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  Planck	
  data	
  with	
  other	
  astrophysical	
  data,	
  including	
  Type	
  Ia	
  supernovae,	
  the	
  equaJon	
  of	
  state	
  
of	
  dark	
  energy	
  is	
  constrained	
  to	
  

r < 0.1

w	
  =	
  -­‐	
  1.006	
  ±	
  0.045	
  	
  
CC	
  is	
  a	
  good	
  fit	
  to	
  data	
  	
  :	
  	
  	
  	
  need	
  	
  string	
  landscape	
  +	
  anthropic	
  reasoning	
  	
  	
  

Can	
  we	
  describe	
  	
  
all	
  this	
  using	
  only	
  
the	
  `primordial	
  
sector	
  of	
  supergravity’:	
  
the	
  inflaton+	
  goldsJno?	
  
The	
  answer	
  is	
  YES!	
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Fluxes:	
  gauged	
  supergravity	
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…	
  strong	
  evidence	
  that	
  the	
  Dirchlet-­‐branes	
  are	
  intrinsic	
  to	
  type	
  II	
  string	
  theory	
  and	
  are	
  the	
  Ramond-­‐	
  
Ramond	
  sources	
  required	
  by	
  string	
  duality.	
  We	
  also	
  note	
  the	
  existence	
  of	
  a	
  previously	
  overlooked	
  9-­‐form	
  
potenJal	
  in	
  the	
  IIa	
  string,	
  which	
  has	
  a	
  cosmological	
  constant	
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  undetermined	
  magnitude.	
  This	
  is	
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d=4	
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  with	
  a	
  nilpotent	
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  useful	
  in	
  cosmology:	
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  D-­‐brane	
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Abstract

The role of the D3 brane in providing de Sitter vacua with spontaneously broken supersymmetry

in the KKLT construction is clarified. The first step in this direction was explained in [1,2]: it was

shown there that in the GKP background the bosonic contributions to the vacuum energy from the

DBI and WZ term cancel for a D3 brane, but double for a D3 brane, leading to de Sitter vacua.

The next step was taken in [3] where the analogous mechanism of the doubling (cancelation) of the

D3 (D3) DBI and WZ terms was discovered in the presence of Volkov-Akulov fermions living on the

brane, in a flat supergravity background. Here we confirm this mechanism of doubling/cancelation

for the D3/D3 brane in the GKP supergravity background preserving N = 1, d = 4 supersymmetry.

We find that imaginary self-dual G(3) flux of type (2, 1) nicely removes the SU(3) fermion triplet

by giving it a large mass, while leaving the Volkov-Akulov goldstino, which is the SU(3) singlet,

massless. This makes the de Sitter landscape in D-brane physics clearly related to de Sitter vacua in

e↵ective d = 4 supergravity with a nilpotent multiplet and spontaneously broken supersymmetry.
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energy-momentum tensor from the quantum corrections i.e the curvature corrections (see [43] for

details) are denoted by hT k
k iq.

Since the warp factor e2A is smooth in M-theory, for a compact eight-dimensional manifold, we

expect the integral of ⇤ e�4A to vanish. In this case it is easy to see that the ⇤ > 0 condition can be

achieved if and only if:

hT µ
µ iq > hT k

k iq, (C.4)

which is the generalization of the classical condition first found by [20]. The analysis that we perform

here, in the presence of the above-mentioned corrections, would precisely achieve that, allowing a

positive curvature solution to exist in our set-up.
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1 Introduction

The role of the D3 brane in the presence of an O3-plane in providing an uplift from supersymmetric

AdS vacua to dS vacua in the KKLT construction [1] was explained in detail in [2]. The bosonic D3

and D3 actions were studied there in the curved background AdS5⇥X5, with X5 an Einstein manifold.

The action at a fixed position of the brane or anti-brane in the extra dimensions, r1(�) = r0, has the

following form [2]

Sq = SDBI + q SWZ = �T3

Z

d4�
p
�g

⇣r0
R

⌘4
+ q T3

Z

C4 . (1.1)

Here q = 1 for a D3 brane and q = �1 for a D3 brane, and R is the characteristic length scale of the

AdS5 geometry. The 4-form in this case is C4 =
⇣

r0
R

⌘4
d4�. It was observed in [2] that at any fixed

position

SD3 = 0 , SD3 = �2T3

⇣r0
R

⌘4
Z

d4�
p
�g . (1.2)

This leads to an e↵ective positive energy for the D3 at position r0 in a background with unbroken

supersymmetry, so that

V = 2T3

⇣r0
R

⌘4
, (1.3)

which can uplift the vacuum to a dS one. The same feature takes place in the GKP background [4].

