: even small penguin contributions have a sizable effect! A.L. 1106.3200

Many observables in the B_s mixing system:

Elimination of $\Gamma_{12}^{\text{Theo}}$ via (No hint for incorrectness of $\Gamma_{12}^{\text{Theo}}$ except: A_{sl}^{b} is 1.5σ above bound)

$$a_{sl}^s = -\frac{\Delta\Gamma}{\Delta M} \frac{S_{\psi\phi}}{\sqrt{1-S_{\psi\phi^2}}} \cdot \delta$$

not possible at that simple level, because $\delta \neq 1$

$$\delta = \frac{\tan\left(\phi_s^{\rm SM} + \phi_s^{\Delta}\right)}{\tan\left(-2\beta_s^{\rm SM} + \phi_s^{\Delta} + \delta_s^{\rm peng, SM} + \delta_s^{\rm peng, NP}\right)}$$

A.L. 1106.3200

Roads to follow VII - How large are penguins?

• To extract ϕ_s^{Δ} one needs $\Gamma_{12}^{s,\mathrm{SM}}$

20th IFT Xmas Workshop, Madrid