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Summary talk	





String theory scenario that 
satisfies all particle physics and 
cosmological observations and 

hopefully lead to measurable 
predictions	
  

String	
  Phenomenologists	
  
	
  Working	
  Hypothesis:	
  



Einstein’s	
  “Credo”	
  

"The	
  most	
  beauMful	
  and	
  deepest	
  experience	
  a	
  man	
  
can	
  have	
  is	
  the	
  sense	
  of	
  the	
  mysterious."	
  
Albert	
  Einstein,	
  "My	
  Credo",	
  1932	
  
	
  



Ibanez’	
  “Credo”	
  

“I	
  only	
  believe	
  in	
  two	
  things:	
  the	
  
Standard	
  Model	
  and	
  String	
  Theory”	
  
Luis	
  Ibanez,	
  	
  (a	
  few	
  years	
  ago)	
  



First	
  Thoughts	
  

•  Standard	
  Model	
  of	
  ParMcle	
  physics:	
  	
  	
  	
  
excellent	
  shape!	
  

	
  
•  Standard	
  Model	
  of	
  Cosmology	
  (ΛCDM):	
  
excellent	
  shape!	
  

	
  

•  Post	
  Higgs/Bicep	
  depression!	
  

	
  Alcaraz,	
  Zwirner’s	
  talks	
  

Gra\on,	
  Ahmed	
  talks	
  



BSM:	
  Role	
  for	
  String	
  
Phenomenologist?	
  

•  Not	
  much:	
  the	
  standard	
  scienMfic	
  procedure	
  
is	
  bo\on-­‐up	
  (experts	
  will	
  interpret	
  any	
  new	
  
experimental	
  discovery)	
  	
  

•  	
  But:	
  Simplicity	
  vs	
  top-­‐down	
  
	
  	
  	
  	
  	
  (CMSSM,	
  φ2	
  inflaHon:	
  RIP)	
  



Einstein	
  again	
  !	
  
	
  
	
  
	
  
	
  

“Everything	
  should	
  be	
  as	
  simple	
  as	
  it	
  
can	
  be,	
  but	
  not	
  simpler”	
  
	
  
(assigned	
  to	
  Einstein	
  by	
  Louis	
  Zukofsky	
  1950)	
  



Dirac’s	
  statements	
  

•  The	
  discovery	
  of	
  the	
  theory	
  of	
  relaMvity	
  
made	
  it	
  necessary	
  to	
  modify	
  the	
  principle	
  of	
  
simplicity.	
  

•  We	
  now	
  see	
  that	
  we	
  have	
  to	
  change	
  the	
  
principle	
  of	
  simplicity	
  into	
  a	
  principle	
  of	
  
mathemaMcal	
  beauty.	
  

P.A.M	
  Dirac:	
  The	
  RelaHon	
  between	
  
MathemaHcs	
  and	
  Physics,	
  1939	
  



Overview	
  Plenary	
  Talks	
  

1.   InflaMon	
  +	
  anMbranes	
  

2.   Phenomenology	
  +	
  WGC	
  

3.   F-­‐theory	
  models	
  

4.   G2/F/HeteroMc	
  models	
  

5.   “ExoMcs”	
  



InflaMon	
  



Models	
  of	
  InflaMon	
  

•  ExponenMal	
  potenMals	
  (α-­‐aVractors,...)	
  	
  
	
  	
  	
  	
  	
  	
  Kallosh	
  +	
  Linde’s	
  +	
  Scalisi’s	
  talks	
  

•  Axion	
  potenMals	
  (axion	
  monodromy,	
  
alignement,...)	
  

	
  	
  	
  	
  	
  	
  Silverstein,	
  Blumenhagen,	
  Plauschin,	
  Hebecker,	
  Dudas,	
  Shiu,	
  McCallister	
  
	
  	
  	
  	
  	
  +Rompinerve,	
  Retolaza,	
  Staessens,	
  Ruelle,	
  Otsuka,Kapl,	
  Junghams...	
  talks.	
  

•  Higgs-­‐oMc	
  Pedro,	
  Valenzuela’s	
  talks	
  	
  



Comments	
  on	
  α-­‐a\ractors	
  

On&to&cosmology& αGalractor&models&compaJble&with&inflaJonary&data&from&Planck/Bicep&II&

Kallosh,'A.L.'and'Roest'2013'''

Supergravity&with&2&superfields:&inflaton&superfield&and&a&nilpotent&superfield&
&

agree&with&the&data,&r&is&flexible&&
�⇢

⇢
, ns

superconformal theory [8], one would expect ↵ = 1 with r ⇡ 3 ⇥ 10�3. Generic N = 1 supergravity

allows any positive ↵ and, therefore an arbitrary r, which has to be smaller than 0.11 to agree with

the current data.

