Tutorial

Olivier Mattelaer
 IPPP/Durham

Learning MG5

- follow the built-in tutorial
- cards meaning
- meaning of QCD/QED
- details of syntax (\$/)
- script
- width computation
- decay chain

BSM CASE

- check the model
- width computation
- signal generation
- decay chain
- merging sample generation
- background/NLO generation

Learning MG5_aMC

Where to find help?

- Ask me
- Use the command "help" / "help XXX"
- "help" tell you the next command that you need to do.
- Launchpad:
- https://answers.launchpad.net/madgraph5
= FAQ: https://answers.launchpad.net/madgraph5/+faqs
- Read the Cards and identify what they do
- param_card:model parameters
- run_card: beam/run parameters and cuts
- https://answers.launchpad.net/madgraph5/+faq/2014

Exercise II: Cards Meaning

- How do you change
\Rightarrow top mass
- top width
- W mass
- beam energy
- pt cut on the lepton

Exercise II : Syntax

- What's the meaning of the order QED/QCD
- What's the difference between
$\Rightarrow P p^{\prime}>t \sim$
$\Rightarrow p p>t \mathrm{t} \sim \mathrm{QED}=2$
$\Rightarrow P p>t \mathrm{t} \sim \mathrm{QED}=0$
\Rightarrow pp>tt~QCD=0
$\Rightarrow P p>t t \sim Q E D<=2$
$\Rightarrow p p>t \mathrm{t} \sim \mathrm{QCD}^{\wedge} 2==2$
- Compute the cross-section for each of those and check the diagram
- GenerateVBF process
- check that you have the diagram that you want

- Generate the cross-section and the distribution (invariant mass) for
$\Rightarrow \quad p p>e+e-$
$\Rightarrow \quad P P^{>} z, z>e+e-$
$\Rightarrow p p>e+e-\$ z$
$\Rightarrow p p>e+e-/ z$

Hint :To plot automatically distributions: mg5> install MadAnalysis

- Use the invariant mass distribution to determine the meaning of each syntax.

Exercise IV:Automation/Width

- Compute the cross-section for the top pair production for 3 different mass points.
\Rightarrow Do NOT use the interactive interface
* hint: you can edit the param_card/run_card via the "set" command [After the launch]
- hint: All command [including answer to question] can be put in a file. (run ./bin/mg5 PATH_TO_FILE)
\Rightarrow Remember to change the value of the width
- "set width 6 Auto" works
- cross-check that it indeed returns the correct width

```
Examples
import model EWDim6
generate p p>zz
File:

\section*{ExerciseV: Decay Chain}
- Generate p p > t t~h, fully decayed (fully leptonic decay for the top)
- Using the decay-chain formalism
- Using MadSpin
- Compare cross-section
\(\Rightarrow\) which one is the correct one?
- Why are they different?
- Compare the shape.

BSM Tutorial
\(\mathrm{IP}^{3} \mathrm{~m}\)

\section*{Exercise I: Check the model validity}
- Check the model validity:
- check P p > uv uv~
- checkpp>evev~

- This checks
- gauge invariance
- lorentz invariance
\(\Rightarrow\) that various way to compute the matrix element provides the same answer

\section*{Exercise II:Width computation}
- Check with MG the width computed with FR:
- generate uv > all all; output; launch
- generate ev > all all; output; launch
- generate pl > all all; output; launch
- generate p2 > all all; output; launch

FR Number
0.0706 GeV
0.00497 GeV

0 GeV
0.0224 GeV
- Check with MadWidth
- compute_widths uv ev pl p2
\(\Rightarrow\) (or Auto in the param_card)
- Muv \(=400 \mathrm{GeV} \quad \mathrm{Mev}=50 \mathrm{GeV} \quad \lambda=0.1\)
- \(\mathrm{ml}=\mathrm{IGeV} \quad \mathrm{m} 2=100 \mathrm{GeV} \mathrm{ml} 2=0.5 \mathrm{GeV}\)

\section*{Exercise III:}
- Compute cross-section and distribution
\(\Rightarrow\) uv pair production with decay in top and \(\Phi_{1} / \Phi_{2}\) (semi leptonic decay for the top
- Hint: The width of the new physics particles has to be set correctly in the param_card.
- You can either use "Auto" arXiv:1402.1178
\(\Rightarrow\) or use the value computed in exercise 1
- Hint: For sub-decay, you have to put parenthesis:
- example:
\[
P p>t \mathrm{t} \sim \mathrm{w}+,(\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}),(\mathrm{t} \sim>b \sim \mathrm{w}-, \mathrm{w}->\mathrm{j} j), \mathrm{w}+>\mathrm{l}+\mathrm{vl}
\]
- Use MadSpin!
- Use Narrow Width Approximation to factorize production and decay
- instead of
 \(\mathrm{w}+>\mathrm{l}+\mathrm{vl}\)
- Do
\(\Rightarrow \quad \mathrm{PP}>\mathrm{t} \mathrm{t} \mathrm{w}^{+}\)
- At the question:

The following switches determine which programs are run:
1 Run the pythia shower/hadronization: pythia=0FF
2 Run PGS as detector simulator: pgs=0FF
3 Run Delphes as detector simulator: delphes=NOT INSTA
4 Decay particles with the MadSpin module: madspin=0FF
5 Add weight to events based on coupling parameters: reweight=0FF
Either type the switch number ( 1 to 5 ) to change its default setting, or set any switch explicitly (e.g. type 'madspin=ON' at the prompt)
Type '0', 'auto', 'done' or just press enter when you are done.
[ \(\underline{0}, 1,2,4,5\), auto, done, pythia=0N, pythia=0FF, ... ][60s to answer]
- At the next question edit the madspin_card and define the decay

\section*{Exercise IV: generate multiple multiplicity sample for pythia8}
- We will do MLM matching
- in the run_card.dat ickkw=I
\(\Rightarrow\) the matching scale (Qcut) will be define in pythia
- in madgraph we use xqcut which should be smaller than Qcut (but at least \(10-20 \mathrm{GeV}\) )

\section*{ExerciseV: Have Fun}
- Simulate Background
- Go to NLO (ask me the model)

\section*{Solution Learning MG5_aMC}

\section*{Exercise II: Cards Meaning}
- How do you change
\(\Rightarrow\) top mass
- top width
- W mass
- beam energy
- pt cut on the lepton

\section*{Param_card \\ Run_card}

因 Durham
University

\section*{- top mass}
```