The metric in such a background is of the form

ds210 = e2A(z)⌘µ⌫dx
µdx⌫ + e�2A(z)g̃i|̄dz

idz̄ |̄ , µ, ⌫ = 0, 1, 2, 3, i, |̄ = 1, 2, 3, (1.4)

and the self-dual 5-form flux is given by

F̃5 = (1 + ⇤10)[d↵(z) ^ dx0 ^ dx1 ^ dx2 ^ dx3] . (1.5)

The equations of motion require that e4A(z) = ↵(z), so that the pull-back of C4 is given by C4 =

↵(z) d4� = e4A(z) d4�. When the D3 brane is located at some z = z0 we have

V = 2T3e
4A0 , with A0 ⌘ A(z0) . (1.6)

One may view this observation as a first indication that the complete brane action with account of

fermions which live on the brane, might exhibit an analogous phenomenon: cancelation of the DBI

and WZ terms for the D3 brane and doubling for the D3 brane in the GKP background [4] preserving

N = 1 supersymmetry.

The analysis in [1,2] is based on the bosonic action of the brane. Meanwhile, one can start instead

with the full -symmetric actions of the D3 and D3 brane, which include the fermions living on

the (anti-) brane [5–11]. These actions after gauge-fixing of the local fermionic -symmetry have

spontaneously broken supersymmetry in the presence of the fermions remaining on the brane after

the gauge-fixing. The corresponding analysis of the actions was performed in [3] in a flat supergravity

background 1. It was shown that in the presence of fermions, under certain orientifolding conditions,

1The mechanism of doubling/cancelation of the D9/D9 branes was first discovered and studied in [12] in the flat

superspace background and in [13] in the curved superspace background, at the level quadratic in fermions. Our results

for the D3/D3 branes are in agreement with the ones following from a compactification and performing T-dualities of

the D9/D9 branes.
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2.2 -invariant worldvolume actions

The worldvolume actions for D3 brane solutions of supersymmetric field theories may be viewed as

4-dimensional non-linear sigma-models with a superspace as the target space [27]. In the notation

of [6] the worldvolume fields ZM (�) define a map from the worldvolume with coordinates �µ (µ =

0,1,2,3) to a superspace with coordinates ZM (�) = (xm(�), ✓�I(�)), where I = 1, 2 denotes the two

components of the doublet of 16 component Majorana-Weyl spinors ✓I in the IIB theory, see [6] for

details. Instead of the action (1.1) where ✓�I(�) = 0 the complete classical D3 brane action depends

on bosonic and on fermionic fields on the brane, xm(�) and ✓�I(�), and on a worldvolume vector field

Aµ. It is given by the DBI and WZ expressions in the background superspace

Sq = �T3

Z

d4�
p

�gµ⌫ + Fµ⌫ + q T3

Z

CeF , (2.4)

where the pull-back to the worldvolume of the metric is

gµ⌫
⇣

xm(�), ✓�I(�)
⌘

= Ea
µ(x, ✓)E

b
⌫(x, ✓) ⌘ab , (2.5)

with ⌘ab being the 10d flat Minkowski metric and Ea
µ(x, ✓) = @µZMEM

a(x, ✓). The 2-form field

strength F = dA� B2 has a part dA, which is the field strength of the vector field Aµ on the brane,

and B2 is the pull-back to the worldvolume of a 2-form potential B2 in superspace.

The formal sum of the RR-forms C in the WZ term
R

CeF is integrated over the worldvolume of

the brane, which picks out the 4-form part. This formal sum of RR forms is a form in superspace,

C =
X

r even

Cr =
X

r even

1

r!
dZM1 ...dZMrCM1...Mr(x, ✓) . (2.6)

The corresponding sum of RR field strengths is given by

F = dC �H ^ C , (2.7)

with H = dB2. The DBI and the WZ terms each separately preserve the unbroken supersymmetry of

the underlying superspace with (x, ✓) coordinates. The local fermionic -symmetry of the total action

requires that the variation of the DBI action is canceled by the variation of the WZ action. The -

symmetry transformations are defined as follows, with �EA ⌘ �ZMEA
M : the part of the supervielbein

with a bosonic tangent space index Ea(x, ✓) = d�µ@µZMEM
a = dZMEM

a(Z), does not transform,

but the fermionic one does

�E
a = 0 . (2.8)