2.2 T and E model attractors, and observables

A simple class of ↵-attractor models, T-models, have a potential V = tanh2n 'p
6↵

for the canonical

inflaton field '. These models have the following values of the cosmological observables [8–11] for

↵ . O(10), where there is an attractor behavior and many models have the same n-independent

predictions

ns = 1 � 2

N
, r = ↵

12

N2

, r ⇡ 3 ↵ ⇥ 10�3 . (2.1)

Once we increase ↵ beyond O(10), expressions for ns and r become somewhat di↵erent, see eqs. (5.2-

5.4) in [10]. In particular, the value of r can be increased significantly, all the way to the predictions

of the '2n models.
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Figure 1: Examples of supergravity T- models with r-dependence in logarithmic scale in r. For potentials V =

tanh

2n 'p
6↵

, the predictions of these models interpolate between the predictions of various polynomial models '2n
at

very large ↵ and the vertical attractor line for ↵  O(10). This attractor line corresponds to the predictions of the

simplest models V = tanh

2n 'p
6↵

with n = 1.

Even the simplest of these T-models are interesting phenomenologically for cosmology. For these

models the parameter ↵ can take any non-zero value; it describes the inverse curvature of the Kähler

manifold [9, 11]. The cosmological predictions of these models, for various values of ↵, are shown in

Fig. 1. As one can see, the line with n = 1 begins at a point corresponding to the predictions of

the simplest quadratic model m2

2

�2 for ↵ > 103, and then, for smaller ↵, it rapidly cuts through the

region most favored by the Planck data, towards the predictions of the Starobinsky model and the

Higgs inflation model r ⇡ 0.003 for ↵ = 1, continues further down towards the prediction r ⇡ 0.0003

2

Meaning&of&α&&

1 Introduction

During the next few years we might expect some dramatic new information from B-mode experiments

either detecting primordial gravity waves or establishing a new upper bound on r, and from LHC

discovery/non-discovery of low scale supersymmetry. A theoretical framework to discuss both of

these important factors in cosmology and particle physics has been proposed recently. It is based on

the construction of new models of chaotic inflation [1] in supergravity compatible with the current

cosmological data [2] as well as involving a controllable supersymmetry breaking at the minimum

of the potential [3–7]. In this paper we will develop supergravity models of inflation motivated by

either string theory or extended supergravity consderations, known as cosmological ↵-attractors [8–16].

Here we will enhance them with a controllable supersymmetry breaking and cosmological constant at

the minimum. We find this to be a compelling framework for the discussion of the crucial new data

on cosmology and particle physics expected during the next few years. Some models of this type were

already discussed in [14].

The paper is organized as follows. We begin in Section 2 with a brief review of key vocabulary and

features of these and related models with references to more in-depth treatments. In Section 3 we

present the ↵-attractor supergravity models that make manifest an inflaton shift-symmetry by virtue

of having the Kähler potential inflaton independent – which we will refer to as Killing-adapted form.

Section 4 presents a universal rule: given a bosonic inflationary potential of the form F2(') one can

reconstruct the superpotential W =
⇣
S+ 1

b

⌘
f(�) for the Kähler potentials described in Section 3. The

resulting models with f 0(') = F(') have a cosmological constant ⇤ and an arbitrary SUSY breaking

M at the minimum. In Section 5 we study more general class of models with W = g(') + Sf((')

and the same Kähler potential. For these models it is also possible to get agreement with the Planck

data as well as dark energy and SUSY breaking. Moreover, these models have nice properties with

regard to initial conditions for inflation, analogous to the ones studied in [28] for models without SUSY

breaking and dark energy. We close in Section 6 with a summary of what we have accomplished.

2 Review

2.1 ↵, and attraction

There is a key parameter ↵ in these models, for which the Kähler potential K = �3↵ ln(T + T̄ ). It

describes the moduli space curvature [9] given by RK = � 2

3↵ . Another, also geometric, interpretation

of this parameter is in terms of the Poincaré disk model of a hyperbolic geometry with the radiusp
3↵, illustrated by the Escher’s picture Circle Limit IV [15, 16]. As clarified in these references,

from the fundamental point of view, there are particularly interesting values of ↵ depending on the

original theory. From the maximal N = 4 superconformal theory, [17], one would expect ↵ = 1/3

with r ⇡ 10�3. This corresponds to the unit radius Escher disk [15], as well as a target of the

future space mission for B-mode detection, as specified in CORE (Cosmic ORigins Explorer). Some

interesting simplifications occur for ↵ = 1/9, which corresponds to the GL model [18,19]. From N = 1
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Commercial	
  

Stringy	
  realisaHon	
  of	
  α-­‐aVractors	
  including	
  
moduli	
  stabilisaHon	
  for	
  
	
  
α=2	
  (fibre	
  inflaHon)	
  Burgess,	
  Cicoli,	
  FQ	
  (2007)	
  
	
  
α=(VlnV)-­‐1	
  (Kahler	
  blow-­‐up	
  inflaHon)	
  	
  
Conlon,	
  FQ	
  (2006)	
  +	
  	
  Sumitomo’s	
  talk	
  
	
  

α=(lnV)-­‐1	
  (polyinstanton	
  inflaHon)	
  Cicoli,	
  Pedro,	
  Tasinato	
  (2011)	
  

LV SV1 SV2

C0 5.8 · 10−8 0.012 0.023

C1 292.4 20629.4 39786.9

C2 73.1 5157.35 9946.73

Cup 219.3 1200.8 29840.2

R = C0/C2 8 · 10−10 2.3 · 10−6 2.3 · 10−6

Table 3: Coefficients of the inflationary potential for the various parameter sets

discussed in the text.
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"
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8·10-6

V

Figure 2: V (in arbitrary units) versus ϕ̂, with V and τ3 fixed at their minima. The plot assumes
the parameters used in the text (for which ϕ̂ip ≃ 0.80, ϕ̂end = 1.0, and R ≡ C0/C2 ∼ 10−6).

