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Our	  goal	  is	  to	  find	  infla=onary	  models	  which	  are	  
flexible	  enough	  to	  fit	  the	  data,	  which	  can	  be	  
implemented	  in	  string	  theory	  or	  supergravity,	  and	  
which	  may	  tell	  us	  something	  interes=ng	  and	  
instruc=ve.	  
	  	  



	  	  The	  simplest	  chao=c	  infla=on	  model	  

Eternal	  	  Infla=on	  



Planck	  data	  suggest	  that	  this	  simple	  model	  should	  be	  
modified.	  The	  two	  ver=cal	  yellow	  lines	  in	  the	  next	  
slide	  will	  show	  the	  consequences	  of	  a	  minor	  
modifica=on	  of	  this	  simple	  chao=c	  infla=on	  model	  
versus	  the	  results	  of	  Planck	  2015.	  
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Red	  line	  –	  GL	  model	  1984	  

Similar	  models	  have	  been	  discussed	  for	  the	  first	  =me	  by	  
Goncharov	  and	  A.L.	  Phys.	  LeU.	  139B	  (1984)	  28.	  It	  was	  the	  first	  
paper	  on	  chao=c	  infla=on	  in	  supergravity,	  but	  then	  it	  was	  
nearly	  forgoUen.	  It	  corresponds	  to	  	  ↵ = 1/9



Starobinsky	  model	  
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Poten=al	  in	  canonical	  variables	  
flaUens	  because	  of	  the	  
stretching	  near	  the	  boundary	  

All	  of	  these	  models	  predict	  
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2. TOY MODELS OF ↵-ATTRACTORS

The bosonic T-model corresponding to Fig. 1 in a form
familiar to cosmologists is
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see for example [9], eq. (1.1). Here �(x) is the scalar field, the
inflaton, ↵ can take any positive value, and �

2

< 6↵, so that
the sign of the inflaton kinetic term is positive. The kinetic
term of the inflaton is not canonical and has a geometric
origin associated with a moduli space geometry. At ↵ ! 1
this is the simple chaotic inflation model with a quadratic
potential for a canonical field. At present the �

2 model of
inflation is disfavored by the data, which implies that the
moduli space is not flat.

For any finite ↵ one can solve equation @�

1��2

6↵

= @', which

yields � =
p

6↵ tanh 'p
6↵

. The boundary of the moduli

space � = ±
p

6↵ becomes ±1 in terms of the canoni-
cally normalized field ', and the quadratic potential be-
comes V = 3↵m

2 tanh2 'p
6↵

. We called such ↵-attractors

T-models: their potentials depend on tanh2 'p
6↵

, they are

symmetric with respect to the change ' ! �' and look like
letter T [3]. All potentials V (�2) belong to the general class
of T-models, which includes the GL model [7], which was
the first implementation of chaotic inflation in supergravity,
with ↵ = 1/9 and V (�) ⇠ �

2(1 � 3

8

�

2).

FIG. 4. Blue, brown and green lines show the potentials of the T-
models with V ⇠ tanh2 'p

6↵
for ↵ = 1, 2, 3 correspondingly. The red

line in the center shows the potential of the GL model [7].

The bosonic E-model corresponding to Fig. 2 is
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The potential of E-models has an explicit exponential de-
pendence on the canonically normalized field ', asymmetric

with respect to the change ' ! �': V ⇠ (1� e

�
p

2
3↵')2.

In the special case ↵ = 1 this potential coincides with the po-
tential in the Starobinsky model [11], which represents this
model as a member of the general class of ↵-attractors.

All of these models have the same kinetic term but dif-
ferent potentials. They have two common features. First of
all, they have two attractor points, shown by the red and
blue stars in Figs. 2 and 3, describing the limiting behavior
for ↵ ! 1 and ↵ ! 0. More importantly, for su�ciently
small ↵ (i.e. in the limit when the size of the moduli space
becomes small) their cosmological predictions are very sta-
ble with respect to even very significant modifications of the
potentials.

This property was explained in [3–5], and it was formu-
lated in a particularly general way in [8]: The kinetic term
in this class of models, as well as in many other models of
cosmological attractors, has a pole near the boundary of the
moduli space. If inflation occurs in a vicinity of such a pole
(which happens for su�ciently small ↵), and the potential
near the pole can be well represented by its value and its
first derivative near the pole, all other details of the poten-
tial far away from the pole (from the boundary of the moduli
space) become unimportant for making cosmological predic-
tions. In particular, the spectral index depends solely on
the order of the pole, while the tensor-to-scalar ratio also
involves the residue [8]. All the rest is practically irrelevant,
as long as the field after inflation falls into a stable minimum
of the potential with a tiny value of the vacuum energy and
stays there.

From the point of view of a phenomenology of inflation,
everything becomes nearly trivial: Take a simple model with
a pole in the kinetic term and a potential which has a mini-
mum, and we are done, independently of many other details
of the theory, in perfect agreement with observations. But
can we do it in some models which are believed to be related
to fundamental interactions? And if the properties of the
kinetic term are so important, is it possible that this class of
models may have some interesting interpretation in terms of
geometry of the moduli space? The rest of the paper will be
dedicated to the discussion of these issues, under the guid-
ance of Poincaré and Escher, as well as of many our friends
in the supergravity/string theory community.

