Multiple field inflation with additional heavy fields

Yvette Welling

Collaborators: Ana Achúcarro, Vicente Atal

[Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
[YW, MSc Thesis 2014, 1502.04369]
Stabilized heavy fields present during inflation can affect the dynamics of low energy degrees of freedom and leave their imprint on observables.
Stabilized heavy fields present during inflation can affect the dynamics of low energy degrees of freedom and leave their imprint on observables.

E.g. the predictions for r and n_s

Plot from [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]

See Vicente Atal’s talk
Stabilized heavy fields present during inflation can affect the dynamics of low energy degrees of freedom and leave their imprint on observables.

E.g. the primordial power spectrum

Plot from [Cespedes, Atal, Palma., JCAP 2012, 1201.4848]
[Achúcarro, Gong, Hardeman, Palma, Patil, PRD 2011, 1010.3693]
Stabilized heavy fields present during inflation can affect the dynamics of low energy degrees of freedom and leave their imprint on observables.

E.g. features in the bispectrum

Plot from [Achúcarro, Atal, Ortiz, Torrado, PRD 2013, 1311.2552]
Motivation: signatures of new physics

Single field inflation fits data well.
However there could be more fields present during inflation..
Motivation: signatures of new physics

Single field inflation fits data well.
However there could be more fields present during inflation.

Consider single field inflation as EFT from multi-field inflation with heavy fields.

[Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore, JHEP 2007, 0709.0293]
Motivation: signatures of new physics

Single field inflation fits data well.
However there could be more fields present during inflation.

Consider single field inflation as EFT from multi-field inflation with heavy fields.

Do heavy fields influence the observables?

[Cheung, Creminelli, Fitzpatrick, Kaplan, Senatore, JHEP 2007, 0709.0293]
Do they...?

We mean stabilized heavy fields $M^2 \gg H^2$
Do they...?

We mean stabilized heavy fields $M^2 \gg H^2$

Ok, their effects in the low energy EFT should be suppressed by H^2/M^2, right..?
Do they...?

We mean stabilized heavy fields $M^2 \gg H^2$

Ok, their effects in the low energy EFT should be suppressed by H^2/M^2, right..?

Yes, but.. prefactor can be large!

There are **three** scales of importance:

1. mass heavy field
2. curvature target space
3. curvature inflationary trajectory

[Achúcarro, Gong, Hardeman, Palma, Patil, JCAP 2011, 1005.3848]
[Burgess, Horbatch, Patil, JHEP 2013, 1209.5701]
Do they...?

We mean stabilized heavy fields $M^2 >> H^2$

Ok, their effects in the low energy EFT should be suppressed by H^2/M^2, right..?

Yes, but.. prefactor can be large!

In particular inflationary trajectory can be curved. This couples perturbations.

→ Integrate out heavy modes with care.

[Achúcarro, Atal, Cespedes, Gong, Palma, Patil, PRD 2012, 1205.0710]
[Cespedes, Atal, Palma., JCAP 2012, 1201.4848]
[Burgess, Horbach, Patil, JHEP 2013, 1209.5701]
For a recent review see [Chluba, Hamann, Patil, 1505.01834]
Intuitive example: a sudden turn

A sudden turn in the inflationary trajectory induced by a bend in the potential.

[Achúcarro, Gong, Hardeman, Palma, Patil, PRD 2011, 1010.3693]
[Cespedes, Atal, Palma., JCAP 2012, 1201.4848]
Intuitive example: a sudden turn

A sudden turn gives rise to oscillations in the power spectrum (and bispectrum).

Effects of heavy fields cannot be ignored!

Search for features:

[Achúcarro, Atal, Ortiz, Torrado, PRD 2013, 1311.2552]
See recent review [Chluba, Hamann, Patil, 1505.01834]

[Achúcarro, Gong, Hardeman, Palma, Patil, PRD 2011, 1010.3693]
[CESPEDES, ATAL, PALMA, JCAP 2012, 1201.4848]
Turn = Not Geodesic

There could be “hidden” turns if field metric is non-trivial

\[S_\phi = -\int d^4 x \sqrt{-g} \left[\frac{1}{2} G_{ab}(\phi) \partial_\mu \phi^a \partial^\mu \phi^b + V(\phi) \right] \]
Turn = Not Geodesic

There could be “hidden” turns if field metric is non-trivial

\[
S_\phi = -\int d^4x \sqrt{-g} \left[\frac{1}{2} G_{ab}(\phi) \nabla_\mu \phi^a \nabla^\mu \phi^b + V(\phi) \right]
\]

Mismatch between geodesics field space and valley potential?