3.3 Inflationary slow roll

We next ask whether the scalar potential (3.31) can support a slow roll, working in the

most natural limit identified above, with A,C ≪ B and B > 0. As we have seen, this case

also implies 0 < C0 ≪ C1 = 4C2, leaving a potential well approximated by

V ≃ C2
⟨V⟩10/3

[

(3−R)− 4

(

1 +
1

6
R

)

e−κϕ̂/2 +

(

1 +
2

3
R

)

e−2κϕ̂ +R eκϕ̂
]

(3.33)

which uses Cup ≃ C1 − C0 − C2 and C1/C2 ≃ 4, and works to linear order in

R :=
C0
C2

= 2g4s

(
CKK
1 CKK

2

CW
12

)2

≪ 1 . (3.34)

The normalization of the potential may instead be traded for the mass of the inflaton field

at its minimum: m2
ϕ = V ′′(0) = 4

(

1 + 7
6 R
)

C2/⟨V⟩10/3.
In practice the powers of R can be neglected in all but the last term in the potential,

where it multiplies a positive exponential which must eventually become important for

– 22 –

V~A-­‐Be-­‐√2/3α	
  



ns#

log10r#

↵ = 1, r ⇠ 0.13

↵ = 1, r = 3⇥ 10�3

↵ = 1/9, r = 4⇥ 10�4

↵ = 1/3, r = 10�3

conformal)a*ractors,)
Higgs)infla2on)))

N=4)supergravity,)
unit)size)Poincare)disk)

GoncharovALinde)model)

Any&&α&<&27&
Generic&&&N=1&supergravity&

r < 0.09 3↵ = R2
Escher ⇡ 103r

↵ = 1, r ⇠ 0.13

↵ = 1, r = 3⇥ 10�3

↵ = 1/9, r = 4⇥ 10�4

↵ = 1/3, r = 10�3
N=4$supergravity,$
unit$size$Poincare$disk$

Goncharov:Linde$model$

ns#

log10r#

Starobinsky$model,$
conformal$aAractors$$

↵ = 1, r = 3⇥ 10�3
Fiber	
  r<7x10-­‐3	
  
Large	
  graviHno	
  mass	
  

Kahler	
  Blow-­‐up	
  



&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&`Refined’&αGalractor&models&&

It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)
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2.4 Shift Symmetry and Z, T, and � variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and controllable

supersymmetry breaking have been studied in [3–5]. The basic feature of all such models is as follows.

At the potential’s minimum supersymmetry is spontaneously broken. With the simplest choice of the

Kähler potential, the models are given by K = 1

2

(� � �̄)2 + SS̄, W = g(�) + Sf(�), S2(x, ✓) = 0,

where the superpotential depends on two functions of the inflaton field �. The di↵erence with earlier

models [24–26], is the presence of an S-independent function g(�) in W and the requirement that S

is nilpotent. The mass of the gravitino at the minimum of the potential, W = m
3/2 = g(0), is non-

vanishing in these new models, and SUSY is broken in the goldstino direction with DSW = M 6= 0.

In [24–26] the mass of the gravitino was vanishing. Typically the minimum of the potential is these

models had an unbroken supersymmetry in Minkowski minima. But in new models in [3–5] with

g(�) 6= 0 we find instead either de Sitter or Minkowski minima with spontaneously broken SUSY.

From the point of view of string theory and N � 2 spontaneously broken supergravity, another

class of Kähler potentials, such as K = �3↵ ln(T + T̄ ), is more interesting due to their geometric

nature and symmetries. The same models in Poincaré disk variables are given by K = �3↵ ln(1�ZZ̄).

It is particularly important that these models have a boundary of the moduli space at

ZZ̄ ! 1 , Z ! ±1 , T ! 0 , T�1 ! 0 (2.2)

where T = 1+Z
1�Z , T�1 = 1�Z

1+Z [7, 10, 14]. Inflation takes place near the boundary which leads to an

attractor behavior when many models lead to the same inflationary predictions. A simple way to

explain it is to refer to a geometric nature of the kinetic terms of the form
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The kinetic term has a pole behavior near t�1 ! 0, near the boundary of the moduli space T�1 ! 0.

This explains why the potentials can be changed without a change in cosmological observables and r

depends on the residue of the pole, i.e. on ↵ [12]. We may therefore change our potentials by small

terms depending on t�1 without changing the observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1 or the

half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27], where

T = e

q
2
3↵�

, Z = tanh
�p
6↵

. (2.4)

In the context of our moduli space geometry the variables � represent the Killing adapted frame where

the metric is inflaton independent. We will therefore call them Killing variables.