3. THE HYPERBOLIC PLANE H2

The hyperbolic plane H2 has a long history in mathemat-
ics and physics, see for example [13]. A set of user-friendly
references with pictures and applications in physics include
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
https://www.youtube.com/watch?v=JkhuMvFQWz4

The Poincaré disk model of a hyperbolic geometry is pre-
sented by the Escher’s picture Circle Limit IV, see Fig. 3.
The boundary circle (which is not part of the hyperbolic
plane) is called the absolute. One can place an infinite
amount of angels and devils, of the size which looks decreas-
ing, towards the boundary in this circle, as Escher did. How-
ever, in fact, the correct understanding of hyperbolic geom-
etry means that the angels and devils close to the boundary
are of the same ‘physical’ size as the ones near the centrum
of the circle. How do we explain this? As always in a curved
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Suppose	  infla=on	  takes	  place	  near	  the	  pole	  at	  t	  =	  0,	  and	  	  
	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  	  	  	  	  	  	  and	  V	  has	  a	  minimum	  nearby	  	  	  	  	  
	  
Then	  in	  canonical	  variables	  

and,	  in	  the	  leading	  approxima=on	  in	  1/N,	  almost	  independently	  on	  V(t)	  	  
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THE BASIC RULE: 

For	  a	  broad	  class	  of	  cosmological	  aUractors,	  the	  spectral	  index	  ns	  
depends	  mostly	  on	  the	  order	  of	  the	  pole	  in	  the	  kine=c	  term,	  while	  
the	  tensor-‐to-‐scalar	  ra=o	  r	  depends	  on	  the	  residue.	  Choice	  of	  the	  
poten=al,	  as	  long	  as	  it	  is	  non-‐singular	  near	  the	  pole,	  almost	  does	  
not	  maUer.	  Geometry	  of	  the	  moduli	  space,	  not	  the	  poten=al,	  
determines	  much	  of	  the	  answer.	  

THE REMAINING PROBLEM: 

Can	  we	  get	  a	  pole	  in	  the	  kine=c	  term	  from	  something	  more	  
fundamental	  than	  a	  theory	  of	  a	  single	  scalar	  field,	  for	  example	  in	  
supergravity?	  





Simplest	  model:	  	  

V ⇠ ↵µ2 tanh2
'p
6↵

In	  this	  simple	  model	  SUSY	  is	  unbroken	  and	  V	  =	  0	  in	  the	  minimum	  
(no	  cosmological	  constant).	  Can	  be	  modified	  to	  account	  for	  SUSY	  
breaking	  and	  cosmological	  constant	  (the	  talk	  by	  Kallosh).	  

General	  se:ng:	  

2

of the moduli space in the supergravity realizations of these
models, following [15, 17]. We will reformulate these models
in terms of Kähler potentials and field variables which keep
their geometric properties manifest. This new formulation
will allow us to approach the problem of initial conditions for
inflation in these models in a novel, more transparent way.

The problem of initial conditions in these models is not
quite trivial. In the simplest chaotic inflation models such
as m

2

2

�2 inflation may start very close to the Planck density.
According to [16, 18–22], this makes initial conditions for
inflation quite natural. However, in the new class of mod-
els discussed above, as well as in the Starobinsky model and
Higgs inflation, the inflationary regime begins at the energy
density 10 orders below the Planck energy density. A solu-
tion of the problem of initial conditions in such models was
discussed in [23]. Here we will revisit it; we will show how
this problem can be solved in the supergravity realizations
of ↵-attractors. Most of our conclusions will have more gen-
eral validity, being applicable, in particular, to generic non-
supersymmetric attractor models (1.1). We will also show
that in some cases, such as supergravity ↵-attractors with
↵ ⌧ 1, inflation can begin at the density approaching the
Planck density, thus reducing the problem of initial condi-
tions to the one already addressed in [16, 18–22].

There are two types of technical improvements of our ↵-
models which we will develop in this paper. The first one,
following [15, 17], will allow us to use the Kähler frame where
the inflaton shift symmetry is present in the new Kähler
potentials. The second improvement with respect to earlier
models corresponds to changing the Kähler potential for the
goldstino multiplet, making it canonical rather than part
of the logarithmic structure, which has a consequence: an
improved manifest stability.

We will make a choice of variables in which the infla-
ton forms a Killing direction of the moduli space geometry.
Namely, our holomorphic disk variable Z and the half-plane
variable T used in [1, 4, 5] will be represented by the Killing
adapted moduli space coordinates

Z =
T � 1

T + 1
= tanh

' + i#p
6↵

. (1.4)

Here the inflaton ' and the orthogonal field # form a geom-
etry independent on a Killing direction ':
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As a result, the time evolution in our models with initial large
kinetic energy, when the role of the potential is negligible,
will be controlled by the fact that the momentum in the
inflaton direction is preserved, namely

Ṗ
'

= 0 where P
'

= a3(t)g
''

(#)'̇ (1.6)

This geometric fact helps us to argue that the total shift of
the field ' due to its initial velocity is about 10 Planck units

or less, after which all memory about the initial velocity of
the field ' at the Planckian time completely disappears.