→ Curved trajectory
Tangent and normal decomposition

\[
\dddot{\mathcal{R}} + (3 + 2\varepsilon - 2\eta)H\dot{\mathcal{R}} + \frac{k^2}{a^2} \mathcal{R} = -2\frac{H}{\dot{\sigma}} \left[\dddot{\mathcal{F}} + (3 - \eta - \xi)H \dot{\mathcal{F}} \right]
\]

\[
\dddot{\mathcal{F}} + 3H \ddot{\mathcal{F}} + \frac{k^2}{a^2} \mathcal{F} + (M^2 - \dot{\theta}^2)\mathcal{F} = 2\dot{\sigma} \frac{\dot{\theta}}{H} \dddot{\mathcal{R}}
\]

Field speed $\dot{\sigma}$
Radius of curvature κ

Turn rate

\[
\dot{\theta} = \pm \frac{\dot{\sigma}}{\kappa}
\]

Measures deviation from geodesic

Curvature perturbation

\[
\mathcal{R} \equiv \frac{H}{\dot{\sigma}} T_a \delta \phi^a + \psi
\]

Isocurvature perturbation

\[
\mathcal{F} \equiv N_a \delta \phi^a
\]
Integrate out heavy modes

Following [Achúcarro, Atal, Cespedes, Gong, Palma, Patil, PRD 2012, 1205.0710] See also [Achucarro et al., JCAP 2011, 1005.3848], [Baumann, Green, JCAP 2011, 1102.5343], [Shiu, Xu, PRD 2011, 1108. 0981], [Cespedes et al., JCAP 2012, 1201.4848], [Gwyn, Palma, Sakellariadou, Sypsas, JCAP 2013, 1210.3020]

Coupled oscillators with derivative coupling

\[\ddot{R}_c + \frac{k^2}{a^2} R_c = 2\dot{\theta} \dot{F} \]

\[\ddot{F} + \frac{k^2}{a^2} F + (M^2 - \dot{\theta}^2) F = -2\dot{\theta} \dot{R}_c \]

Turn rate

\[\dot{\theta} = \pm \frac{\dot{\sigma}}{\kappa} \]

Curvature perturbation

\[R_c \equiv \frac{\dot{\sigma}}{H} R \]

Isocurvature perturbation

\[F \equiv N_a \delta \phi^a \]

Measures deviation from geodesic
Integrate out heavy modes

Following [Achúcarro, Atal, Cespedes, Gong, Palma, Patil, PRD 2012, 1205.0710] See also [Achucarro et al., JCAP 2011, 1005.3848], [Baumann, Green, JCAP 2011, 1102.5343], [Shiu, Xu, PRD 2011, 1108.0981], [Cespedes et al., JCAP 2012, 1201.4848], [Gwyn, Palma, Sakellariadou, Sypsas, JCAP 2013, 1210.3020]

Coupled oscillators with derivative coupling

\[\ddot{R}_c + \frac{k^2}{a^2} R_c = 2\dot{\theta} \dot{F} \]

\[\ddot{F} + \frac{k^2}{a^2} F + \left(M^2 - \dot{\theta}^2 \right) F = -2\dot{\theta} R_c \]

High and low frequency solutions

\[
\begin{pmatrix}
R_c \\
F
\end{pmatrix} =
\begin{pmatrix}
R_+ & R_- \\
F_+ & F_-
\end{pmatrix}
\begin{pmatrix}
e^{i\omega_+ t} \\
e^{i\omega_- t}
\end{pmatrix}
\]

\[\omega_+^2 \approx M^2 + 3\dot{\theta}^2 \]

\[\omega_-^2 \approx \frac{k^2}{a^2} c_s^2 \]

\[c_s^{-2} = 1 + \frac{4\dot{\theta}^2}{M^2 - \dot{\theta}^2} \]
Integrate out heavy modes

Following [Achúcarro, Atal, Cespedes, Gong, Palma, Patil, PRD 2012, 1205.0710] See also [Achucarro et al., JCAP 2011, 1005.3848], [Baumann, Green, JCAP 2011, 1102.5343], [Shiu, Xu, PRD 2011, 1108.0981], [Cespedes et al., JCAP 2012, 1201.4848], [Gwyn, Palma, Sakellariadou, Sypsas, JCAP 2013, 1210.3020]

Coupled oscillators with derivative coupling

$$\ddot{R}_c + \frac{k^2}{a^2} R_c = 2\dot{\theta} \dot{F}$$

$$\ddot{F} + \frac{k^2}{a^2} F + \left(M^2 - \dot{\theta}^2 \right) F = -2\dot{\theta} R_c$$

Integrate out heavy modes

$$\begin{pmatrix} \mathcal{R}_c \\ \mathcal{F} \end{pmatrix} = \begin{pmatrix} \mathcal{R}_+ & \mathcal{R}_- \\ \mathcal{F}_+ & \mathcal{F}_- \end{pmatrix} \begin{pmatrix} e^{i\omega_+ t} \\ e^{i\omega_- t} \end{pmatrix}$$

$$\omega_+^2 \approx M^2 + 3\dot{\theta}^2$$

$$\omega_-^2 \approx \frac{k^2}{a^2} c_s^2$$

$$c_s^{-2} = 1 + \frac{4\dot{\theta}^2}{M^2 - \dot{\theta}^2}$$
Integrate out heavy modes