Our purpose here is to generalize the models in [7–10] to break N = 1 SUSY spontaneously. The

new models with S2(x, ✓) = 0, which are compatible with established cosmological data and designed

to be compatible with the future data on r and m
3/2 will depend on four parameters: ↵, describing

the Kähler geometry, M , defining the scale of SUSY breaking by goldstino DSW = M , and µ, related

to scale of inflationary energy and b. The role of b is the following: at the minimum
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⇣
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E corresponds to the radius square of the Escher disk [14].
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In half-plane case

K = �3

2
↵ log


(T + T̄ )2

4T T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G(T ) + SF (T ) . (3.7)

5

It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
1 � ZZ̄

⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
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Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,
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T = e

q
2
3↵�

. We will use the following notation

G
⇣
e

q
2
3↵�

⌘
⌘ g(�) , F

⇣
e

q
2
3↵�

⌘
⌘ f(�) . (3.16)

To summarize, in Killing variables the ↵-attractor supergravity models are
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2

3/2 =
⇣
1 � 3

b2

⌘
M2 ⇠ 10�120 . (2.7)

3 Killing-adapted ↵-attractor supergravity models.

We study here the following N = 1 supergravity models, which can be described in disk geometry

coordinates of the moduli space Z,

K = �3↵ log
⇣
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⌘
+ SS̄ , S2(x, ✓) = 0 , W = Ã(Z) + SB̃(Z) . (3.1)

The geometry has the SU(1, 1) symmetry
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(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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where
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2.4 Shift Symmetry and Z, T, and � variables

The inflationary models made with a shift-symmetric canonical Kähler potential, and controllable

supersymmetry breaking have been studied in [3–5]. The basic feature of all such models is as follows.

At the potential’s minimum supersymmetry is spontaneously broken. With the simplest choice of the

Kähler potential, the models are given by K = 1

2

(� � �̄)2 + SS̄, W = g(�) + Sf(�), S2(x, ✓) = 0,

where the superpotential depends on two functions of the inflaton field �. The di↵erence with earlier

models [24–26], is the presence of an S-independent function g(�) in W and the requirement that S

is nilpotent. The mass of the gravitino at the minimum of the potential, W = m
3/2 = g(0), is non-

vanishing in these new models, and SUSY is broken in the goldstino direction with DSW = M 6= 0.

In [24–26] the mass of the gravitino was vanishing. Typically the minimum of the potential is these

models had an unbroken supersymmetry in Minkowski minima. But in new models in [3–5] with

g(�) 6= 0 we find instead either de Sitter or Minkowski minima with spontaneously broken SUSY.

From the point of view of string theory and N � 2 spontaneously broken supergravity, another

class of Kähler potentials, such as K = �3↵ ln(T + T̄ ), is more interesting due to their geometric

nature and symmetries. The same models in Poincaré disk variables are given by K = �3↵ ln(1�ZZ̄).

It is particularly important that these models have a boundary of the moduli space at

ZZ̄ ! 1 , Z ! ±1 , T ! 0 , T�1 ! 0 (2.2)

where T = 1+Z
1�Z , T�1 = 1�Z

1+Z [7, 10, 14]. Inflation takes place near the boundary which leads to an

attractor behavior when many models lead to the same inflationary predictions. A simple way to

explain it is to refer to a geometric nature of the kinetic terms of the form

3↵
@T@T̄

(T + T̄ )2
|T=

¯T=t =
3↵

4

✓
@t

t

◆
2
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4
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t�1
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2

(2.3)

The kinetic term has a pole behavior near t�1 ! 0, near the boundary of the moduli space T�1 ! 0.

This explains why the potentials can be changed without a change in cosmological observables and r

depends on the residue of the pole, i.e. on ↵ [12]. We may therefore change our potentials by small

terms depending on t�1 without changing the observables during inflation.

We study these models here. They can use either the Poincaré disk variables ZZ̄ < 1 or the

half-plane variables T + T̄ > 0. We will also use the set of variables discussed in [27], where

T = e

q
2
3↵�

, Z = tanh
�p
6↵

. (2.4)

In the context of our moduli space geometry the variables � represent the Killing adapted frame where

the metric is inflaton independent. We will therefore call them Killing variables.

Our purpose here is to generalize the models in [7–10] to break N = 1 SUSY spontaneously. The

new models with S2(x, ✓) = 0, which are compatible with established cosmological data and designed

to be compatible with the future data on r and m
3/2 will depend on four parameters: ↵, describing

the Kähler geometry, M , defining the scale of SUSY breaking by goldstino DSW = M , and µ, related

to scale of inflationary energy and b. The role of b is the following: at the minimum

V =
⇣
b2 � 3

⌘M2

b2
, ) b2 = 3 , V = 0 . (2.5)
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It shows that in N = 1 d=4 supergravity with a nilpotent goldstino multiplet generic de Sitter minima

require a universal condition that the goldstino energy M2 exceeds the negative gravitino contribution

to energy where m2

3/2 = M2

b2
.

V = M2 � 3m2

3/2 > 0 . (2.6)

We keep here generic values of the parameter b2 > 3 which allow generic de Sitter vacua of the string

landscape type, including the case

⇤ = M2 � 3m2
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⇣
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In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2

E corresponds to the radius square of the Escher disk [14].