We will also numerically solve the Friedmann equations in
FRW space-time metric for generic initial values of #, ', #̇, '̇
confirming our analytic analysis: we have an inflationary
attractor behavior, where the memory about initial values
of #, ', #̇, '̇ disappears and period of slow-roll inflation at
the minimum of the potential at # = 0 takes place.

We will show that with new Kähler potentials which have
the inflaton shift symmetry in Z or T variables, the superpo-
tentials are simpler and the relation between models in disk
and half-plane variables simplifies.

We will than proceed with the analysis of initial condi-
tions for inflation in these models, with our new choice of
variables, by making choices of initial values of the inflaton
and its partner and by studying the time evolution of these
fields, before and during inflation. The geometric nature of
our models, and the existence of infinite dS valleys of con-
stant width in our potentials, help to resolve this issue and
allowing us to argue that the vast majority of initial condi-
tions in these models leads to successful inflation.

2. FROM DISK TO HALF-PLANE: NEW KÄHLER
POTENTIALS

The cosmological attractor models can be described either
in disk or in half-plane variables [5, 15]. The corresponding
boundary of the moduli space, which plays an important role
in these models, is either at ZZ̄ < 1, or a half-plane with
T + T̄ > 0.

Here we summarize the relation between disk and half-
plane variables for generic case of 2-superfield models with
our choice of the Kähler potentials and most general super-
potentials.

The relation between the Kähler potentials and superpo-
tentials in the disk and half-plane variables requires a simple
Caley transform, as suggested in [5]

Z =
T � 1

T + 1
, T =

1 + Z

1� Z
. (2.1)

We will represent the Kähler potential in the following form:

KD = �3↵

2
log


(1� ZZ̄)2

(1� Z2)(1� Z̄2)

�
+ SS̄ , (2.2)

WD = A(Z) + S B(Z) . (2.3)

where S is a supermultiplet with a goldstino fermion and a
sgoldstino scalar. This field may either belong to the usual
unconstrained chiral multiplet, or it may be a nilpotent su-
perfield as studied in [13]. We will discuss both options in
this paper.

W =
p
↵µS Z



In	  the	  simplest	  chao=c	  infla=on	  model	  m2φ2,	  infla=on	  begins	  
at	  the	  Planck	  density	  under	  a	  trivial	  condi=on:	  the	  poten=al	  
energy	  should	  be	  greater	  than	  the	  kine=c	  and	  gradient	  energy	  
in	  a	  smallest	  possible	  domain	  of	  a	  Planckian	  size.	  

However,	  in	  a	  broad	  class	  of	  cosmological	  aUractor	  models,	  
infla=on	  can	  begin	  only	  when	  the	  energy	  density	  drops	  from	  
its	  Planck	  value	  by	  10	  orders	  of	  magnitude.	  Is	  it	  a	  problem?	  

Carrasco,	  Kallosh,	  AL	  	  	  1506.0936	  	  	  	  



This	  is	  the	  simplest	  quadra=c	  infla=onary	  poten=al,	  with	  angels	  
and	  devils	  concentrated	  near	  the	  boundary	  of	  the	  moduli	  space	  



The	  same	  poten<al	  in	  terms	  of	  the	  canonical	  	  
inflaton	  field	  for	  α	  =	  1/3	  

W = µS Z

V = µ2 tanh2
'p
2

Z = ei# tanh
'p
2

K = � log

"
1� Z ¯Z � S ¯Sp
(1� Z2

)(1� ¯Z2
)

#



Poten<al	  defines	  infinite	  dS	  space,	  everywhere	  
except	  a	  small	  vicinity	  of	  the	  minimum	  	  	  

The	  universe	  is	  born	  at	  the	  Planck	  density,	  10	  orders	  of	  magnitude	  
above	  the	  dS	  disk.	  It	  may	  be	  very	  inhomogeneous,	  but	  if	  it	  expands,	  
density	  of	  maUer	  decreases.	  In	  10-‐28	  seconds	  it	  becomes	  dominated	  
by	  dS	  energy	  density.	  Aier	  that,	  the	  field	  slowly	  rolls	  to	  the	  minimum.	  

This	  solves	  the	  problem	  of	  ini=al	  condi=ons	  for	  infla=on	  



In	  terms	  of	  the	  original	  variables	  Z	  =	  z+	  ix,	  the	  poten=al	  looks	  
like	  a	  liUle	  boat.	  	  Where	  is	  the	  place	  for	  infla=on	  to	  begin?	  	  

6

We will assume for definiteness that c > 0. The potential
has a minimum at Z = 1/c, which belongs to the required
range |Z| < 1 for c > 1. In terms of the canonical field ',
the potential is

V = ↵µ2

✓
c tanh

'p
6↵

� 1

◆
2

. (6.3)

At large negative values of the inflaton field, the potential
has a “shoulder” at V� = (c+1)2, and at large positive ' the
potential has a shoulder of a di↵erent height, V

+

= (c� 1)2,
so that

V
+

V�
=

✓
c � 1

c + 1

◆
2

. (6.4)

This ratio can be arbitrarily small for 0 < c � 1 ⌧ 1.

