Heterotic Superpotentials and Moduli

Eirik Eik Svanes (ILP, LPTHE)

based on work in collaboration with Edward Hardy and Xenia de la Ossa,

June 9th 2015, IFT, Madrid
Introduction
Overview
General String Compactifications
Why Heterotic?
Superpotential
The Infinitesimal Moduli Space
Conclusions
This talk is concerned with heterotic supergravity at $O(\alpha')$, its four-dimensional effective supergravity and moduli.
This talk is concerned with heterotic supergravity at $\mathcal{O}(\alpha')$, its four-dimensional effective supergravity and moduli.

- String Compactifications.
This talk is concerned with heterotic supergravity at $\mathcal{O}(\alpha')$, its four-dimensional effective supergravity and moduli.

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.
This talk is concerned with heterotic supergravity at $\mathcal{O}(\alpha')$, its four-dimensional effective supergravity and moduli.

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.
- First order deformations, holomorphic structures and moduli.
This talk is concerned with heterotic supergravity at $O(\alpha')$, its four-dimensional effective supergravity and moduli.

- String Compactifications.
- Gukov-Vafa-Witten superpotential and supersymmetry conditions.
- First order deformations, holomorphic structures and moduli.
- Conclusions and outlook..
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact. Supersymmetry: Puts conditions on \(X \).
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} , \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \Rightarrow \) give rise to low-energy moduli fields.
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}} , \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \) ⇒ give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).
String theory is ten-dimensional:

\[M_{10} = M_4 \times X_{\text{compact}}, \]

where \(M_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \Rightarrow \) give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \Rightarrow \) give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux \(H \).
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \) give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux \(H \). Worse still: Supersymmetry + CY \(\Rightarrow H = 0 \) [Strominger 86].
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha'^0) \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \Rightarrow \) give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux \(H \). Worse still: Supersymmetry + CY \(\Rightarrow H = 0 \) [Strominger 86]. But can use torsion and higher order \(\alpha' \)-effects (anomaly) to stabilize (lift) moduli.
String theory is ten-dimensional:

\[\mathcal{M}_{10} = \mathcal{M}_4 \times X_{\text{compact}}, \]

where \(\mathcal{M}_4 \) is assumed Minkowski, and \(X \) is compact.

Supersymmetry: Puts conditions on \(X \). \(\mathcal{O}(\alpha') \Rightarrow X \) is Calabi-Yau (no torsion).

Deformations \(\delta X \Rightarrow \) give rise to low-energy moduli fields. Not observed and so must be lifted (moduli problem).

Type II: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux \(H \). Worse still: Supersymmetry + CY \(\Rightarrow H = 0 \) [Strominger 86]. But can use torsion and higher order \(\alpha' \)-effects (anomaly) to stabilize (lift) moduli.

First need to find massless spectrum, i.e. infinitesimal moduli!
Why Heterotic?
The Low energy theory of the heterotic string is a 10d $\mathcal{N} = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A.
The Low energy theory of the heterotic string is a 10d $\mathcal{N} = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α'-effects (anomaly, etc).
The Low energy theory of the heterotic string is a 10d $\mathcal{N} = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A. Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α'-effects (anomaly, etc).

Complications:
The Low energy theory of the heterotic string is a 10d $\mathcal{N} = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α'-effects (anomaly, etc).

Complications:

- Torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].
The Low energy theory of the heterotic string is a 10d $N = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α'-effects (anomaly, etc).

Complications:

- Torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].
- Complicated expressions to deal with, e.g. Bianchi Identity:

$$dH = -2i \bar{\partial} \partial \omega = \frac{\alpha'}{4} (\text{tr } F^2 - \text{tr } R^2).$$
The Low energy theory of the heterotic string is a 10d $\mathcal{N} = 1$ supergravity equipped with a $E_8 \times E_8$ gauge field A.

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus and consider α'-effects (anomaly, etc).

