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Introduction
• Collider Physics	


• accelerating particle -> High Energy collision	

• What do we need to predict/understand such 

collision?

Topic
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Kind of measurement
Peak Shape Rate

“easy” “Hard” “VERY HARD”

Background directly 
measured from data. 	


Theory needed only for	

parameter extraction

Background SHAPE needed. 
Flexible MC for both signal 

and background validated and 
tuned to data

Relies on prediction for both 
shape and normalization. 

Complicated interplay of best 
simulations and data
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• This is Where 
the new idea 
are expressed

4

Theory side
Lagrangian Feynman Rule

•Same 
information as 
the Lagrangian!

FeynRules

Cross-section

•What is the 
precision?!
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Monte-Carlo Physics
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Filling the gap
Lagrangian

Feynman Rules

matrix element

parton events

shower events

hadronized events

detector simulation

exclusion plot

FeynRules / Sarah

MadGraph / Comix

MadEvent/Sherpa

Pythia/Herwig

Pythia/Herwig

Delphes/Full Sim

CheckMate/ 
MadAnalysis5
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Simulation of collider events

Simulation of collider events

7
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What are the MC for?

Sherpa artist

8

 MeV

 GeV

 TeV

 Scales
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ where BSM physics lies 

☞ process dependent

☞ first principles description

☞ it can be systematically improved

9
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ QCD -”known physics”
☞ universal/ process independent
☞ first principles description

10
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ universal/ process independent

☞ model-based description

☞ low Q   physics
2
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What are the MC for?
1. High-Q  Scattering2 2. Parton Shower 

3. Hadronization 4. Underlying Event 

☞ energy and process dependent 

☞ model-based description

☞ low Q   physics
2

12
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What are the MC for?

13

 MeV

 GeV

 TeV

 Scales
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• Multi-scale problem!
➡ New physics visible only at High scale!
➡ Problem split in different scale

14

To Remember
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pp

µFµF
x1E x2E

`+ `�

long distance

long distance

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b

Master formula for the LHC
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• The parton-level cross section can be computed as a 
series in perturbation theory, using the coupling 
constant as an expansion parameter, schematically: 
 
 
 
 
 
 

• Including higher corrections improves predictions 
and reduces theoretical uncertainties

Perturbative expansion

16

NLO 
corrections

NNLO 
corrections

N3LO or NNNLO 
corrections

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅

LO 
predictions

Parton-level cross sectiond⇥̂ab�X(ŝ, µF , µR)
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• As an example, consider Drell-Yan Z/γ* 
production

NLO predictions

17

2

�̂ = �Born

✓
1 +

↵s

2⇡
�(1) + . . .

◆

2

gs + ...

×2 Re
gs

gs

x1E x2E

`+ `�

Not definite positive
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• Leading Order predictions can 
depend strongly on the 
renormalization and factorization 
scales	


• Including higher order corrections 
reduces the dependence on these 
scales

Improved predictions

18

⇤̂ = ⇤Born

⇤
1 +

�s

2⇥
⇤(1) +

��s

2⇥

⇥2
⇤(2) +

��s

2⇥

⇥3
⇤(3) + . . .

⌅
fa(x1, µF )fb(x2, µF )

�

a,b

�
dx1dx2d� = d⇥̂ab�X(ŝ, µF , µR)
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• LO calculation is not reliable,	


• but the perturbative series 
stabilises at NNLO/N3LO	


• NLO estimation of the 
uncertainties (by scale variation) 
works reasonably well

Higgs at N3LO

19

Let’s focus on NLO
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• For an observable to be calculable in fixed-order 
perturbation theory, the observable should be infrared 
safe, i.e., it should be insensitive to the emission of soft 
or collinear partons. 

• In particular, if pi is a momentum occurring in the 
definition of an observable, it most be invariant under 
the branching 
      pi ⟶ pj + pk, 
whenever pj and pk are collinear or one of them is soft. 