The situation becomes even more interesting in the theory

W exp

D =
p

↵ µ S (1� e�� Z) (6.5)

with � � 1. Exponentially suppressed terms e�� Z may
appear e.g. due to non-perturbative e↵ects [28]. The po-
tential in this case has a minimum at Z = ' = 0. It has
two shoulders of di↵erent height, each of which is capable of
supporting inflation, with the inflaton potential

V = ↵ µ2 (1� e�� tanh

2n 'p
6↵ )2 . (6.6)

Independently of ↵, for � � 1, the two shoulders have rela-
tive height V

+

/V� ⇡ e�2� . Thus for large � the potential has
two shoulders of exponentially di↵erent heights, see Fig. 5 for
a particular case of a potential with ↵ = 1, � = 2.

FIG. 5. Asymmetric shoulders.

Despite the exponential di↵erence in the height the values
of the inflationary parameters n

s

and r for inflation at each
of these two shoulders coincide and are given by (4.4), at
least for not too large values of ↵. However, the amplitudes
of scalar perturbations produced at these two branches are
exponentially di↵erent from each other. At the upper branch
the amplitude of the perturbations is proportional to µ(e� �
1), and at the lower branch it is proportional to µ(1� e��),
thus smaller by a factor of e�� .

Suppose that the last stage of inflation, which determines
the large scale structure of our universe, occurs at the lower
shoulder with large positive '. Then, according to [6], one
should take

V
+

/↵ ⇡ µ2 ⇡ 10�10 (6.7)

in Planck units. Considering ↵ = O(1), one finds V
+

⇠
10�10. However, the left shoulder can be arbitrarily high,
e.g, by taking � ⇠ 11 one can easily have V� = O(1) in
Planck units in this model. This fact will be important for
the discussion of the problem of initial conditions in this
scenario. But before discussing the cosmological evolution
in these models, we will return to the simplest symmetric
T-models and study their potentials more attentively.

7. HYPERBOLIC GEOMETRY AND PROPERTIES
OF T-MODEL POTENTIAL

Consider the simplest T-model (4.1), (4.2), see Fig. 1. We
would like to describe this model in a more detailed way,
which should help us to analyze initial conditions for inflation
and the probability that it will take place in this model and
its generalizations. In order to do so, we will the inflationary
potential in a form most suitable for our investigation.

In terms of Z = z + ix the metric of the moduli space,
which determines kinetic terms, and the potential are given
by

ds2 =
3↵

(1� ZZ̄)2
dZdZ̄ = 3↵

dz2 + dx2

(1� z2 � x2)2
, (7.1)

V = ↵µ2 (z2 + x2)
hz4 + 2z2(x2 � 1) + (x2 + 1)2

(1� z2 � x2)2

i 3↵
2

. (7.2)

The existence of the flat inflaton direction is not obvious if
one is looking at the potential (7.2) in the original variables
z and x, see Fig. 6. That is why one should try to represent
the potential in terms of more adequate variables.

One can understand the situation better by making a
change of variables z = tanh 'p

6↵

. For x = 0, the field '

plays a role of a canonically normalized inflaton field, and
the existence of the inflationary shoulders of the potential
becomes manifest in the variables ', x, see Fig. 7.

By looking at Fig. 7 one could get a wrong impression that
the potential in the vicinity of the inflationary trajectory at
x = 0 is incredibly steep: it looks like a gorge which becomes
more and more narrow at large |'|. However, this is just an
illusion. As we have found, the curvature of this potential
in the direction orthogonal to the inflationary trajectory is
given by 2V (') = 6H2, which is almost exactly constant
during inflation, see (3.6). We found this result by taking
into account that the field x is not canonically normalized.

2

of the moduli space in the supergravity realizations of these
models, following [15, 17]. We will reformulate these models
in terms of Kähler potentials and field variables which keep
their geometric properties manifest. This new formulation
will allow us to approach the problem of initial conditions for
inflation in these models in a novel, more transparent way.

The problem of initial conditions in these models is not
quite trivial. In the simplest chaotic inflation models such
as m

2

2

�2 inflation may start very close to the Planck density.
According to [16, 18–22], this makes initial conditions for
inflation quite natural. However, in the new class of mod-
els discussed above, as well as in the Starobinsky model and
Higgs inflation, the inflationary regime begins at the energy
density 10 orders below the Planck energy density. A solu-
tion of the problem of initial conditions in such models was
discussed in [23]. Here we will revisit it; we will show how
this problem can be solved in the supergravity realizations
of ↵-attractors. Most of our conclusions will have more gen-
eral validity, being applicable, in particular, to generic non-
supersymmetric attractor models (1.1). We will also show
that in some cases, such as supergravity ↵-attractors with
↵ ⌧ 1, inflation can begin at the density approaching the
Planck density, thus reducing the problem of initial condi-
tions to the one already addressed in [16, 18–22].

There are two types of technical improvements of our ↵-
models which we will develop in this paper. The first one,
following [15, 17], will allow us to use the Kähler frame where
the inflaton shift symmetry is present in the new Kähler
potentials. The second improvement with respect to earlier
models corresponds to changing the Kähler potential for the
goldstino multiplet, making it canonical rather than part
of the logarithmic structure, which has a consequence: an
improved manifest stability.