We will now perform a Kähler transformation [15,27] so that our new Kähler potential is inflaton

shift-symmetric. First we use the original disk and half-plane variables and redefine the Kähler and

superpotentials as follows
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The geometry has the SU(1, 1) symmetry

ds2 = KZ ¯ZdZdZ̄ = �3↵
dZdZ̄

(1 � ZZ̄)2
. (3.2)

Alternatively, we can use the half-plane coordinates T

K = �3 ↵ log
�
T + T̄

�
+ SS̄ , S2(x, ✓) = 0 , W = G̃(T ) + SF̃ (T ) . (3.3)

The geometry has an SL(2,R) symmetry

ds2 = KT ¯TdTdT̄ = �3↵
dTdT̄

(T + T̄ )2
. (3.4)

In both cases, at S = 0 the geometry is associated with the Poincare disk or half plane geometry

where 3↵ = R2
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where

G(T ) + SF (T ) = T�3↵/2(G̃(T ) + SF̃ (T )) . (3.8)

Since we have performed a Kähler transform of the type

K ! K +
3↵

2
log[(1 � Z2)(1 � Z̄2)], W ! (1 � Z2)�3↵/2W W ! (1 � Z̄2)�3↵/2W . (3.9)

K ! K +
3↵

2
log[4T T̄ ], W ! T�3↵/2W W ! T̄�3↵/2W . (3.10)

the geometry did not change, it is still given by (3.2) and (3.4), respectively.

Our next step is to switch to moduli space coordinates (2.4) where the metric is manifestly inflaton-

independent. The choice of coordinates Z = tanh �

6↵ and T = e

q
2
3↵�

in the disk/half-plane geometry

corresponds to a Killing-adapted choice of coordinates where the metric does not depend on ' = Re �.

We find that in these coordinates with Killing variables � = ' + i#
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h
cosh

� � �̄p
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i
+ SS̄ . (3.11)
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The superpotential is now
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⇣
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6↵

⌘
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⇣
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�p
6↵

⌘
= G

⇣
e

q
2
3↵�

⌘
+ SF

⇣
e

q
2
3↵�

⌘
. (3.13)

Note that in our models # = 0 during inflation and therefore the new holomorphic variable � during

inflation becomes a real canonical variable '. This is also easy to see from the kinetic terms in these

variables, which are conformal to flat,

ds2 =
d'2 + d#2

2 cos2
q

2

3↵#
. (3.14)

At # = 0 they are both canonical ds2|#=0

= d'2
+d#2

2

. Thus, we will work with ↵-attractor models

(3.1), (3.3) in the form
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i
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q
2
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⌘
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Here one should keep in mind that our original half-plane variable T is related to � as follows,

T = e

q
2
3↵�

. We will use the following notation

G
⇣
e

q
2
3↵�

⌘
⌘ g(�) , F

⇣
e

q
2
3↵�

⌘
⌘ f(�) . (3.16)

To summarize, in Killing variables the ↵-attractor supergravity models are

K = �3↵ log
h
cosh

� � �̄p
6↵

i
+ SS̄ , W = g(�) + Sf(�) . (3.17)
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Refined	
  α-­‐a\ractor	
  

S:	
  Stabiliser	
  

S	
  appears	
  naturally	
  in	
  (nonlinear)	
  
supersymmetric	
  version	
  of	
  anMbrane	
  in	
  KKLT	
  
Consistent	
  with	
  small	
  graviMno	
  mass	
  

Kallosh’s	
  talk	
  



This'is'the'simplest'quadra=c'infla=onary'poten=al,'with'angels'
and'devils'concentrated'near'the'boundary'of'the'moduli'space'

Linde’s	
  talk	
  



Axion	
  inflaMon	
  issues	
  

•  Weak	
  gravity	
  conjecture	
  ?	
  Shiu,	
  McCallister,	
  Hebecker,	
  
Soler,	
  Witkowski,	
  Montero’s	
  talks	
  

•  Controlled	
  moduli	
  stabilisaHon	
  Hebecker,	
  
Blumenhagen’s	
  talk	
  

	
  	
  	
  	
  	
  
	
  	
  	
  	
  (also	
  issue	
  for	
  Higgs-­‐oHc	
  inflaHon)	
  



AnMbranes	
  



AnM-­‐brane	
  issues	
  

•  Singularity	
  and	
  its	
  relevance	
  Massai’s	
  talk	
  

•  Consistent	
  effecHve	
  field	
  theory	
  descripHon	
  
	
  	
  	
  	
  	
  	
  Puhm’s	
  talk	
  

•  Non-­‐linearly	
  realised	
  supersymmetry	
  Kallosh’s	
  talk	
  



LHC	
  String	
  Phenomenology	
  



LHC	
  String	
  Phenomenology	
  

•  General	
  remarks	
  Zwirner’s	
  talk	
  

•  Concrete	
  soo	
  terms	
  calculaHons	
  Cicoli	
  +	
  Aparicio’s	
  
talks	
  

	
  



Different SUSY Scenarios 

•  First two not yet obtained from dS uplifting 
•  3rd: high scale SUSY breaking (e.g. Ibanez et al.) 

•  4th +5th SUSY ‘solve’ hierarchy small ‘tuning’ 
by flux dependence of GUT soft terms. 