• Examples 

• “The number of gluons” produced in a collision is not an infrared 
safe observable	


• “The number of hard jets defined using the kT algorithm with a 
transverse momentum above 40 GeV,” produced in a collision is 
an infrared safe observable

Infrared safe observables

20
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!

• Total cross section!

• Transverse momentum of the top quark!

• Transverse momentum of the top-antitop pair!

• Transverse momentum of the jet!

• Top-antitop invariant mass!

• Azimuthal distance between the top and anti-top

NLO...?

21

LO VirtReal
NLO?	


✔	


✔	


✘	


✘	


✔	


✘ 

• Are all (IR-safe) observables that we can compute using a 
NLO code correctly described at NLO? Suppose we have 
a NLO code for pp ⟶ ttbar
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• NNLO is the current state-of-the-art. There are 
only a few results available: Higgs (N3LO available), 
Drell-Yan, ttbar	


• Why do we need it?	


•  control of the uncertainties in a  
calculation	


• It is “mandatory” if NLO corrections  
are very large to check the behavior  
of the perturbative series	


• It is needed for Standard Candles  
and very precise tests of perturbation theory, exploiting all 
the available information, e.g. for determining NNLO PDF 
sets

Going NNLO...?

22

Fabio Maltoni CERN Academic Training Lectures - May 2012 47

Predictions at NNLO

Why?

● A NNLO computation gives control on the 
uncertainties of a perturbative calculation.

● It’s “mandatory” if NLO corrections are very large to 
check the behaviour of the perturbative series

● It’s the best we have! It is needed for Standard Candles 
and for really exploiting all the available information, for 
example that of NNLO PDF’s.

× σ̂ab→X(x1, x2, αS(µ2

R),
Q2

µ2

F

,
Q2

µ2

R

)σX =
∑
a,b

∫ 1

0

dx1dx2 fa(x1, µ
2

F )fb(x2, µ
2

F )

σ̂ab→X = σ0 + αSσ1 + α
2

Sσ2 + . . .

Wednesday 2 May 2012

Let’s focus on LO
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Hadron Colliders

b

W
Z

t

23

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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Parton densities

10!

Parton Kinematics 

!! Examples: 

!! Higgs: M~100 GeV/c2 

!! LHC: <xp>=100/14000"0.007 

!! TeV: <xp>=100/2000"0.05 

!! Gluino: M~1000 GeV/c2 

!! LHC: <xp>=1000/14000"0.07 

!! TeV: <xp>=1000/2000"0.5 

!! Parton densities rise dramatically towards low x 

!! Results in larger cross sections for LHC, e.g. 

!! factor ~1000 for gluinos 

!! factor ~40 for Higgs 

!! factor ~10 for W’s 

pdf’s measured in deep-inelastic scattering!

(at "s=14 TeV)!

Ratio of Luminosity: LHC at 7 TeV vs Tevatron 

!! Power of collider can be 

fully characterized by ratio 

of parton luminosities 

!! Ratio larger for gg than qq 

!! Due to steap rise of gluon 

towards low x 

!! MX=100 GeV 

!! gg: R"10, e.g. Higgs 

!! qq: R"3, e.g. W and Z 

!! MX=800 GeV  

!! gg: R"1000, e.g. SUSY 

!! qq: R"20, e.g. Z’ 
11!

At small x (small ŝ), gluon domination.	

At large x valence quarks

LHC formidable at large mass –	

For low mass, Tevatron backgrounds smaller

24
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Back to the processes
Ratio of Luminosity: LHC at 7 TeV vs Tevatron 

!! Power of collider can be 

fully characterized by ratio 

of parton luminosities 

!! Ratio larger for gg than qq 

!! Due to steap rise of gluon 

towards low x 

!! MX=100 GeV 

!! gg: R"10, e.g. Higgs 

!! qq: R"3, e.g. W and Z 

!! MX=800 GeV  

!! gg: R"1000, e.g. SUSY 

!! qq: R"20, e.g. Z’ 
11!

25
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• PDF: content of the proton!
➡ Define the physics/processes that will 
dominate on your accelerator!