Complications:

- Torsional geometries not well understood, but some progress [Strominger 86, Becker et al 2003, Ivanov 2009, ..].
- Complicated expressions to deal with, e.g. Bianchi Identity:

$$dH = -2i\partial \bar{\partial} \omega = \frac{\alpha'}{4} \left(\text{tr} F^2 - \text{tr} R^2 \right).$$

Need a nicer description to deal with moduli [Anderson et al 10, Anderson et al 14, de la Ossa EES 14, Garcia-Fernandez et al 15].
Superpotential and Supersymmetry
The Superpotential

Introduction
Superpotential
The Superpotential
Supersymmetry Conditions
The Infinitesimal Moduli Space
Conclusions
Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

\[W = \int_X (H + i\omega) \wedge \Omega, \]
Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

\[W = \int_X (H + i\omega) \wedge \Omega, \]

where \(\omega \) is the hermitian two-form (Kähler form), \(\Omega \) is a complex top-form, \(\Omega \in \Omega^{(3,0)}(X) \) encoding the complex structure,
Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

\[W = \int_X (H + i d\omega) \wedge \Omega , \]

where \(\omega \) is the hermitian two-form (Kähler form), \(\Omega \) is a complex top-form, \(\Omega \in \Omega^{(3,0)}(X) \) encoding the complex structure, and

\[H = dB + \frac{\alpha'}{4} \left(\omega^A_{CS} - \omega^\nabla_{CS} \right) , \]
Four-dimensional heterotic theory has GVW-superpotential [Gukov et al 99, Becker et al 03, Cardoso et al 03, Lukas et al 05, ..]

\[W = \int_X (H + i\omega) \wedge \Omega , \]

where \(\omega \) is the hermitian two-form (Kähler form), \(\Omega \) is a complex top-form, \(\Omega \in \Omega^{(3,0)}(X) \) encoding the complex structure, and

\[H = dB + \frac{\alpha'}{4} \left(\omega^A_{CS} - \omega^\nabla_{CS} \right) , \]

and where

\[\omega^A_{CS} = \text{tr} \left(A \wedge dA + \frac{2}{3} A \wedge A \wedge A \right) . \]
F-term conditions:

$$\delta W = W = 0.$$
F-term conditions:
\[\delta W = W = 0. \]

\[\Rightarrow \quad d\Omega = 0 \text{ and so } X \text{ is a complex manifold.} \]
F-term conditions:

\[\delta W = W = 0 . \]

\[\Rightarrow \quad d\Omega = 0 \] and so \(X \) is a complex manifold.

\[F^{(0,2)} = R^{(0,2)} = 0 \] and so the bundles given by \(A \) and \(\Theta \) are holomorphic.
F-term conditions:

\[\delta W = W = 0. \]

- \(\Rightarrow d\Omega = 0 \) and so \(X \) is a complex manifold.
- \(F^{(0,2)} = R^{(0,2)} = 0 \) and so the bundles given by \(A \) and \(\Theta \) are holomorphic.
- \(\delta_1 \Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \overline{\partial})\omega \) [Strominger 86].
F-term conditions:

\[\delta W = W = 0. \]

- \(\Rightarrow \) \(d\Omega = 0 \) and so \(X \) is a *complex manifold*.

- \(F^{(0,2)} = R^{(0,2)} = 0 \) and so the bundles given by \(A \) and \(\Theta \) are *holomorphic*.

- \(\delta_1\Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \overline{\partial})\omega \) [Strominger 86].

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09].
F-term conditions:

\[\delta W = W = 0 . \]

- \(\Rightarrow d\Omega = 0 \) and so \(X \) is a complex manifold.

- \(F^{(0,2)} = R^{(0,2)} = 0 \) and so the bundles given by \(A \) and \(\Theta \) are holomorphic.

- \(\delta_1 \Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \bar{\partial})\omega \) [Strominger 86].