We will make a choice of variables in which the infla-
ton forms a Killing direction of the moduli space geometry.
Namely, our holomorphic disk variable Z and the half-plane
variable T used in [1, 4, 5] will be represented by the Killing
adapted moduli space coordinates

Z =
T � 1

T + 1
= tanh

' + i#p
6↵

. (1.4)

Here the inflaton ' and the orthogonal field # form a geom-
etry independent on a Killing direction ':

g
''

(#) = g
##

(#) =
1

cos2
q

2

3↵

#
(1.5)

As a result, the time evolution in our models with initial large
kinetic energy, when the role of the potential is negligible,
will be controlled by the fact that the momentum in the
inflaton direction is preserved, namely

Ṗ
'

= 0 where P
'

= a3(t)g
''

(#)'̇ (1.6)

This geometric fact helps us to argue that the total shift of
the field ' due to its initial velocity is about 10 Planck units

or less, after which all memory about the initial velocity of
the field ' at the Planckian time completely disappears.

We will also numerically solve the Friedmann equations in
FRW space-time metric for generic initial values of #, ', #̇, '̇
confirming our analytic analysis: we have an inflationary
attractor behavior, where the memory about initial values
of #, ', #̇, '̇ disappears and period of slow-roll inflation at
the minimum of the potential at # = 0 takes place.

We will show that with new Kähler potentials which have
the inflaton shift symmetry in Z or T variables, the superpo-
tentials are simpler and the relation between models in disk
and half-plane variables simplifies.

We will than proceed with the analysis of initial condi-
tions for inflation in these models, with our new choice of
variables, by making choices of initial values of the inflaton
and its partner and by studying the time evolution of these
fields, before and during inflation. The geometric nature of
our models, and the existence of infinite dS valleys of con-
stant width in our potentials, help to resolve this issue and
allowing us to argue that the vast majority of initial condi-
tions in these models leads to successful inflation.

2. FROM DISK TO HALF-PLANE: NEW KÄHLER
POTENTIALS

The cosmological attractor models can be described either
in disk or in half-plane variables [5, 15]. The corresponding
boundary of the moduli space, which plays an important role
in these models, is either at ZZ̄ < 1, or a half-plane with
T + T̄ > 0.

Here we summarize the relation between disk and half-
plane variables for generic case of 2-superfield models with
our choice of the Kähler potentials and most general super-
potentials.

The relation between the Kähler potentials and superpo-
tentials in the disk and half-plane variables requires a simple
Caley transform, as suggested in [5]

Z =
T � 1

T + 1
, T =

1 + Z

1� Z
. (2.1)

We will represent the Kähler potential in the following form:

KD = �3↵

2
log


(1� ZZ̄)2

(1� Z2)(1� Z̄2)

�
+ SS̄ , (2.2)

WD = A(Z) + S B(Z) . (2.3)

where S is a supermultiplet with a goldstino fermion and a
sgoldstino scalar. This field may either belong to the usual
unconstrained chiral multiplet, or it may be a nilpotent su-
perfield as studied in [13]. We will discuss both options in
this paper.

W = µS Z



Things	  start	  looking	  beUer	  if	  one	  goes	  from	  z	  =	  Re	  Z	  to	  a	  canonically	  
normalized	  inflaton	  field	  	  	  	  	  	  :	  the	  poten=al	  has	  an	  infinite	  dS	  valley.	  '

But	  these	  coordinates	  are	  a	  bit	  misleading:	  We	  see	  an	  infinitely	  long	  
gorge	  with	  rapidly	  growing	  curvature,	  but	  the	  calcula=on	  of	  the	  
mass	  squared	  of	  the	  field	  x	  shows	  that	  it	  is	  large	  and	  constant…	  
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We present our models as functions of a complex variable

� ⌘ ' + i# , (2.4)

where ' will be the inflaton in cosmological models and #
will describe the orthogonal direction and

Z = tanh
�p
6↵

. (2.5)

Our Kähler potential (2.2) in these variables has a manifest
inflaton shift symmetry, '0 = ' + c

KD(Z, Z̄) ) K = �3↵ log
h
cosh

⇣�� �̄p
6↵

⌘i
+ SS̄ .

(2.6)
The superpotential is now

WD ) W = A
⇣
tanh

�p
6↵

⌘
+S B

⇣
tanh

�p
6↵

⌘
. (2.7)

Note that in our models # = 0 during inflation and therefore
the new holomorphic variable � during inflation becomes a
real canonical variable. This is also easy to see from the
kinetic terms in these variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵

#
=

1

2
g
''

d'2 +
1

2
g
##

d#2 . (2.8)

At # = 0 they are canonical

ds2|
#=0

=
d'2 + d#2

2
. (2.9)

We can also use the half-plane variables T + T̄ > 0 where we
have

KH = �3↵

2
log

"�
T + T̄

�
2

4T T̄

#
+ SS̄, (2.10)

WH = G(T ) + SF (T ) . (2.11)

Now the disk and the half-plane models are related simply
by the Caley transform (2.1), so that transition from one
picture to the other is a simple substitution

KD
⇣
Z =

T � 1

T + 1
, Z̄ =

T̄ � 1

T̄ + 1

⌘
= KH(T, T̄ ) . (2.12)

and

WD
⇣
Z =

T � 1

T + 1
, S

⌘
= WH(T ) . (2.13)

This also means that

G(T ) = A
⇣
Z =

T � 1

T + 1

⌘
, F (T ) = B

⇣
Z =

T � 1

T + 1

⌘
.