• NLO/NNLO: Reduce scale uncertainty linked 
to your division of your multi-scale problem

26

To Remember

Phase-space 
integral

Parton density 
functions

Parton-level cross 
section

�
dx1dx2d�FS fa(x1, µF )fb(x2, µF ) ⇥̂ab�X(ŝ, µF , µR)

�

a,b
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•Determine the production mechanism!
!

!

!

• Evaluate the matrix-element!
!

• Phase-Space Integration  
 
 
 

27

Matrix-Element
Calculate a given process (e.g. gluino pair)

s s~ > go go WEIGHTED=2 page 1/1

Diagrams made by MadGraph5_aMC@NLO

s

1

s~

2

g

go

3

go

4

 diagram 1 QCD=2, QED=0

s

1

go

3

sl

s~
2

go
4

 diagram 2 QCD=2, QED=0

s

1

go

3

sr

s~
2

go
4

 diagram 3 QCD=2, QED=0

s

1

go

4

sl

s~
2

go
3

 diagram 4 QCD=2, QED=0

s

1

go

4

sr

s~
2

go
3

 diagram 5 QCD=2, QED=0

σ =
1

2s

∫
|M|2dΦ(n)

σ =
1

2s

∫
|M|2dΦ(n)

➡Need Feynman Rules!

Easy 
enough

Hard

Very 
Hard

(in general)

Thuesday

Now



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Monte Carlo Integration  
and Generation

28
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Monte Carlo Integration

σ =
1

2s

∫
|M|2dΦ(n)

Calculations of cross section or decay widths involve 
integrations over high-dimension phase space of very 
peaked functions:

General and flexible method is needed

Dim[Φ(n)] ∼ 3n

29
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

• MonteCarlo	

• Trapezium	

• Simpson

Method of evaluation
1/

p
N

1/N4

1/N2

simpson MC
3 0.638 0.3
5 0.6367 0.8
20 0.63662 0.6
100 0.636619 0.65
1000 0.636619 0.636
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

Method of evaluation
1/

p
N

1/N4

1/N2

More Dimension 1/
p
N

1/N2/d

1/N4/d

• MonteCarlo	

• Trapezium	

• Simpson
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Integration
I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

Z
dq2

(q2 �M2 + iM�)2

IN = 0.637 ± 0.307/
√

N

Z
dxC

I =
∫

x2

x1

f(x)dx

V = (x2 − x1)

∫
x2

x1

[f(x)]2dx − I2 VN = (x2 − x1)
2

1

N

N∑

i=1

[f(x)]2 − I2

N

IN = (x2 − x1)
1

N

N∑

i=1

f(x)

I = IN ±
√

VN/N

V = VN = 0

Can be minimized!
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Importance Sampling

IN = 0.637 ± 0.307/
√

N

I =

∫ 1

0

dx cos
π

2
x

IN = 0.637 ± 0.307/
√

N

=

∫ ξ2

ξ1

dξ
cos π

2
x[ξ]

1−x[ξ]2

IN = 0.637 ± 0.031/
√

N

≃ 1

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

I =

Z 1

0
dx(1� cx

2
)

cos

�
⇡
2x

�

(1� cx

2
)

The Phase-Space parametrization is important to have an 
efficient computation!

I =

Z 1

0
dx(1� cx

2
)

cos

�
⇡
2x

�

(1� cx

2
)
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Importance Sampling
Z

dq2

(q2 �M2 + iM�)2

⇠ = arctan

✓
q2 �M2

�M

◆

The change of variable ensure that the evaluation of 
the function is done where the function is the largest!

Probability of using !
that point p(x)

Why Importance Sampling?
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•Generate the random point in a distribution 
which is close to the function to integrate.!
•This is a change of variable, such that the 
function is flatter in this new variable.!
•Needs to know an approximate function. 

35

Importance Sampling
Key Point

Adaptative Monte-Carlo
•Create an approximation of the function on 
the flight!            
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1. Creates bin such that 
each of them have the 
same contribution.!
➡Many bins where the 
function is large!