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09]. Similarly, \(X \) is conformally balanced.
F-term conditions:

\[\delta W = W = 0. \]

- \[\Rightarrow d\Omega = 0 \text{ and so } X \text{ is a complex manifold.} \]
- \[F^{(0,2)} = R^{(0,2)} = 0 \text{ and so the bundles given by } A \text{ and } \Theta \text{ are holomorphic.} \]
- \[\delta_1 \Omega = K\Omega + \chi^{(2,1)} \Rightarrow H = i(\partial - \bar{\partial})\omega \text{ [Strominger 86].} \]

Note: Also D-term conditions giving rise to (poly-)stability conditions on bundles [Anderson et al 09]. Similarly, \(X \) is conformally balanced.

Ignore D-terms and conformally balanced condition for this talk, and assume stable bundles.
The Infinitesimal Moduli Space

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix
Complex Structure
Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension

Conclusions
At the supersymmetric locus, the four-dimensional mass-matrix reads

\[V_{IJ} = e^K \partial_I \partial_K W \partial_J \partial_L \overline{W} \kappa^{KL}. \]
At the supersymmetric locus, the four-dimensional mass-matrix reads

\[V_{IJ} = e^K \partial_I \partial_K W \partial_J \partial_L \overline{W} \kappa^{KL}. \]

Assume \(\delta_2 \) massless, while \(\delta_1 \) generic, \(\delta_1 W \) generic F-term. Must then require

\[\delta_2 \delta_1 W = 0. \]
At the supersymmetric locus, the four-dimensional mass-matrix reads

\[V_{IJ} = e^K \partial_I \partial_K W \partial_J \partial_L \overline{W} K^{KL}. \]

Assume \(\delta_2 \) massless, while \(\delta_1 \) generic, \(\delta_1 W \) generic F-term. Must then require

\[\delta_2 \delta_1 W = 0. \]

Naive assumption:

\[\mathcal{T M} = \]

\[\mathcal{T M} = \]
At the supersymmetric locus, the four-dimensional mass-matrix reads

\[V_{IJ} = e^K \partial_I \partial_K W \partial_J \partial_L \overline{W} K_{KL}. \]

Assume \(\delta_2 \) massless, while \(\delta_1 \) generic, \(\delta_1 W \) generic F-term. Must then require

\[\delta_2 \delta_1 W = 0. \]

Naive assumption:

\[T \mathcal{M} = H^{(0,1)}(T^*X) \oplus H^{(0,1)}(TX) \oplus H^{(0,1)}(\text{End}(V)) \]
At the supersymmetric locus, the four-dimensional mass-matrix reads

\[V_{IJ} = e^K \partial_I \partial_K W \partial_J \partial_L \overline{W} K^{KL} . \]

Assume \(\delta_2 \) massless, while \(\delta_1 \) generic, \(\delta_1 W \) generic F-term. Must then require

\[\delta_2 \delta_1 W = 0 . \]

Naive assumption:

\[
TM = H^{(0,1)}(T^*X) \oplus H^{(0,1)}(TX) \oplus H^{(0,1)}(\text{End}(V))
\]

\[
\delta_{12}W|_{\delta W=0} = \int_X \frac{\alpha'}{2} \left(\text{tr} \delta_1 A \wedge \delta_2 (F \wedge \Omega) - \text{tr} \delta_1 \Theta \wedge \delta_2 (R \wedge \Omega) \right)
+ \int_X d\tau_1 \wedge \delta_2 \Omega + \int_X \delta_2 (H + i d\omega) \wedge \delta_1 \Omega
+ \int_X (H + i d\omega) \wedge \delta_2 \delta_1 \Omega .
\]
Complex Structure Moduli

Introduction

Superpotential

The Infinitesimal Moduli Space

Mass Matrix
Complex Structure Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension

Conclusions
It follows that

\[d\delta_2 \Omega = 0 \Rightarrow \delta_2 \Omega \in H^{(2,1)}(X) \Leftrightarrow \Delta_2 \in H^{(0,1)}(TX), \]
It follows that
\[d\delta_2\Omega = 0 \implies \delta_2\Omega \in H^{(2,1)}(X) \iff \Delta_2 \in H^{(0,1)}(TX), \]
Also get
\[\delta_2(F \wedge \Omega) = 0 \iff \Delta_2^a \wedge F_{a\bar{b}}dz^\bar{b} = \overline{\partial}\alpha_2, \]
where \(\Delta_2 \in H^{(0,1)}(TX), \alpha_2 \in \Omega^{(0,1)}(\text{End}(V)). \)
It follows that
\[d\delta_2 \Omega = 0 \Rightarrow \delta_2 \Omega \in H^{(2,1)}(X) \iff \Delta_2 \in H^{(0,1)}(TX), \]
Also get
\[\delta_2 (F \wedge \Omega) = 0 \iff \Delta_2^a \wedge F_{ab} \, dz^b = \bar{\partial}\alpha_2, \]
where \(\Delta_2 \in H^{(0,1)}(TX), \alpha_2 \in \Omega^{(0,1)}(\text{End}(V)). \)
Similarly
\[\delta_2 (R \wedge \Omega) = 0 \iff \Delta_2^a \wedge R_{ab} \, dz^b = \bar{\partial}\kappa_2, \]
where \(\kappa_2 \in \Omega^{(0,1)}(\text{End}(V)). \)
It follows that
\[\text{d}\delta_2\Omega = 0 \Rightarrow \delta_2\Omega \in H^{(2,1)}(X) \iff \Delta_2 \in H^{(0,1)}(TX), \]
Also get
\[\delta_2(F \wedge \Omega) = 0 \iff \Delta_2^a \wedge F_{a\bar{b}} d\bar{z}^b = \bar{\partial}\alpha_2, \]
where \(\Delta_2 \in H^{(0,1)}(TX), \alpha_2 \in \Omega^{(0,1)}(\text{End}(V)). \)
Similarly
\[\delta_2(R \wedge \Omega) = 0 \iff \Delta_2^a \wedge R_{a\bar{b}} d\bar{z}^b = \bar{\partial}\kappa_2, \]
where \(\kappa_2 \in \Omega^{(0,1)}(\text{End}(V)). \)
Note: Deformations \(\delta_2 \nabla = \kappa_2 \) non-physical.
It follows that
\[d\delta_2 \Omega = 0 \implies \delta_2 \Omega \in H^{(2,1)}(X) \iff \Delta_2 \in H^{(0,1)}(TX), \]
Also get
\[\delta_2 (F \wedge \Omega) = 0 \iff \Delta_2^a \wedge F_{ab} dz^b = \overline{\partial} \alpha_2, \]
where \(\Delta_2 \in H^{(0,1)}(TX), \alpha_2 \in \Omega^{(0,1)}(\text{End}(V)). \)

Similarly
\[\delta_2 (R \wedge \Omega) = 0 \iff \Delta_2^a \wedge R_{ab} dz^b = \overline{\partial} \kappa_2, \]
where \(\kappa_2 \in \Omega^{(0,1)}(\text{End}(V)). \)

Note: Deformations \(\delta_2 \nabla = \kappa_2 \) non-physical. Can be thought of as infinitesimal field redefinitions preserving Strominger system [de la Ossa EES 14].
It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(V))$$

$$\mathcal{R} : H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(TX)).$$
It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\text{End}(V))$$

$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\text{End}(TX)).$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R},$$
It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(V))$$

$$\mathcal{R} : H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(TX))$$.

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \partial + \mathcal{F} + \mathcal{R}, \quad \text{Binachi Identities} \iff \overline{\partial}_1^2 = 0.$$
It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : \ H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(V))$$

$$\mathcal{R} : \ H^{(0,1)}(TX) \rightarrow H^{(0,1)}(\text{End}(TX)).$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}, \quad \text{Binachi Identities} \iff \overline{\partial}_1^2 = 0.$$