The fermionic component of the tangent space supervielbein E↵I = d�µ@µZMEM
↵I transforms as

follows

�E
↵I = (̄(1 + �))↵I , �2 = 1 , tr� = 0 , (2.9)

where � is a matrix in spinor space that has an expression in terms of the super embedding coordinates

and the supervielbein, which we refrain from giving here. The transformation of the vector field Aµ

is determined from (2.8) and (2.9) and the components

�Aµ = Eµ
A�E

B BAB . (2.10)
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and the total action is

SD3
DBI+WZ|✓2��0123✓1=Fµ⌫=⇧ã

µ=0 = �2T3

Z

d4� detE , (2.19)

based on the brane actions in [7]. When the fermions � are absent we find that this expression for

the D3 brane, apart from the warping, is the same as in [1], as derived in detail in [2] and presented

above in (1.2). In our flat superspace background � is a 16-component spinor and the resulting 4d

action has an N = 4 Volkov-Akulov spontaneously broken supersymmetry.

For the D3 brane in a flat superspace background, with orientifolding (2.14), (2.15) we find a

cancelation between the DBI and WZ term so that the action vanishes

SD3
DBI+WZ|✓2��0123✓1=Fµ⌫=⇧ã

µ=0 = �T3

Z

d4� detE + T3

Z

d4� detE = 0 . (2.20)

This is consistent with the fact that for a D3 brane sitting on top of an O3 plane, all worldvolume

fields are projected out, while for a D3 brane the scalars are projected out and the 16 component

worldvolume fermion remains (see for example [29, 30]).

This sixteen component spinor �(�) in equation (2.19) (cf. equation (2.16)) may be decomposed

into four 4d spinors �0(�), �i(�), i = 1, 2, 3 that transform as the 1 and 3 under the SU(3) ⇢ SU(4) =

SO(6) holonomy group of the transverse space (similarly to the vector field Aµ which is a singlet and

the complex scalars 'i(�) = 1p
2

�

�i+3 + i�i+6
�

that transform as a triplet). We have argued in [3]

that for the preservation of only the N = 1 non-linearly realized supersymmetry one has to truncate

the spinor triplet �i, so that the remaining fermion on the brane is the SU(3) singlet

SD3
DBI+WZ|✓2��0123✓1=Fµ⌫=⇧ã

µ=�i=0 = �2T3

Z

d4� detE(�0) , Ea(�0) = �amdxm + �̄0�ad�0 . (2.21)

There was the expectation that when we will be able to study the D3 brane in a GKP background,

that preserves N = 1 supersymmetry, then this truncation might be realized in a more clear way.

This is indeed the case as we explain in the next section.

3 D3 and D3 in a curved superspace background with unbroken

N = 1 supersymmetry

The curved space background is introduced using superfields for all bosonic curved background ex-

pressions. For example, for the supervielbein:

Ea(x, ✓) = eam(x, ✓)dxm + ea�I(x, ✓)d✓
�I , (3.1)

where eam(x, ✓) and ea�I(x, ✓) are expanded in powers of ✓. The same applies to the form fields

B2(x, ✓), C2(x, ✓) etc. See for example the detailed expressions in type IIB theory required for the

quadratic in fermions action for the D3 and D3 brane in [31–33] in a gauge where ✓1 = a⇥ and

✓2 = b⇥ with a2+ b2 = 1. In the gauge (2.14) ✓1 and ✓2 are not proportional, and our gauge therefore

does not belong to that class of gauges. However, we will use below the construction of the classical
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Using the hypotheses, that the neutrino is a goldstone particle, a phenomenological Lagrangian is constructed, 
which describes an interaction of the neutrino with itself and with other particles. 

Recently much attention has been paid in the ele- 
mentary particle physics to the problem of  spontane- 
ously broken symmetries and the related degeneracy 
of the vacuum state. An immediate consequence of 
the vacuum degeneracy is that it gives rise to a possible 
existence of zero mass particles, the so-called Goldstone 
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superconformal theory [8], one would expect ↵ = 1 with r ⇡ 3 ⇥ 10�3. Generic N = 1 supergravity

allows any positive ↵ and, therefore an arbitrary r, which has to be smaller than 0.11 to agree with

the current data.