(2.14)
When we hold SS̄ outside of the log part of the Kähler po-
tential, the field S does not change from one picture to the
other. However, for any models with SS̄ inside the log part

of the Kähler the potential which we used before, the rela-
tion between the goldstino multiplets in Z and T variables
involves the dependence on the inflaton superfield, as shown
in [5]. We will explain below that when the field S is outside
the log in the Kähler potential the inflaton partner is sta-
ble for any ↵. Therefore we will focus here on models with
canonical Kähler potentials for the S field as shown in eqs.
(2.2), (2.6) and (2.10).

3. ↵-ATTRACTORS AND THEIR STABILITY

We will begin with a rather simple and general class of ↵-
attractors in disk variables, with the Kähler potential (2.2)
and superpotential

WD =
p

↵ µ S f(Z) . (3.1)

Investigation of this theories simplifies considerably if during
and after inflation the field S vanishes, along with the imag-
inary part of the field Z. Indeed, as explained in [17], the
Kähler potential (2.2) has a shift symmetry under the shift
of the inflaton field during inflation, when x = ImZ = 0:
The Kähler potential vanishes independently of the value of
the inflaton field z = ReZ.

In that case, one can show that the potential of the canon-
ically normalized inflaton field ', which is defined by the
relation z = tanh 'p

6↵

, is given by

V = ↵µ2f2(z) = ↵µ2f2

�
tanh

'p
6↵

�
. (3.2)

The potential has an infinitely long dS plateau at ' � ↵,
exponentially rapidly approaching its asymptotic value

V
dS

= ↵µ2 . (3.3)

Predictions from such theories provide a very good fit to
observational data for a broad class of functions f(Z) as
discussed in [1, 4].

However, for such analysis to hold, it is important to verify
that S = s ei � = 0, and x = ImZ = 0, or to find a way to
stabilize these fields at their zero values. The point S = x =
0 is indeed an extremum of the potential for S and x, but
one should also check whether this extremum is a minimum,
or a maximum of the potential.

Let us start with the field x. One can show that its mass
squared is given by

m2

x

(z) =
V
dS

3
(6↵f2(z) + (1� z2)2[(f 0(z))2 � f(z)f 00(z)]) .

(3.4)
If we consider potentials V = ↵µ2f2(z) vanishing at z = 0,
then at the minimum one has f(0) = 0, and m2

x

(0) is positive
and coincides with the inflaton mass squared at that point,

m2

x

(0) = m2

z

(0) =
1

3
[(f 0(0))2]) . (3.5)
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FIG. 6. Inflation, in terms of the variables z and x, takes place in

the two corners of the potential. The existence of the inflationary flat

directions for |z|� 1 ⌧ 1 is not apparent in these variables.

FIG. 7. A narrowing trench in the potential in terms of ' and x

variables. We see here the same e↵ect as a decreasing size of angels and

devils towards the boundary of the Poincaré disk in Escher’s picture

Circle Limit IV. However, this narrowing of the trench is just an illusion,

which disappears when one plots the potential in proper coordinates,

as shown in Fig. 8.

Now we will make this conclusion manifest by plotting the
potential in terms of more adequate variables.

We will use the � variables as shown in eq. (2.5) with the
kinetic terms in (2.8) The potential in these variables is

V = ↵µ2

����tanh
' + i#p

6↵

����
2

·
⇣
cos

r
2

3↵
#
⌘�3↵

, (7.3)

where
�� tanh '+i#p

6↵

��2 = tanh '+i#p
6↵

· tanh '�i#p
6↵

. We may also

present it in the form

V = ↵µ2

cosh
q

2

3↵

' � cos
q

2

3↵

#

cosh
q

2

3↵

' + cos
q

2

3↵

#
·
⇣
cos

r
2

3↵
#
⌘�3↵

. (7.4)

FIG. 8. The T-model potential in terms of the variables ' and # has

two infinitely long dS valleys of constant width.

This potential is shown in Fig. 8. It has a minimum at # =
0 where the kinetic terms of both fields become canonical,
ds2 ! 1

2

(d'2 + d#2) at # ! 0. At large values of ' where
tanh 'p

6↵

approaches 1, the plot of the potential in terms of

' and # has a dS valley of constant, '-independent width,
instead of the rapidly narrowing gorge shown in Fig. 7. This
fact will be very important for us shortly, when we will study
the cosmological evolution of the fields ' and # and initial
conditions for inflation in these models.

For a better understanding of the structure of this po-
tential, it is instructive to simplify even a little further the
superpotential of our simplest T-model: Instead of W =p

↵ µ S Z (4.1), let us consider a Z-independent superpo-
tential

W =
p

↵ µ S . (7.5)

The potential in this model in the ' and # variables is

V = ↵µ2

⇣
cos

r
2

3↵
#
⌘�3↵

. (7.6)

Note that this potential does not depend on the inflaton field
', and has a dS minimum V = ↵µ2 at # = 0. It represents
an infinite '-independent dS valley as shown in Fig. 9.