$\overline{\partial}_1$ defines an Atiyah algebroid [Atiyah 57]

$$0 \rightarrow \text{End}(V) \oplus \text{End}(TX) \rightarrow Q_1 \rightarrow TX \rightarrow 0.$$
It follows that Δ_2 is in the kernel of [Anderson et al 10]

$$\mathcal{F} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(V))$$

$$\mathcal{R} : H^{(0,1)}(TX) \to H^{(0,1)}(\operatorname{End}(TX)).$$

Can equivalently be put in terms of holomorphic structure

$$\overline{\partial}_1 = \overline{\partial} + \mathcal{F} + \mathcal{R}, \quad \text{Binachi Identities} \iff \overline{\partial}_1^2 = 0.$$

$\overline{\partial}_1$ defines an Atiyah algebroid [Atiyah 57]

$$0 \to \operatorname{End}(V) \oplus \operatorname{End}(TX) \to Q_1 \to TX \to 0.$$

$$T\mathcal{M}_1 = H^{(0,1)}(Q_1)$$

$$= H^{(0,1)}(\operatorname{End}(V)) \oplus H^{(0,1)}(\operatorname{End}(TX)) \oplus \operatorname{ker}(\mathcal{F} + \mathcal{R}).$$
Conditions from the Anomaly
We also have the terms

\[\int_X \delta_2 (H + i\omega) \wedge \delta_1 \Omega + \int_X (H + i\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W |_{\delta W = 0} \]
We also have the terms
\[\int_X \delta_2 (H + i\omega) \wedge \delta_1 \Omega + \int_X (H + i\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W |_{\delta W = 0} \]

Algebra: ⇒ arrive at the following conditions
\[
\bar{\partial} \tau_2^{(0,2)} = 0
\]
\[
2\Delta^a_2 \wedge i\bar{\partial} [a \omega_b] \bar{c} \bar{d} z^{b\bar{c}} - \frac{\alpha'}{2} (\text{tr} \alpha_2 \wedge F - \text{tr} \kappa_2 \wedge R)
\]
\[
= \partial \tau_2^{(0,2)} + \bar{\partial} \tau_2^{(1,1)}.
\]

Technicality: Assume \(H^{(0,1)}(X) = 0 \) ⇒ \(\partial \tau_2^{(0,2)} \) is \(\bar{\partial} \)-exact.
We also have the terms
\[\int_X \delta_2(H + i\,d\omega) \wedge \delta_1 \Omega + \int_X (H + i\,d\omega) \wedge \delta_2 \delta_1 \Omega \in \delta_{12} W |_{\delta W = 0} \]

Algebra: \(\Rightarrow\) arrive at the following conditions
\[\overline{\partial} \tau_2^{(0,2)} = 0 \]
\[2\Delta^a_2 \wedge i\partial_{[a\omega_b]c} dz^{b\overline{c}} - \frac{\alpha'}{2} (\text{tr} \, \alpha_2 \wedge F - \text{tr} \, \kappa_2 \wedge R) \]
\[= \partial \tau_2^{(0,2)} + \overline{\partial} \tau_2^{(1,1)}. \]

Technicality: Assume \(H^{(0,1)}(X) = 0 \Rightarrow \partial \tau_2^{(0,2)} \) is \(\overline{\partial} \)-exact.

It follows that \(x = (\Delta, \alpha, \kappa) \in H^{(0,1)}(Q_1) \) is in the kernel of
\[\mathcal{H} : \quad H^{(0,1)}(Q_1) \rightarrow H^{(0,2)}(T^* X). \]
Holomorphic Double Extension

Introduction
Superpotential
The Infinitesimal Moduli Space
Mass Matrix
Complex Structure
Moduli
Kernels and the Atiyah Algebroid
Conditions from the Anomaly
Holomorphic Double Extension
Conclusions
The map \mathcal{H} defines the holomorphic double extension

$$0 \to T^*X \to \mathcal{Q}_2 \to \mathcal{Q}_1 \to 0,$$

with corresponding holomorphic structure

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}, \quad \text{Heterotic Bianchi Identity} \iff \overline{\partial}_2^2 = 0.$$
The map \mathcal{H} defines the holomorphic double extension

$$0 \to T^* X \to Q_2 \to Q_1 \to 0,$$

with corresponding holomorphic structure

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}, \quad \text{Heterotic Bianchi Identity} \iff \overline{\partial}_2^2 = 0.$$

Note: Q_2 as a holomorphic bundle is \textit{self-dual}.
The map \mathcal{H} defines the holomorphic double extension
\[0 \to T^* X \to Q_2 \to Q_1 \to 0, \]
with corresponding holomorphic structure
\[\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}, \quad \text{Heterotic Bianchi Identity} \quad \iff \quad \overline{\partial}_2^2 = 0. \]

Note: Q_2 as a holomorphic bundle is *self-dual*.