2.2 T and E model attractors, and observables

A simple class of ↵-attractor models, T-models, have a potential V = tanh2n 'p
6↵

for the canonical

inflaton field '. These models have the following values of the cosmological observables [8–11] for

↵ . O(10), where there is an attractor behavior and many models have the same n-independent

predictions

ns = 1 � 2

N
, r = ↵

12

N2

, r ⇡ 3 ↵ ⇥ 10�3 . (2.1)

Once we increase ↵ beyond O(10), expressions for ns and r become somewhat di↵erent, see eqs. (5.2-

5.4) in [10]. In particular, the value of r can be increased significantly, all the way to the predictions

of the '2n models.
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Figure 1: Examples of supergravity T- models with r-dependence in logarithmic scale in r. For potentials V =

tanh

2n 'p
6↵

, the predictions of these models interpolate between the predictions of various polynomial models '2n
at

very large ↵ and the vertical attractor line for ↵  O(10). This attractor line corresponds to the predictions of the

simplest models V = tanh

2n 'p
6↵

with n = 1.

Even the simplest of these T-models are interesting phenomenologically for cosmology. For these

models the parameter ↵ can take any non-zero value; it describes the inverse curvature of the Kähler

manifold [9, 11]. The cosmological predictions of these models, for various values of ↵, are shown in

Fig. 1. As one can see, the line with n = 1 begins at a point corresponding to the predictions of

the simplest quadratic model m2

2

�2 for ↵ > 103, and then, for smaller ↵, it rapidly cuts through the

region most favored by the Planck data, towards the predictions of the Starobinsky model and the

Higgs inflation model r ⇡ 0.003 for ↵ = 1, continues further down towards the prediction r ⇡ 0.0003
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1 Introduction

During the next few years we might expect some dramatic new information from B-mode experiments

either detecting primordial gravity waves or establishing a new upper bound on r, and from LHC

discovery/non-discovery of low scale supersymmetry. A theoretical framework to discuss both of

these important factors in cosmology and particle physics has been proposed recently. It is based on

the construction of new models of chaotic inflation [1] in supergravity compatible with the current

cosmological data [2] as well as involving a controllable supersymmetry breaking at the minimum

of the potential [3–7]. In this paper we will develop supergravity models of inflation motivated by

either string theory or extended supergravity consderations, known as cosmological ↵-attractors [8–16].

Here we will enhance them with a controllable supersymmetry breaking and cosmological constant at

the minimum. We find this to be a compelling framework for the discussion of the crucial new data

on cosmology and particle physics expected during the next few years. Some models of this type were

already discussed in [14].

The paper is organized as follows. We begin in Section 2 with a brief review of key vocabulary and

features of these and related models with references to more in-depth treatments. In Section 3 we

present the ↵-attractor supergravity models that make manifest an inflaton shift-symmetry by virtue

of having the Kähler potential inflaton independent – which we will refer to as Killing-adapted form.

Section 4 presents a universal rule: given a bosonic inflationary potential of the form F2(') one can

reconstruct the superpotential W =
⇣
S+ 1

b

⌘
f(�) for the Kähler potentials described in Section 3. The

resulting models with f 0(') = F(') have a cosmological constant ⇤ and an arbitrary SUSY breaking

M at the minimum. In Section 5 we study more general class of models with W = g(') + Sf((')

and the same Kähler potential. For these models it is also possible to get agreement with the Planck

data as well as dark energy and SUSY breaking. Moreover, these models have nice properties with

regard to initial conditions for inflation, analogous to the ones studied in [28] for models without SUSY

breaking and dark energy. We close in Section 6 with a summary of what we have accomplished.

2 Review

2.1 ↵, and attraction

There is a key parameter ↵ in these models, for which the Kähler potential K = �3↵ ln(T + T̄ ). It

describes the moduli space curvature [9] given by RK = � 2

3↵ . Another, also geometric, interpretation

of this parameter is in terms of the Poincaré disk model of a hyperbolic geometry with the radiusp
3↵, illustrated by the Escher’s picture Circle Limit IV [15, 16]. As clarified in these references,

from the fundamental point of view, there are particularly interesting values of ↵ depending on the

original theory. From the maximal N = 4 superconformal theory, [17], one would expect ↵ = 1/3

with r ⇡ 10�3. This corresponds to the unit radius Escher disk [15], as well as a target of the

future space mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for ↵ = 1/9, which corresponds to the GL model [18,19]. From N = 1
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
log[4T T̄ ], W ! T�3↵/2W W ! T̄�3↵/2W . (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is manifestly inflaton-

independent. The choice of coordinates Z = tanh �

6↵ and T = e

q
2
3↵�

in the disk/half-plane geometry

corresponds to a Killing-adapted choice of coordinates where the metric does not depend on ' = Re �.