As one can easily check, the shape of this valley coin-
cides with the shape of the dS valley in the simplest T-
model (7.4) in the large ' limit. This potential is manifestly
shift-symmetric with respect to the field '. It is singular at

cos
q

2

3↵

# ! 0, but this singularity disappears if one uses

canonical variables � defined by d� = d#

cos

p
2
3↵

. In the limit

cos
q

2

3↵

⌧ 1, which corresponds to V � ↵µ2, the potential

of the field # in terms of the canonically normalized field �

More	  appropriate	  coordinates:	  



At	  large	  values	  of	  the	  inflaton	  field	  everything	  
becomes	  shiG-‐symmetric	  
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Now we will make this conclusion manifest by plotting the
potential in terms of more adequate variables.

We will use the � variables as shown in eq. (2.5) with the
kinetic terms in (2.8) The potential in these variables is
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FIG. 8. The T-model potential in terms of the variables ' and # has

two infinitely long dS valleys of constant width.

This potential is shown in Fig. 8. It has a minimum at # =
0 where the kinetic terms of both fields become canonical,
ds2 ! 1
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(d'2 + d#2) at # ! 0. At large values of ' where
tanh 'p
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approaches 1, the plot of the potential in terms of

' and # has a dS valley of constant, '-independent width,
instead of the rapidly narrowing gorge shown in Fig. 7. This
fact will be very important for us shortly, when we will study
the cosmological evolution of the fields ' and # and initial
conditions for inflation in these models.

For a better understanding of the structure of this po-
tential, it is instructive to simplify even a little further the
superpotential of our simplest T-model: Instead of W =p

↵ µ S Z (4.1), let us consider a Z-independent superpo-
tential

W =
p

↵ µ S . (7.5)

The potential in this model in the ' and # variables is

V = ↵µ2
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Note that this potential does not depend on the inflaton field
', and has a dS minimum V = ↵µ2 at # = 0. It represents
an infinite '-independent dS valley as shown in Fig. 9.

As one can easily check, the shape of this valley coin-
cides with the shape of the dS valley in the simplest T-
model (7.4) in the large ' limit. This potential is manifestly
shift-symmetric with respect to the field '. It is singular at
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Independently	  of	  its	  ini=al	  velocity,	  the	  inflaton	  field	  star<ng	  at	  
the	  Planck	  energy	  does	  not	  move	  by	  more	  than	  10	  un<l	  it	  stops	  
and	  the	  slow-‐roll	  infla<on	  begins.	  The	  problem	  of	  ini=al	  condi=ons	  
in	  a	  homogeneous	  universe	  is	  solved	  due	  to	  the	  existence	  of	  an	  
infinite	  shii-‐symmetric	  dS	  valley	  



These	  considera<ons	  apply	  not	  only	  to	  cosmological	  
aJractors	  in	  supergravity,	  but	  to	  any	  infla<onary	  
model	  with	  a	  sufficiently	  long	  and	  flat	  poten<al.	  



What	  can	  go	  wrong	  with	  this	  argument?	  

The	  universe	  as	  a	  whole	  may	  collapse	  within	  10-‐28	  second	  

Three	  op=ons:	  	  
	  
1)	  Universe	  is	  small	  and	  closed.	  If	  id	  does	  not	  inflate	  at	  birth,	  it	  
instantly	  dies,	  so	  in	  a	  sense,	  it	  is	  like	  a	  virtual	  par=cle,	  not	  even	  
born.	  	  
	  
2)	  Universe	  is	  infinite.	  Then	  there	  always	  will	  be	  	  
non-‐collapsed	  parts,	  which	  leads	  to	  infla=on.	  
	  
3)	  Universe	  is	  open	  or	  flat,	  but	  COMPACT,	  like	  a	  torus.	  It	  may	  
easily	  become	  infla=onary.	  



Take	  a	  box	  (a	  part	  of	  a	  flat	  universe)	  and	  glue	  its	  opposite	  sides	  to	  
each	  other.	  What	  we	  obtain	  is	  a	  torus,	  which	  is	  a	  topologically	  
nontrivial	  flat	  universe.	  

No	  need	  to	  tunnel:	  A	  compact	  open	  infla=onary	  universe	  may	  
be	  arbitrarily	  small	  



The	  size	  of	  a	  torus	  (our	  universe)	  with	  
rela=vis=c	  maUer	  grows	  as	  	  t1/2,	  
whereas	  the	  mean	  free	  path	  of	  a	  
rela=vis=c	  par=cle	  grows	  much	  faster,	  
as	  	  t	  

Therefore	  un=l	  the	  
beginning	  of	  infla=on	  the	  
universe	  remains	  smaller	  
that	  the	  size	  of	  the	  
horizon	  ~	  t	  

Cornish,	  Starkman,	  Spergel	  1996;	  	  	  A.L.	  2004 



If	   the	   universe	   ini=ally	   had	   a	   Planck	   size,	   then	   within	   the	  
cosmological	   =me	   t	   >>	   1	   each	   par=cle	   runs	   around	   the	   torus	  
many	   <mes	   and	   appear	   in	   all	   parts	   of	   the	   universe	  with	   equal	  
probability,	  which	  makes	  the	  universe	  homogeneous	  and	  keeps	  it	  
homogeneous	  un=l	  the	  beginning	  of	  infla=on	  	  

Thus	  chao=c	  mixing	  keeps	  the	  universe	  uniform	  un=l	  the	  onset	  of	  
infla=on,	  even	  if	  it	  can	  occur	  only	  at	  V<<	  1.	  This	  is	  yet	  another	  
solu=on	  of	  the	  problem	  of	  ini=al	  condi=ons.	  