2. Use the approximate 
for the importance 
sampling method.

Algorithm

Adaptative Monte-Carlo
•Create an approximation of the function on 
the flight!            
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VEGAS
More than one Dimension

•VEGAS works only with 1(few) dimension!
➡memory problem     

Solution
•Use projection on the axis

p(x)= p(x)•p(y)•p(z)…
→

• We need to 
ensure the 
factorization !

➡Additional 
change of 
variable
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•The choice of the parameterisation has a 
strong impact on the efficiency

38

Monte-Carlo Integration
Monte Carlo technics

efficiency of an adaptative MC integration :

case 1 : any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptative Monte-Carlo P-S integration is very efficient

MadWeight – p. 7/17

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

any peak is aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Grid

The adaptive Monte-Carlo Technique picks point 
in interesting areas 
        The technique is efficient
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Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

•The choice of the parametrization has a 
strong impact on the efficiency

39

Monte-Carlo Integration

Grid

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

The adaptive Monte-Carlo Techniques picks 
points everywhere 
        The integral converges slowly

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

some peaks are not aligned along a single direction of the P-S

parametrization

y2

y1

y2

y1

→ the adaptive Monte-Carlo P-S integration converges slowly

MadWeight – p. 12/29

Rotation

Grid

The adaptive Monte-Carlo Techniques picks point 
in interesting areas 
        The technique is efficient

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29

Monte Carlo integration

choice of the phase-space parametrization has a strong impact on the

efficiency of the MC integration :

solution to the previous case : perform a change of variables in order

to align the peaks along a single direction of the P-S parametrization

y2

y1

y1 + y2

y1 − y2

→ the adaptive Monte-Carlo P-S integration is very efficient

MadWeight – p. 12/29
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Multi-channel 

What do we do if there is 
no transformation that 
aligns all integrand peaks 
to the chosen axes?	

Vegas is bound to fail!

Solution: use different transformations = channels

p(x) =
n∑

i=1

αipi(x)
n∑

i=1

αi = 1with

with each pi(x) taking care of one “peak” at the time

40
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Multi-channel 

p1(x) p2(x)

p(x) =
n∑

i=1

αipi(x)

n∑

i=1

αi = 1
with

41
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Multi-channel 

I =

∫
f(x)dx =

n∑
i=1

αi

∫
f(x)

p(x)
pi(x)dx

p(x) =
n∑

i=1

αipi(x)

n∑

i=1

αi = 1
with

Then,

42

⇡ 1
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• Phase-Space integration!
• Parton Shower!
• Hadronization

43

Exemple of use

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

u u~ > g g QED=0 page 1/1

Diagrams made by MadGraph5

u

1

u~

2

g

3

g

4

g

 diagram 1 QCD=2

u

1

g

3

u~

2

g

4

u

 diagram 2 QCD=2

u

1

g

4

u~

2

g

3

u

 diagram 3 QCD=2

/ 1

ŝ
=

1

(p1 + p2)2
/ 1

t̂
=

1

(p1 � p3)2
/ 1

û
=

1

(p1 � p4)2

Three very different pole structures contributing 
to the same matrix element.
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!
– Any single diagram is “easy” to integrate (pole structures/

suitable integration variables known from the propagators)	

– Divide integration into pieces, based on diagrams	

– All other peaks taken care of by denominator sum

Multi-channel based on single diagrams*
*Method used in MadGraph

Key Idea

N Integral
– Errors add in quadrature so no extra cost	

– “Weight” functions already calculated during |M|2 calculation	

– Parallel in nature	


44

Does a basis exist?  

⇡ 1

Z
|M

tot

|2 =

Z P
i

|M
i

|2P
j

|M
j

|2 |Mtot

|2 =
X

i

Z |M
i

|2P
j

|M
j

|2 |Mtot

|2



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

• Phase-Space integration are difficult!
• We need to know the function!

➡ Be careful with cut (they change the 
function)!

• Split the function in a sum (one for each 
structure) and integrate each of those 
separately!