We find that in these coordinates with Killing variables � = ' + i#

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ . (3.11)

and
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dZdZ̄
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2

3↵ Im�
⌘ . (3.12)

The superpotential is now

W = A
⇣

tanh
�p
6↵

⌘
+ S B

⇣
tanh

�p
6↵

⌘
= G

⇣
e

q
2
3↵�

⌘
+ SF

⇣
e

q
2
3↵�

⌘
. (3.13)

Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵#
. (3.14)

At # = 0 they are both canonical ds2|#=0

= d'2
+d#2

2

. Thus, we will work with ↵-attractor models

(3.1), (3.3) in the form

K = �3↵ log
h
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� � �̄p
6↵

i
+ SS̄ , W = G

⇣
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q
2
3↵�

⌘
+ SF
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⌘
. (3.15)

Here one should keep in mind that our original half-plane variable T is related to � as follows,

T = e

q
2
3↵�

. We will use the following notation

G
⇣
e

q
2
3↵�

⌘
⌘ g(�) , F

⇣
e

q
2
3↵�

⌘
⌘ f(�) . (3.16)

To summarize, in Killing variables the ↵-attractor supergravity models are

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W = g(�) + Sf(�) . (3.17)
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
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⌘
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The geometry has the SU(1, 1) symmetry

ds2 = KZ ¯ZdZdZ̄ = �3↵
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. (3.2)

Alternatively, we can use the half-plane coordinates T
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The geometry has an SL(2,R) symmetry

ds2 = KT ¯TdTdT̄ = �3↵
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)

The geometry has the SU(1, 1) symmetry

ds2 = KZ ¯ZdZdZ̄ = �3↵
dZdZ̄

(1 � ZZ̄)2
. (3.2)

Alternatively, we can use the half-plane coordinates T

K = �3 ↵ log
�
T + T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G̃(T ) + SF̃ (T ) . (3.3)

The geometry has an SL(2,R) symmetry

ds2 = KT ¯TdTdT̄ = �3↵
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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where
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In half-plane case

K = �3

2
↵ log


(T + T̄ )2

4T T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G(T ) + SF (T ) . (3.7)

5

2.4 Shift Symmetry and Z, T, and � variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and controllable

supersymmetry breaking have been studied in [3–5]. The basic feature of all such models is as follows.

At the potential’s minimum supersymmetry is spontaneously broken. With the simplest choice of the

Kähler potential, the models are given by K = 1

2

(� � �̄)2 + SS̄, W = g(�) + Sf(�), S2(x, ✓) = 0,

where the superpotential depends on two functions of the inflaton field �. The di↵erence with earlier

models [24–26], is the presence of an S-independent function g(�) in W and the requirement that S

is nilpotent. The mass of the gravitino at the minimum of the potential, W = m
3/2 = g(0), is non-

vanishing in these new models, and SUSY is broken in the goldstino direction with DSW = M 6= 0.

In [24–26] the mass of the gravitino was vanishing. Typically the minimum of the potential is these

models had an unbroken supersymmetry in Minkowski minima. But in new models in [3–5] with

g(�) 6= 0 we find instead either de Sitter or Minkowski minima with spontaneously broken SUSY.

From the point of view of string theory and N � 2 spontaneously broken supergravity, another

class of Kähler potentials, such as K = �3↵ ln(T + T̄ ), is more interesting due to their geometric

nature and symmetries. The same models in Poincaré disk variables are given by K = �3↵ ln(1�ZZ̄).

It is particularly important that these models have a boundary of the moduli space at

ZZ̄ ! 1 , Z ! ±1 , T ! 0 , T�1 ! 0 (2.2)

where T = 1+Z
1�Z , T�1 = 1�Z

1+Z [7, 10, 14]. Inflation takes place near the boundary which leads to an

attractor behavior when many models lead to the same inflationary predictions. A simple way to

explain it is to refer to a geometric nature of the kinetic terms of the form

3↵
@T@T̄

(T + T̄ )2
|T=

¯T=t =
3↵

4

✓
@t

t

◆
2

=
3↵

4

✓
@(t�1)

t�1

◆
2

(2.3)

The kinetic term has a pole behavior near t�1 ! 0, near the boundary of the moduli space T�1 ! 0.