Yes,	  for	  a	  <<	  1/3.	  	  In	  this	  case	  the	  poten=al	  in	  the	  
direc=on	  perpendicular	  to	  the	  inflaton	  field	  θ 
becomes	  flat.	  Infla=on	  may	  begin	  at	  the	  Planck	  
density	  when	  the	  field	  θ was	  falling	  towards	  the	  dS	  
valley.	  Aier	  that,	  infla=on	  in	  the	  φ direc=on	  begins.	  	  



Ul=mately,	  we	  want	  these	  models	  to	  describe	  not	  only	  
infla=on,	  but	  also	  dark	  energy	  and	  SUSY	  breaking.	  
	  
There	  is	  some	  urgency	  in	  learning	  about	  the	  interplay	  of	  
SUSY	  and	  cosmology:	  	  LHC	  restarted	  in	  March	  2015,	  the	  
first	  collisions	  observed	  in	  May.	  	  Will	  supersymmetry	  be	  
discovered?	  	  It	  will	  affect	  cosmological	  models.	  

From	  infla<on	  to	  dark	  energy	  and	  SUSY	  breaking	  



m	  -‐	  	  inflaton	  mass	  scale	  

M	  	  -‐	  	  SUSY	  breaking	  mass	  scale	  

For	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  one	  has	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  Changing	  b	  gives	  
any	  desirable	  value	  of	  the	  cosmological	  constant.	  

b =
p
3 ⇤ = 0

S	  –	  nilpotent	  superfield	  (no	  scalar	  component)	  

Kallosh,	  AL	  	  	  1502.07733,	  Carrasco,	  Kallosh,	  AL	  	  1506.01708	  	  

be added to the Kähler potential, to stabilize #. It is of the form A(Z, Z̄)SS̄(Z � Z̄)2 in disk variables.

This model for ↵ = 1 in half-plane variables in case of ⇤ = 0 was proposed in [6] in eqs. (28), (37).

For the generic case of ↵ 6= 1 a related model was given in eqs. (4.23), (4.24) in [13].

More general models can be constructed following the rules for this class of models proposed above

in eqs. (4.7) - (4.11).

5 General models of inflation with SUSY breaking and dark energy

We have learned above how to build supergravity models by reconstructing superpotentials to pro-

duce a given choice of the bosonic inflationary potential V (') = F2(') with our logarithmic Kähler

potential K = �3↵ log
h
cosh ��¯

�p
6↵

i
+SS̄ in Killing variables. The exact answer for W = g(�)+Sf(�)

can be obtained under condition g(�) = 1

bf(�) and requires simply an integration so that f(') is

reconstructed by integration f(') = bp
2

R
F('). Obviously this can be carried out in any variables

as long as one takes care of the Kähler measure relating the variables used to the functional form of

the canonical variables, but it is particularly transparent in Killing-adapted variables as the measure

is unity.

Instead of the reconstructing strategy we may start with our models in (3.17) with superpotentials

of the form

W = g(�) + Sf(�) (5.1)

without a constraint that g(�) = 1

bf(�). In such case the potentials are given by V
total

= 2|g0(')|2 �
3|g(')|2 + |f(')|2.

Near the minimum of the potential one has to check that we still satisfy the requirements that

DSW = M 6= 0 and D
�

W = 0 to preserve the nice de Sitter exit properties with SUSY breaking

as described in eq. (2.5). In these models we end up with more complicated bosonic potentials

describing some combination of our ↵-attractor models. However, these models are still capable to

fit the cosmological observables as well as providing the level of SUSY breaking in dS vacua with a

controllable gravitino mass. Some examples of these models were given in [13], in eqs. (2.4), (3.15) and

(2.7), (3.17). Here we will present an example where in disk variables the superpotential is relatively

simple whereas the potential is not simple but satisfactory for our purpose. We take the inflaton

shift-symmetric Kähler potential and the superpotential of the form

K = �3

2
↵ log

"
(1 � ZZ̄)2

(1 � Z2)(1 � Z
2

)

#
+ SS̄ , S2(x, ✓) = 0 , W =

⇣
S +

1 � Z2

b

⌘
(
p

3↵ m2 Z2 + M) .

(5.2)

The same model in Killing variables �, where Z = tanh �p
6↵

, is

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+SS̄, W =

⇣1

b
cosh�2

⇣ �p
6↵

⌘
+S

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+M

⌘
. (5.3)

The potential at S = 0 and # = 0 has the form V
total

= 2|g0(')|2 �3|g(')|2 + |f(')|2 where in our case

g(') =
1

b
cosh�2

⇣ �p
6↵

⌘⇣p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M

⌘
, f(') =

p
3↵ m2 tanh2

⇣ �p
6↵

⌘
+ M . (5.4)
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