   Compactification   
 
 
 



Soft terms for Sequestered Scenarios 

The coefficients c are flux-dependent! (explicit stringy tuning at UV!) 
i)  Local and ultra-local dS1: split SUSY scenario 
ii)  Ultra-local dS2: standard MSSM with possible small non-universalities 

Need to perform RG running down to LHC scale, study SUSY phenomenology 
combined with cosmological constrains from dark matter and dark radiation 



Nonthermal CMSSM* 
•  Assume:	
  CMSSM	
  parameters	
  (M,m,A,tanβ,	
  
signμ	
  plus	
  Trh)	
  

•  REWSB	
  with	
  125	
  GeV	
  Higgs	
  
•  Constraints:	
  
	
  	
  	
  Colliders	
  (LEP,	
  LHC)	
  
	
  	
  	
  	
  CMB	
  (Planck)	
  
	
  	
  	
  	
  Direct	
  (LUX,	
  XENON100,	
  CDMS,	
  IceCube)	
  
	
  	
  	
  	
  Indirect	
  (Fermi)	
  

	
  	
  	
  	
  

Trh<Tf=m/20 

* Warning: at this stage is purely phenomenological not stringy! 



Survivors 

Non-thermal CMSSM
[Aparicio, MC, Dutta, Krippendorf, Maharana, Muia, Quevedo]

[See  Aparicio’s  talk]

[Dutta, Gurrola, Kamon, John, Sinha, Sheldon]

Neutralino Higgsino-like saturates Planck’s 
density for m=300 GeV, Trh=2 GeV 
Adding nonuniversalities increase allowed 
parameter space                                 Aparicio’s talk 

 



Spectrum 

the plot) Higgsino-like, but the masses are closer to MW and h�vi is no longer described

by (4.1) but by something like (with x = µ/mW ):

h�
e↵

vi ⇠ 9g4

16⇡m2

W

x2

(4x2 � 1)2
. (4.6)

In Fig. 12, we show the spectra of SUSY particles for the allowed regions of Fig. 6 (blue

points below the LUX line). We find that sleptons, staus, Higgses, all other scalar masses

and gluinos are rather heavy since they are between about 2 and 7 TeV. The lightest and

second to lightest neutralino and the lightest chargino are around 280 - 340 GeV while all

other neutralinos and charginos are heavy. The allowed region for TR = 2 GeV is shown

on the left side of the vertical line with the label TR = 2 GeV where the points situated

exactly on the line satisfy all the constraints including the current DM content as measured

by Planck. Similarly, the allowed region for TR � 5 GeV is shown on the left side of the

vertical line with the label TR � 5 GeV even if there are no points in this region which

saturate the current DM content. Notice that the spectrum is essentially independent of

the reheating temperature TR and the hierarchy between the di↵erent sparticles is robust.

Figure 12. The mass spectra of superpartners for allowed points shown in Fig. 6 for di↵erent
values of TR.

4.2 Astrophysical uncertainties

The direct detection cross section can involve various uncertainties, e.g. strange quark

content of proton, form factor, local DM density and LSP contribution to the total amount

of observed DM abundance. The local density can be 0.1-0.7 GeV/cm3 [40]. There could

also be astrophysical uncertainties in the indirect detection results beyond what has been

considered so far. Recently, it is mentioned in [41] that if the thermal neutralinos do not

produce the entire amount of cold dark matter, the direct and indirect detection cross

sections should be reduced by R and R2 respectively with R ⌘ ⌦h2/0.12. Possible bounds

arising from Fermi are now almost negligible since they are suppressed by R2. Once the
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Non	
  Standard	
  SUSY	
  Physics	
  

•  Sol	
  terms	
  much	
  lighter	
  than	
  graviMno	
  

•  Lightest	
  modulus	
  much	
  lighter	
  than	
  graviMno	
  

•  Light	
  reheaMng	
  temperature	
  

•  Nonthermal	
  dark	
  ma\er	
  

•  GraviMno	
  mass	
  and	
  inflaMon	
  scale	
  	
  	
  	
  	
  see	
  Kallosh	
  talk	
  

•  Dark	
  radiaMon	
  issue	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  see	
  Muia’s	
  talk	
  



Model	
  Building	
  



Model	
  Building	
  

•  F-­‐theory	
  (talks	
  by:	
  PalH,	
  Weigand,	
  Klevers,	
  Schaeffer-­‐Nameki,	
  Krippendorf,	
  
Leontaris,	
  Lin,	
  Taylor,	
  Grimm,	
  Watari,	
  Garcia-­‐Etxeberria,	
  Mayorga,	
  Colinucci,	
  Gray,	
  
Anderson,	
  Baume,	
  Oehlman,	
  Till,	
  ..)	
  	
  

•  HeteroMc	
  (supersymmetric	
  and	
  non	
  supersymmetric)	
  	
  
	
  	
  	
  	
  	
  (talks	
  by	
  Anderson,	
  Vaudrevange,	
  Lukas,	
  Groot-­‐NIbbelink,	
  Mavroudi,	
  	
  
	
  	
  	
  	
  	
  	
  Kuwakino,	
  Athanasopoulos,	
  Ashfaque...)	
  

•  G2	
  manifolds	
  (talk	
  by	
  Halverson)	
  

•  D-­‐branes	
  (Berasaluce-­‐Gonzalez,...)	
  