This explains why the potentials can be changed without a change in cosmological observables and r

depends on the residue of the pole, i.e. on ↵ [12]. We may therefore change our potentials by small

terms depending on t�1 without changing the observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1 or the

half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27], where

T = e

q
2
3↵�

, Z = tanh
�p
6↵

. (2.4)

In the context of our moduli space geometry the variables � represent the Killing adapted frame where

the metric is inflaton independent. We will therefore call them Killing variables.

Our purpose here is to generalize the models in [7–10] to break N = 1 SUSY spontaneously. The

new models with S2(x, ✓) = 0, which are compatible with established cosmological data and designed

to be compatible with the future data on r and m
3/2 will depend on four parameters: ↵, describing

the Kähler geometry, M , defining the scale of SUSY breaking by goldstino DSW = M , and µ, related

to scale of inflationary energy and b. The role of b is the following: at the minimum

V =
⇣
b2 � 3

⌘M2

b2
, ) b2 = 3 , V = 0 . (2.5)
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
log[4T T̄ ], W ! T�3↵/2W W ! T̄�3↵/2W . (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is manifestly inflaton-

independent. The choice of coordinates Z = tanh �

6↵ and T = e

q
2
3↵�

in the disk/half-plane geometry

corresponds to a Killing-adapted choice of coordinates where the metric does not depend on ' = Re �.

We find that in these coordinates with Killing variables � = ' + i#
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i
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The superpotential is now
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Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵#
. (3.14)

At # = 0 they are both canonical ds2|#=0

= d'2
+d#2

2

. Thus, we will work with ↵-attractor models

(3.1), (3.3) in the form
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h
cosh
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. (3.15)

Here one should keep in mind that our original half-plane variable T is related to � as follows,

T = e

q
2
3↵�

. We will use the following notation

G
⇣
e

q
2
3↵�

⌘
⌘ g(�) , F

⇣
e

q
2
3↵�

⌘
⌘ f(�) . (3.16)

To summarize, in Killing variables the ↵-attractor supergravity models are

K = �3↵ log
h
cosh
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i
+ SS̄ , W = g(�) + Sf(�) . (3.17)
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  Killing)	
  there	
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  partner	
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  for	
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where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].
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For	
  smaller	
  α < 0.02 adding	
  the	
  bisecJonal	
  curvature	
  leads	
  to	
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A(T, T̄ )SS̄ (T � T̄ )2 Nice	
  and	
  simple	
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  the	
  superpotenJals	
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spontaneous	
  breaking	
  of	
  supersymmetry	
  
and	
  dark	
  energy,	
  inside	
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  `primordial	
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  +GOLDSTINO	
  mulJplets	
  

1.	
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  method.	
  Given	
  a	
  choice	
  of	
  a	
  potenJal	
  during	
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  reconstruct	
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  breaking.	
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  method	
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  by	
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  We	
  	
  extend	
  it	
  to	
  geometric	
  log	
  K	
  and	
  non-­‐vanishing	
  CC	
  

2.	
  General	
  method	
  based	
  on	
  alractor	
  nature	
  of	
  our	
  models	
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We find that the potential at � = �̄ and at S = 0 is given by

V
total

= 2|g0(')|2 � 3|g(')|2 + |f(')|2 , (3.18)

since the Kähler covariant derivatives are the same as simple derivatives

D
�

W = @
�

W = g0(�) , DSW = @SW = f(�) , (3.19)

and at � = �̄, S = 0, K = 0 and the inverse kinetic terms KS ¯S = 1 and K�

¯

� = 2.