\#

INFORMATION FOR MASS

\#
Block mass
6 1.730000e+02 \# MT
23 9.118800e+01 \# MZ
25 1.200000e+02 \# MH

Dependent parameters, given by model restrictions.

Those values should be edited following the

analytical expression. MG5 ignores those values

but they are important for interfacing the output of MG5

to external program such as Pythia.

 1 0.000000 # d : 0.0
 2 0.000000 # u : 0.0
 30.000000 # s : 0.0
 4 0.000000 # c : 0.0
 11 0.000000 # e- : 0.0
 12 0.000000 # ve : 0.0
 13 0.000000 # mu- : 0.0
 14 0.000000 # vm : 0.0
 16 0.000000 # vt : 0.0
 210.000000 # g : 0.0
 22 0.000000 # a : 0.0
 24 80.419002 # w+ : cmath.sqrt(MZ__exp__2/2. + cmath.sqrt(MZ__exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))
    ```

\section*{- W mass}

\section*{\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#}

\section*{\#\# INFORMATION FOR MASS}
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
Block mass
\(54.700000 \mathrm{e}+00\) \# MB
\(61.730000 \mathrm{e}+02\) \# MT
\(151.777000 \mathrm{e}+00\) \# MTA
23 9.118800e+01 \# MZ
25 1.200000e+02 \# MH
\#\# Dependent parameters, given by model restrictions.
\#\# Those values should be edited following the
\#\# analytical expression. MG5 ignores those values
\#\# but they are important for interfacing the output of MG5
\#\# to external program such as Pythia.
10.000000 \# d : 0.0
20.000000 \# u : 0.0
30.000000 \# \(5: 0.0\)
40.000000 \# C : 0.0
110.000000 \# e- : 0.0
120.000000 \# ve : 0.0
130.000000 \# mu- : 0.0
140.000000 \# vm : 0.0
160.000000 \# vt : 0.0
210.000000 \# g : 0.0

22 a a0a000
< 2480.419002 \# w+ : cmath. sqrt \(\left(M Z_{\_} \quad \exp _{\ldots} 2 / 2 .+\operatorname{cmath} . \operatorname{sqrt}\left(M Z \_\right.\right.\)exp__4/4. - (aEW*cmath.pi*MZ__exp__2)/(Gf*sqrt__2)))

\section*{W Mass is an internal parameter! MG5 didn't use this value!}

So you need to change MZ or Gf or alpha_EW

\section*{Exercise III: Syntax}
- What's the meaning of the order QED/QCD
- What's the difference between
\(\Rightarrow p p>t \tau\)
\(\Rightarrow P p>t \mathrm{t} \sim \mathrm{QED}=2\)
\(\Rightarrow p p>t \mathrm{t} \sim \mathrm{QED}=0\)
\(\Rightarrow p p>t \mathrm{t} \sim \mathrm{QCD}^{\wedge} 2==2\)

\section*{Solution I : Syntax}
- What's the meaning of the order QED/QCD
\(\Rightarrow\) By default MG5 takes the lowest order in QED!
\(\Rightarrow p p>t \mathrm{t} \sim \mathrm{F}\) pp>tt~QED=0
- \(p\) P \(>\mathrm{t} \mathrm{t} \sim \mathrm{QED}=2\)
- additional diagrams (photon/z exchange)