F-­‐Theory	
  

•  U(1)’s	
  and	
  discrete	
  symmetries	
  under	
  much	
  
beVer	
  control	
  

•  Improved	
  model	
  building	
  

•  StaHsHcs	
  and	
  classificaHons	
  (Taylor,	
  Watari,	
  Gao,	
  Gray,	
  	
  
see	
  also	
  Marsh,	
  Nelson)	
  

•  EffecHve	
  field	
  theory	
  open...?	
  



Moduli	
  StabilisaMon	
  



Moduli	
  StabilisaMon	
  
•  Non	
  geometric	
  fluxes	
  (Blumenhagen,	
  Plauschin,	
  Shukla,...)	
  

	
  
•  General	
  constraints	
  for	
  inflaHon(Dudas,	
  Hebecker)	
  

•  de	
  SiVer	
  (Rummel,	
  Soussa,	
  ...)	
  

•  D-­‐brane	
  moduli	
  (Regalado)	
  
	
  
•  Others	
  (Angus,	
  Ciupke)....	
  	
  



EffecMve	
  Field	
  Theory	
  



EffecMve	
  Field	
  Theory	
  

•  Warped	
  Kahler	
  potenHal	
  (Martucci’s	
  talk)	
  

	
  
•  Yukawa’s	
  in	
  heteroHc	
  (Lukas’	
  talk)	
  



“ExoMcs”	
  



Post	
  InflaMon	
  Cosmology	
  

•  ALP’s	
  and	
  dark	
  ma\er	
  (Conlon,	
  Takahashi	
  and	
  MarHn	
  
Lozano’s	
  talks	
  )	
  

•  Dark	
  radiaMon	
  (Muia’s	
  talk)	
  

•  Nonthermal	
  history	
  (Aparicio’s	
  talk)	
  

•  Anthropics	
  (Talk	
  Schellekens,	
  aoer	
  dinner	
  speech	
  Linde!)	
  

Also:	
  Neutron-­‐anMneutron	
  
oscillaMons	
  (Bianchi,	
  Addazzi)	
  	
  

	
  



Conclusions	
  

•  InteresHng	
  recent	
  developments	
  
•  ConHnuously	
  progressing	
  field	
  
•  Concrete	
  achievements	
  
•  Some	
  open	
  debates	
  
•  Long	
  term	
  goals	
  
•  Well	
  defined	
  open	
  quesHons	
  (remember	
  bow)	
  
•  The	
  field	
  is	
  well	
  and	
  alive!	
  
•  Hopefully	
  experimental	
  results	
  will	
  change	
  it	
  
radically	
  soon....	
  



F.	
  Quevedo	
  Statements	
  
Es	
  cosa	
  averiguada,	
  así	
  lo	
  siente	
  Metrodoro	
  Chío	
  y	
  otros	
  muchos,	
  que	
  no	
  se	
  
sabe	
  nada,	
  y	
  que	
  todos	
  son	
  ignorantes,	
  y	
  aun	
  esto	
  no	
  se	
  sabe	
  de	
  cierto,	
  que	
  a	
  
saberse	
  ya	
  se	
  supiera	
  algo;	
  sospéchase.	
  Dícelo	
  así	
  el	
  doczsimo	
  Francisco	
  
Sánchez,	
  médico	
  y	
  filósofo,	
  en	
  su	
  libro	
  cuyo	
  ztulo	
  es	
  Nihil	
  Scitur,	
  no	
  se	
  sabe	
  
nada.	
  En	
  el	
  mundo	
  hay	
  algunos	
  que	
  no	
  saben	
  nada	
  y	
  estudian	
  para	
  saber,	
  y	
  
estos	
  Henen	
  buenos	
  deseos	
  y	
  vano	
  ejercicio,	
  porque	
  al	
  cabo	
  solo	
  les	
  sirve	
  el	
  
estudio	
  de	
  conocer	
  cómo	
  toda	
  la	
  verdad	
  la	
  quedan	
  ignorando.	
  Otros	
  hay	
  que	
  
no	
  saben	
  nada	
  y	
  no	
  estudian	
  porque	
  piensan	
  que	
  lo	
  saben	
  todo;	
  son	
  destos	
  
muchos	
  irremediables;	
  a	
  estos	
  se	
  les	
  ha	
  de	
  invidiar	
  el	
  ocio	
  y	
  la	
  saHsfacHón	
  y	
  
llorarles	
  el	
  seso.	
  Otros	
  hay	
  que	
  no	
  saben	
  nada	
  y	
  dicen	
  que	
  no	
  saben	
  nada	
  
porque	
  piensan	
  que	
  saben	
  algo	
  de	
  verdad,	
  pues	
  lo	
  es	
  que	
  no	
  saben	
  nada,	
  y	
  a	
  
estos	
  se	
  les	
  había	
  de	
  casHgar	
  la	
  hipocresía	
  con	
  creerles	
  la	
  confesión.	
  Otros	
  
hay,	
  y	
  en	
  estos,	
  que	
  son	
  los	
  peores,	
  entro	
  yo,	
  que	
  no	
  saben	
  nada,	
  ni	
  quieren	
  
saber	
  nada,	
  ni	
  creen	
  que	
  se	
  sepa	
  nada	
  y	
  dicen	
  de	
  todos	
  que	
  no	
  saben	
  nada	
  y	
  
todos	
  dicen	
  dellos	
  lo	
  mismo	
  y	
  nadie	
  miente.	
  Y	
  como	
  gente	
  que	
  en	
  cosas	
  de	
  
letras	
  y	
  sciencias	
  no	
  Hene	
  que	
  perder	
  tampoco,	
  se	
  atreven	
  a	
  imprimir	
  y	
  sacar	
  
a	
  luz	
  todo	
  cuanto	
  sueñan.	
  