4 Reconstruction models of inflation with SUSY breaking and de

Sitter exit

In the form (3.17) our ↵-attractor models can be used to provide a de Sitter exit from inflation as well

as supersymmetry breaking at the minimum of the potential, without changing any of the advantages

in describing inflation. One of the simplest possibilities for such models is to require that

g(�) =
1

b
f(�) , (4.1)

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W =

⇣
S +

1

b

⌘
f(�) . (4.2)

In Killing variables we find that at � = �̄ and at S = 0

D
�

W = @
�

W =
1

b
f 0(�) , DSW = @SW = f(�) . (4.3)

The expression for the potential at � � �̄ = S = 0 is now very simple and is given by

V =
⇣
1 � 3

b2

⌘
|f(')|2 +

2

b2
|f 0(')|2 . (4.4)

Assume that at the minimum of the potential at � = 0

f(0) = DSW = M 6= 0 , f 0(0) = b D
�

W = 0 . (4.5)

This means that at the minimum supersymmetry is broken only in the direction of the nilpotent

superfield S and unbroken in the inflaton direction, since b 6= 0.

We take b2 > 3. This provides an opportunity to have de Sitter vacua with positive cosmological

constant ⇤ in our inflationary models so that

V |
�=0

= ⇤ , ⇤ ⌘
⇣
1 � 3

b2

⌘
M2 , b2 =

3

1 � ⇤

M2

. (4.6)

The cosmological constant is extremely small, ⇤ ⇠ 10�120, so we would like to make a choice of f in

(4.1) such that the inflationary potential is presented by the second term in (4.4). In such case, with

account of # = 0 condition we can use the reconstruction method analogous to the one in [4], where

it was applied to canonical shift symmetric Kähler potentials with Minkowski vacua. We will show

here how to generalize it for de Sitter exit from inflation and our logarithmic Kähler potentials.
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If the potential during inflation is expected to be given by the function

V (') = F2(') . (4.7)

we have to take

@'f(') =
bp
2

F(') , (4.8)

and

f(') =
bp
2

Z
F(') f(')|'=0

= M . (4.9)

In these models the value of the superpotential at the minimum defines the mass of gravitino as follows

W
min

=
f

b
|
�=0

=
M

b
=

Mp
3

⇣
1 � ⇤

M2

⌘
1/2

= m
3/2 , (4.10)

where ⇤ = M2 � 3m2

3/2. The total potential at # = 0 is therefore given by

V total = ⇤
|f(')|2

M2

+ |F(')|2 , (4.11)

with

V total

min

= ⇤ = M2 � 3m2

3/2 . (4.12)

To get from the supergravity model (4.2) to the Planck, LHC, dark energy potential (4.11) requires

stabilization of the field # at # = 0. We have checked that for all values of ↵ during inflation, up to

slow roll parameters, the main contribution to the mass to Hubble ratio is of the form

m2

#

H2

⇡ 6
|f |2

|f 0|2 � 1. (4.13)

Here the mass of # is defined with a proper account taken of the non-trivial kinetic term. Equation

(4.13) implies that # quickly reaches its minimum at # = 0 at the bottom of the de Sitter valley, and

inflation proceeds due to a slow evolution of '. However, near the minimum of the potential, where

the slow roll parameters are not small, a more careful evaluation of the mass of # has to be performed.

We will do it in examples below.

4.1 The simplest T-model with broken SUSY and dS exit

We would like to have the inflationary part of the the potential to be

V
infl

(') = ↵ µ2 tanh2

'p
6↵

. (4.14)

This means that

F =
p

↵µ tanh
'p
6↵

(4.15)

and

f(') =
p

3 ↵ µ b log
h
cosh

'p
6↵

i
+ M . (4.16)
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At ' = 0 one has f(') = M . A complete supergravity version of the model is

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W =

⇣
S +

1

b

⌘hp
3 ↵ µ b log

h
cosh

�p
6↵

i
+ M

i
. (4.17)

The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:

V
total

= ⇤
|f(')|2

M2

+ ↵ µ2 tanh2

'p
6↵

. (4.18)

The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2

#
H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].

4.2 The simplest E-model with broken SUSY and dS exit

We are looking at the inflationary ↵ model with

V
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⇣
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At ' = 0 one has f(') = M .

Thus our complete model is
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. (4.22)

The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:

V
total

= ⇤
|f('))|2
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�
q

2
3↵'

⌘
2

. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2

#
H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2
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H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].
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At ' = 0 one has f(') = M .
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:

V
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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At ' = 0 one has f(') = M . A complete supergravity version of the model is
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:

V
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'p
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. (4.18)

The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2

#
H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].

4.2 The simplest E-model with broken SUSY and dS exit

We are looking at the inflationary ↵ model with
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At ' = 0 one has f(') = M .
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.18)

The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2

#
H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].

4.2 The simplest E-model with broken SUSY and dS exit
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2

#
H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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The issue of the # field stabilization which is required to get from (4.17) to (4.18) presents an

example of the general case. We find that during inflation
m2
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H2 is positive and large, # quickly reaches

0. However, near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ & 0.2. Thus for r & 10�3 the model is safe without any stabilization

terms even at the de Sitter minimum. For smaller ↵ the bisectional curvature term has to be added

to the Kähler potential, to stabilize #. It is given by an expression in disk variables of the form

A(Z, Z̄)SS̄(Z � Z̄)2.