Infinitesimal moduli \cite{Anderson et al 14, de la Ossa EES 14}
\[T \mathcal{M}_2 = H^{(0,1)}(Q_2) = H^{(0,1)}(T^* X) \oplus \ker(\mathcal{H}). \]
The map \mathcal{H} defines the holomorphic double extension

$$0 \rightarrow T^* X \rightarrow Q_2 \rightarrow Q_1 \rightarrow 0,$$

with corresponding holomorphic structure

$$\overline{\partial}_2 = \overline{\partial}_1 + \mathcal{H}, \quad \text{Heterotic Bianchi Identity} \quad \Leftrightarrow \quad \overline{\partial}_2^2 = 0.$$

Note: Q_2 as a holomorphic bundle is \textit{self-dual}.

Infinitesimal moduli [Anderson et al 14, de la Ossa ESS 14]

$$TM_2 = H^{(0,1)}(Q_2) = H^{(0,1)}(T^* X) \oplus \ker(\mathcal{H}).$$

Get same kernel structure.
Conclusions
Conclusions and Outlook

Conclusions:
Conclusions:

- Heterotic string is a nice playground for phenomenology, but the moduli problem is hard.
Conclusions and Outlook

Conclusions:

- Heterotic string is a nice playground for phenomenology, but the moduli problem is hard.
- From the heterotic superpotential, we derived the massless moduli space, and saw that it agrees with the 10d computation of [Anderson et al 14, de la Ossa EES 14] for the infinitesimal moduli space of solutions to the Strominger system.
Conclusions:

- Heterotic string is a nice playground for phenomenology, but the moduli problem is hard.
- From the heterotic superpotential, we derived the massless moduli space, and saw that it agrees with the 10d computation of [Anderson et al 14, de la Ossa EES 14] for the infinitesimal moduli space of solutions to the Strominger system.
- We note that the heterotic anomaly condition may lead to lifting extra moduli, even in Calabi-Yau compactifications.
Outlook, and work in progress:
Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of ∂^2. Interesting to look for more phenomenological examples.
Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of $\overline{\partial}^2$. Interesting to look for more phenomenological examples.
- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.
Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of $\partial \overline{\partial}$. Interesting to look for more phenomenological examples.

- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.

- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?
Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of ∂_2. Interesting to look for more phenomenological examples.

- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.

- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?

- What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity
Outlook, and work in progress:

- So far mostly a mathematical investigation into the structure of $\overline{\partial}_2^2$. Interesting to look for more phenomenological examples.

- Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.

- Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?

- What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity

\[
\text{d}H + W_{NS5} = \frac{\alpha'}{4} \left(\text{tr} F^2 - \text{tr} R^2 \right).
\]
Outlook, and work in progress:

■ So far mostly a mathematical investigation into the structure of ∂_2. Interesting to look for more phenomenological examples.

■ Further investigation into higher order deformations and obstructions corresponding to Yukawa couplings.

■ Need Kähler potential to investigate the 4d theory outside of Minkowski vacua. Holomorphic structures usually come with natural Kähler metric (Weil-Peterson metric, etc). Clue for what Kähler metric is?

■ What about non-perturbative effects? E.g. NS5-branes correct the Bianchi Identity

$$dH + W_{NS5} = \frac{\alpha'}{4} (\text{tr } F^2 - \text{tr } R^2).$$

⇒ Spoils holomorphic structure ∂_2.

Heterotic Supergravity and Moduli – 17
Thank you for your attention!