F.	
  Quevedo	
  Statements	
  
	
  

Es	
  cosa	
  averiguada,	
  así	
  lo	
  siente	
  Metrodoro	
  Chío	
  y	
  otros	
  muchos,	
  que	
  no	
  se	
  
sabe	
  nada,	
  y	
  que	
  todos	
  son	
  ignorantes,	
  y	
  aun	
  esto	
  no	
  se	
  sabe	
  de	
  cierto,	
  que	
  a	
  
saberse	
  ya	
  se	
  supiera	
  algo;	
  sospéchase.	
  Dícelo	
  así	
  el	
  doczsimo	
  Francisco	
  
Sánchez,	
  médico	
  y	
  filósofo,	
  en	
  su	
  libro	
  cuyo	
  ztulo	
  es	
  Nihil	
  Scitur,	
  	
  
no	
  se	
  sabe	
  nada.	
  En	
  el	
  mundo	
  hay	
  algunos	
  que	
  no	
  saben	
  nada	
  y	
  estudian	
  para	
  
saber,	
  y	
  estos	
  Henen	
  buenos	
  deseos	
  y	
  vano	
  ejercicio,	
  porque	
  al	
  cabo	
  solo	
  les	
  
sirve	
  el	
  estudio	
  de	
  conocer	
  cómo	
  toda	
  la	
  verdad	
  la	
  quedan	
  ignorando.	
  Otros	
  
hay	
  que	
  no	
  saben	
  nada	
  y	
  no	
  estudian	
  porque	
  piensan	
  que	
  lo	
  saben	
  todo;	
  son	
  
destos	
  muchos	
  irremediables;	
  a	
  estos	
  se	
  les	
  ha	
  de	
  invidiar	
  el	
  ocio	
  y	
  la	
  
saHsfacHón	
  y	
  llorarles	
  el	
  seso.	
  Otros	
  hay	
  que	
  no	
  saben	
  nada	
  y	
  dicen	
  que	
  no	
  
saben	
  nada	
  porque	
  piensan	
  que	
  saben	
  algo	
  de	
  verdad,	
  pues	
  lo	
  es	
  que	
  no	
  
saben	
  nada,	
  y	
  a	
  estos	
  se	
  les	
  había	
  de	
  casHgar	
  la	
  hipocresía	
  con	
  creerles	
  la	
  
confesión.	
  Otros	
  hay,	
  y	
  en	
  estos,	
  que	
  son	
  los	
  peores,	
  entro	
  yo,	
  que	
  no	
  saben	
  
nada,	
  ni	
  quieren	
  saber	
  nada,	
  ni	
  creen	
  que	
  se	
  sepa	
  nada	
  y	
  dicen	
  de	
  todos	
  que	
  
no	
  saben	
  nada	
  y	
  todos	
  dicen	
  dellos	
  lo	
  mismo	
  y	
  nadie	
  miente.	
  Y	
  como	
  gente	
  
que	
  en	
  cosas	
  de	
  letras	
  y	
  sciencias	
  no	
  Hene	
  que	
  perder	
  tampoco,	
  se	
  atreven	
  a	
  
imprimir	
  y	
  sacar	
  a	
  luz	
  todo	
  cuanto	
  sueñan.	
  

Francisco	
  de	
  Quevedo	
  y	
  Villegas	
  
Great	
  Spanish	
  writer	
  XVII	
  century	
  



Rough	
  TranslaHon	
  
It	
  is	
  understood	
  that	
  nothing	
  is	
  known	
  and	
  that	
  we	
  
are	
  all	
  ignorants	
  and	
  even	
  this	
  is	
  not	
  known	
  since	
  if	
  
it	
  were	
  known	
  we	
  would	
  already	
  know	
  
something...In	
  the	
  world	
  there	
  are	
  some	
  that	
  know	
  
nothing	
  and	
  study	
  in	
  vain	
  to	
  learn.	
  Others	
  that	
  
know	
  nothing	
  and	
  claim	
  that	
  they	
  know	
  nothing	
  
because	
  they	
  think	
  they	
  know	
  something...Others,	
  
including	
  myself,	
  are	
  the	
  worst	
  since	
  they	
  know	
  
nothing	
  and	
  don’t	
  want	
  to	
  know	
  anything	
  since	
  
they	
  think	
  nothing	
  is	
  known	
  and	
  claim	
  nobody	
  
knows	
  anything	
  and	
  the	
  others	
  say	
  the	
  same	
  about	
  
them	
  and	
  nobody	
  lies...	
  



Thank	
  you	
  Luis,	
  Angel	
  and	
  Fernando	
  
(La	
  Casta)!	
  

	
  
and	
  
	
  

All	
  others	
  who	
  helped	
  to	
  make	
  this	
  a	
  
great	
  conference!	
  