Note that this model in disk variables and in a di↵erent Kähler frame was already presented in

eqs. (3.20) and (3.21) in [13].
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The total potential has a part proportional to the cosmological constant ⇤ as well as the second part

describing inflation:
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. (4.23)

The issue of the # field stabilization which is required to get from (4.22) to (4.23) has been studied

separately and again confirms the general case as discussed below eq. (4.12) concerning inflationary

part. And again near the minimum of the potential, the evaluation of the mass of # shows that it is

positive under condition that ↵ > 0.2. For smaller values of ↵, the bisectional curvature term has to
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be added to the Kähler potential, to stabilize #. It is of the form A(Z, Z̄)SS̄(Z � Z̄)2 in disk variables.

This model for ↵ = 1 in half-plane variables in case of ⇤ = 0 was proposed in [6] in eqs. (28), (37).

For the generic case of ↵ 6= 1 a related model was given in eqs. (4.23), (4.24) in [13].

More general models can be constructed following the rules for this class of models proposed above

in eqs. (4.7) - (4.11).

5 General models of inflation with SUSY breaking and dark energy

We have learned above how to build supergravity models by reconstructing superpotentials to pro-

duce a given choice of the bosonic inflationary potential V (') = F2(') with our logarithmic Kähler

potential K = �3↵ log
h
cosh ��¯

�p
6↵

i
+SS̄ in Killing variables. The exact answer for W = g(�)+Sf(�)

can be obtained under condition g(�) = 1

bf(�) and requires simply an integration so that f(') is

reconstructed by integration f(') = bp
2

R
F('). Obviously this can be carried out in any variables

as long as one takes care of the Kähler measure relating the variables used to the functional form of

the canonical variables, but it is particularly transparent in Killing-adapted variables as the measure

is unity.

Instead of the reconstructing strategy we may start with our models in (3.17) with superpotentials

of the form

W = g(�) + Sf(�) (5.1)

without a constraint that g(�) = 1

bf(�). In such case the potentials are given by V
total

= 2|g0(')|2 �
3|g(')|2 + |f(')|2.

Near the minimum of the potential one has to check that we still satisfy the requirements that

DSW = M 6= 0 and D
�

W = 0 to preserve the nice de Sitter exit properties with SUSY breaking

as described in eq. (2.5). In these models we end up with more complicated bosonic potentials

describing some combination of our ↵-attractor models. However, these models are still capable to

fit the cosmological observables as well as providing the level of SUSY breaking in dS vacua with a

controllable gravitino mass. Some examples of these models were given in [13], in eqs. (2.4), (3.15) and

(2.7), (3.17). Here we will present an example where in disk variables the superpotential is relatively

simple whereas the potential is not simple but satisfactory for our purpose. We take the inflaton

shift-symmetric Kähler potential and the superpotential of the form

K = �3

2
↵ log

"
(1 � ZZ̄)2

(1 � Z2)(1 � Z
2

)

#
+ SS̄ , S2(x, ✓) = 0 , W =

⇣
S +

1 � Z2

b

⌘
(
p

3↵ m2 Z2 + M) .

(5.2)

The same model in Killing variables �, where Z = tanh �p
6↵

, is

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+SS̄, W =

⇣1

b
cosh�2

⇣ �p
6↵

⌘
+S

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+M

⌘
. (5.3)

The potential at S = 0 and # = 0 has the form V
total

= 2|g0(')|2 �3|g(')|2 + |f(')|2 where in our case

g(') =
1

b
cosh�2

⇣ �p
6↵

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M

⌘
, f(') =

p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M . (5.4)
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This model for ↵ = 1 in half-plane variables in case of ⇤ = 0 was proposed in [6] in eqs. (28), (37).

For the generic case of ↵ 6= 1 a related model was given in eqs. (4.23), (4.24) in [13].
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