Following [Achúcarro, Atal, Cespedes, Gong, Palma, Patil, PRD 2012, 1205.0710] See also [Achucarro et al., JCAP 2011, 1005.3848], [Baumann, Green, JCAP 2011, 1102.5343], [Shiu, Xu, PRD 2011, 1108. 0981], [Cespedes et al., JCAP 2012, 1201.4848], [Gwyn, Palma, Sakellariadou, Sypsas, JCAP 2013, 1210.3020]

Coupled oscillators with derivative coupling

\[
\ddot{R}_c + \frac{k^2}{a^2} R_c = 2\dot{\theta} \dot{F}
\]

\[
\ddot{F} + \frac{k^2}{a^2} F + \left(M^2 - \dot{\theta}^2\right) F = -2\dot{\theta}\dot{R}_c
\]

Constraints on validity

\[
M^2 / H^2 \gg 1 \quad \left| \frac{\dot{\omega}_+ / \omega_+^2}{\dot{\theta} / \dot{\theta}} \right| \ll 1 \quad \left| \frac{M^2 - \dot{\theta}^2}{H^2} \right| > 0
\]

Massive enough

Adiabatic condition: Turn not too sharp

Stability condition: Turn not too strong

See [Cespedes, Atal, Palma., JCAP 2012, 1201.4848]
Low energy EFT

See recent review [Chluba, Hamann, Patil, 1505.01834]

Integrating out heavy modes yields EFT for \mathcal{R}

$$S_{\text{eff}} = M_p^2 \int d^4 x a^3 \epsilon \left[\frac{\dot{\mathcal{R}}^2}{c_s^2(t)} - \frac{(\nabla \mathcal{R})^2}{a^2} + O(\mathcal{R}^3 / a^3) \right]$$

$$c_s^{-2} = 1 + \frac{4 \dot{\theta}^2}{M^2 - \hat{\theta}^2}$$

From here compute power spectrum and higher order correlation functions
Low energy EFT

Integrating out heavy modes yields EFT for \mathcal{R}

$$
S_{\text{eff}} = M_P^2 \int d^4 x a^3 \epsilon \left[\frac{\dot{\mathcal{R}}^2}{c_s^2(t)} - \frac{(\nabla \mathcal{R})^2}{a^2} + O(\mathcal{R}^3/a^3) \right]
$$

Turn rate

$$
\frac{1}{c_s^{-2}} = 1 + \frac{4 \dot{\theta}^2}{M^2 - \dot{\theta}^2}
$$

Example: transient reduced speed of sound

See recent review [Chluba, Hamann, Patil, 1505.01834]
Low energy EFT
See recent review [Chluba, Hamann, Patil, 1505.01834]

Integrating out heavy modes yields EFT for \mathcal{R}

\[
S_{\text{eff}} = M_P^2 \int d^4 x a^3 \varepsilon \left[\frac{\dot{\mathcal{R}}^2}{c_s^2(t)} - \frac{(\nabla \mathcal{R})^2}{a^2} + O(\mathcal{R}^3 / a^3) \right]
\]

\Rightarrow Always compute turn rate to find how observables are affected

Turn rate

\Rightarrow Always compute turn rate to find how observables are affected

$C_s^{-2} = 1 + \frac{4\dot{\theta}^2}{M^2 - \dot{\theta}^2}$
Summary

• Stabilized heavy fields can influence dynamics of low energy degrees of freedom

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
Summary

• Stabilized heavy fields can influence dynamics of low energy degrees of freedom
• This happens whenever the inflationary trajectory is curved (= non-geodesic)

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
Summary

• Stabilized heavy fields can influence dynamics of low energy degrees of freedom
• This happens whenever the inflationary trajectory is curved (= non-geodesic)
• Integrate out heavy modes with care

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
Summary

• Stabilized heavy fields can influence dynamics of low energy degrees of freedom
• This happens whenever the inflationary trajectory is curved (= non-geodesic)
• Integrate out heavy modes with care
• This could result in reduced speed of sound

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
Summary

• Stabilized heavy fields can influence dynamics of low energy degrees of freedom
• This happens whenever the inflationary trajectory is curved (= non-geodesic)
• Integrate out heavy modes with care
• This could result in reduced speed of sound
• Check how observables are affected

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]
Summary

- Stabilized heavy fields can influence dynamics of low energy degrees of freedom
- This happens whenever the inflationary trajectory is curved (= non-geodesic)
- Integrate out heavy modes with care
- This could result in reduced speed of sound
- Check how observables are affected
- Vicente’s talk (next one)

[YW, MSc Thesis 2014, 1502.04369], [Ana Achúcarro, Vicente Atal, YW, JCAP 2015, 1503.07486]