➡ This splitting should not be physical

45

To Remember
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Event generation

1. pick x

3. pick 0<y<fmax
 f(x)

2. calculate  f(x)

4. Compare:	

if f(x)>y accept event,

else reject it.

I= 
total tries 

accepted
= efficiency

46
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What’s the difference between  
weighted and unweighted? 

Weighted:

Same # of events in areas of 
phase space with very 
different probabilities:	

events must have different 
weights 

Event generation

47
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# events is proportional to 
the probability of areas of 
phase space:	

events have all the same	

weight (”unweighted”)

Events distributed as in nature

Event generation
What’s the difference between  
weighted and unweighted? 

Unweighted:

48
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Improved by combining with importance sampling:

1. pick x  distributed as p(x)

2. calculate  f(x) and p(x)

3. pick 0<y<f/p(max) 

 f(x)

4. Compare:	

if f(x)>y p(x) accept event,	

else reject it.

much better efficiency!!!  

Event generation

49



Mattelaer Olivier Monte-Carlo Lecture: IFT 2015

Event generator

MC integrator

Acceptance-Rejection

☞ This is possible only if f(x)<∞ AND has definite sign!

O

dσ

dO

O

dσ

dO

Event generation

50
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• Sample of unweighted events!
➡ Events distributed like nature !
➡ Need the function to be!

Borned!
Always positive!

➡ More efficient if the integration is more 
efficient !

Same dependencies in the cut

51

To Remember
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Monte-Carlo Summary

• Slow Convergence (especially in low 
number of Dimension!
• Need to know the function !

•Impact on cut

Bad Point

Good Point

•Complex area of Integration!
•Easy Error estimate!
•quick estimation of the integral!
•Possibility to have unweighted events
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Type of MC simulation

Type of MC Simulation
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• We need to be able to describe an arbitrarily number of 
parton branchings, i.e. we need to ‘dress’ partons with radiation	


• This effect should be unitary: the inclusive cross section 
shouldn’t change when extra radiation is added	


• Remember that parton-level cross sections for a hard process 
are inclusive in anything else. 
E.g. for LO Drell-Yan production all radiation is included via PDFs (apart 
from non-perturbative power corrections)	


• And finally we want to turn partons into hadrons (hadronization)....

Parton shower
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2
a

b

c
θ

Mn+1θ ➞ 0

• Consider a process for which two particles are separated by a small 
angle θ.	


• In the limit of θ ➞ 0 the contribution is coming from a single parent 
particle going on shell: therefore its branching is related to time 
scales which are very long with respect to the hard subprocess.	


• The inclusion of such a branching cannot change the picture set up 
by the hard process: the whole emission process must be writable 
in this limit as the simpler one times a branching probability.

Collinear factorization
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θ ➞ 0

2b

c
θ

Mn+1
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•  The process factorizes in the collinear limit. This procedure it 
universal! 

Collinear factorization

56

2a
b

c
θ

Mn+1 θ ➞ ×
b

c

a
2a

Mn

soft 

z

1-z

Mp a

b

c
z = Eb/Ea

θ

and collinear
divergencies

1

(pb + pc)2
' 1

2EbEc(1� cos �)
=

1

t

Collinear factorization:

when θ is small.

!|Mn+1|2d�n+1 ' |Mn|2d�n
dt

t
dz

d�

2⇡

↵S

2⇡
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...

...

PS →

ME 	

↓

Merging ME with PS
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PS alone vs matched samples

GeV 
0 50 100 150 200 250 300 350 400

 (p
b/

bi
n)

T
/d

P
σd

-310

-210

-110

1

10

 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

 (a la Pythia)tt

In the soft-collinear approximation of Parton Shower MCs, parameters are used to 
tune the result ⇒ Large variation in results (small prediction power)

(Pythia only)
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Difficulty: avoid double counting, ensure smooth distributions

Approaches are complementary: merge them!

Matrix Elements vs. Parton Showers

ME

1. Fixed order calculation	

2. Computationally expensive	

3. Limited number of particles	

4. Valid when partons are hard and 

well separated	

5. Quantum interference correct	

6. Needed for multi-jet description

Shower MC

1. Resums logs to all orders	

2. Computationally cheap	

3. No limit on particle multiplicity	

4. Valid when partons are collinear 

and/or soft	

5. Partial interference through 

angular ordering	

6. Needed for hadronization
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Goal for ME-PS merging/matching

• Regularization of matrix element divergence	


• Correction of the parton shower for large momenta	


• Smooth jet distributions

Matrix element

Parton shower

Desired curve

2nd QCD radiation jet in 
top pair production at 	


the LHC, using	

MadGraph + Pythia
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...

...

PS →

ME 	

↓

Double counting between ME and PS easily avoided using phase space cut 
between the two: PS below cutoff, ME above cutoff. 

[Mangano]	

[Catani, Krauss, Kuhn, Webber]	

[Lönnblad]

DC DC

DC

kT < Qc

kT > Qc

kT > Qc

kT > Qc

kT < Qc

kT < Qc

kT > Qc

kT < Qc

Merging ME with PS
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PS alone vs matched samples

GeV 
0 50 100 150 200 250 300 350 400

 (p
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 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

 (a la Pythia)tt

In the soft-collinear approximation of Parton Shower MCs, parameters are used to 
tune the result ⇒ Large variation in results (small prediction power)

(Pythia only)
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GeV 
0 50 100 150 200 250 300 350 400

 (p
b/

bi
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 (wimpy)2Q

 (power)2Q

 (wimpy)2
TP

 (power)2
TP

 of the 2-nd extra jetTP

+0,1,2,3 partons + Pythia (MMLM)tt

[MadGraph]

PS alone vs ME matching

In a matched sample these differences are irrelevant since the behavior at 
high pt is dominated by the matrix element. 
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Short Description of Tools

Tools for MC Simulation
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•LO !
➡ fix order (plus parton-shower)!
➡ matched-merged!

•NLO !
➡ POWHEG / MC@NLO !
➡ merged sample!

•NNLO / re-summation / N3LO!
•Default:!

➡ Do the most advanced possible 
generation.!

➡ Speed issue? check faster possibilities
65

Which kind of MC?
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• Need to link the 
one loop tool!
• UNLOPS 
merging

66

NLO: merged sample
MadGraph5_aMC@NLO Sherpa

•Need to link to a 
Shower program 
(Pythia8)!

•FxFx / UnLOPS 
Merging!

!

… + Matchbox

• Need to 
provide events!
•Need to link to 
matrix element  
(both tree and 
loop)

• NLO in QCD!
• Only SM support!
• free list of process!
!•MC@NLO method!

!

!

•MC@NLO  
and POWHEG!

!

!
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NLO (one multiplicity)
POWHEG VBF@NLO

• POWHEG matching!
• Less negative 
events!
• Not pure NLO!

!

• QED@NLO!
• very dedicated!

!

MadGraph5_aMC@NLO Sherpa

•BSM possible!
!

•SM !
!

• Fixed list of processes!
• Some BSM!
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NLO (cross-section)
MCFM

• Fixed list of processes!
• Some BSM!
• No events generation!
!

MadGraph5_aMC@NLO

Sherpa

Powheg

VBF@NLO

HPAIR

NJETS
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LO (matched/merged)
Sherpa

• Fully built in!
• Starts BSM supports!
• CKKW-L!
•ATLAS Default!

… + Pythia

• MLM / UMEPS / CKKW 
 CKKWL!
• Full BSM supports!
• CMS default (with 
MG5_aMC)!

… + Herwig

• MLM /CKKW 
 CKKWL!
•  Full BSM supports!
!
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LO
CODE Main advantage highest multiplicity

MG5_aMC BSM normal: 6  
decay: 14

Sherpa fast for QCD muli-leg normal: 7 
decay: 7

CalcHep very fast for 2 > 2 normal: 3/4 
decay: 6

Whizard ILC physics normal: 6 
decay: 10

pythia low multiplicity normal: 3 
decay: 100 

herwig low multiplicity normal: 3 
decay: 100