\(p p>t \mathrm{t} \sim \mathrm{QED}=2\)
Cross section (pb)
\(\underline{555.8 \pm 0.91}\)
No significant QED contribution
- \(\mathrm{QED}<=2\) is the SAME as \(\mathrm{QED}=2\)
\(\Rightarrow\) quite often source of confusion since most of the people use the \(=\) syntax
- \(\mathrm{QCD}^{\wedge} 2==2\)
\(\Rightarrow\) returns the interference between the QCD and the QED diagram
\begin{tabular}{|c|}
\hline Cross section (pb) \\
\hline \(5.455 \mathrm{e}-17 \pm 4.7 \mathrm{e}-19 \pm\) systematics \\
\hline
\end{tabular}
- generate p p > w \(+\mathrm{w}-\mathrm{j} j\)
- 76 processes
- 1432 diagrams
\(\Rightarrow\) None of them are \(V B F\)
- generate p p > w+ w- jj QED \(=4\)
- 76 processes
- 5332 diagrams
\(\Rightarrow\) VBF present! + those not VBF
generate p \(p>w+w-j\) j QCD \(=2\)
- 76 processes
- 5332 diagrams
- generate p p > w+ w- jj QED \(=2\)
- 76 processes
- 1432 diagrams
\(\Rightarrow\) None of them are \(V B F\)
- generate p p > w+ w- jj QCD = 0
- 60 processes
- 3900 diagrams
\(\Rightarrow\) VBF present!
- generate p p > w+ w- jj QCD = 4
- 76 processes
- 5332 diagrams

\section*{Exercise IV: Syntax}
- Generate the cross-section and the distribution (invariant mass) for
- pp>e+e-
\(\Rightarrow p p>z, z>e+e-\)
\(\Rightarrow p p>e+e-\$ z\)
\(\Rightarrow p p>e+e-/ z\)

Hint :To have automatic distributions: mg5> install MadAnalysis
 P \(P^{>}\)z , z \(>\)e+ e(8 diagrams)
\[
p \text { p }>\mathrm{e}+\mathrm{e}-/ \mathrm{z}
\]


Z- onshell veto

P P > e+e-

(16 diagrams)
p D >z,z>e+e-
\(p p>e+e-\$ z\)

(8 diagrams)

(16 diagrams)

\section*{Onshell cut: BW_cut}
\[
\left|M^{*}-M\right|<B W_{c u t} * \Gamma
\]
- The Physical distribution is (very close to) exact sum of the two other one.
- The "\$" forbids the \(Z\) to be onshell but the photon invariant mass can be at MZ (i.e. on shell substraction).
- The " \(/\) " is to be avoid if possible since this leads to violation of gauge invariance.
- NEXT SLIDE is generated with bw_cut \(=5\)
- This is TOO SMALL to have a physical meaning (I5 the default value used in previous plot is better)
- This was done to illustrate more in detail how the " \(\$\) " syntax works.

See previous slide warning


5 times width area
I5 times width area
>15 times width area
- Z onshell veto
- In veto area only photon contribution
- area sensitive to z-peak
- very off-shell Z, the difference between the curve is due to interference which are need to be KEPT in simulation.

The "\$" can be use to split the sample in BG/SG area
- Syntax Like
\(\Rightarrow p p>z>e+e-\)
\(\Rightarrow p p>e+e-/ z\)
(ask one S-channel z)
(forbids any z)
\(\Rightarrow p p>e+e-\$ \$ z\)
(forbids any z in s-channel)
- ARE NOT GAUGE INVARIANT!
- forgets diagram interference.
- can provides un-physical distributions.

\section*{Avoid Those as much as possible!} check physical meaning and gauge/Lorentz invariance if you do.
- Syntax like
- \(P P^{>}>, z>e+e-\) (on-shell z decaying)
- \(P\) p \(>\mathrm{e}+\mathrm{e}-\$ \mathrm{z}\) (forbids s-channel z to be on-shell)
- Are linked to cut \(\left|M^{*}-M\right|<B W_{c u t} * \Gamma\)
- Are more safer to use
- Prefer those syntax to the previous slides one

\section*{Exercise V:Automation}
- Look at the cross-section for the previous process for 3 different mass points.
\(\Rightarrow\) hint: you can edit the param_card/run_card via the "set" command [After the launch]
\(\Rightarrow\) hint: All command [including answer to question] can be put in a file.
- File content:
```

import model sm
generate p p > t t~
output
launch
set mt 160
set wt Auto
done
launch
set mt 165
set wt Auto
launch
set mt 170
set wt Auto
launch
set mt 175
set wt Auto
launch
set mt 180
set wt Auto
launch
set mt 185
set wt Auto

```

MadSpin
- generate P p > t t~h

MadSpin Card
\(\Rightarrow\) decay \(\mathrm{t}>\mathrm{w}+\mathrm{b}, \mathrm{w}+>\mathrm{e}+\mathrm{ve}\)
\(\Rightarrow\) decay \(\mathrm{t} \sim>\mathrm{w}-\mathrm{b} \sim, \mathrm{w}->\mathrm{e}-\mathrm{ve} \sim\)
2m18.214s
- decay \(\mathrm{h}>\mathrm{b}\) b~

MadGraph
- generate p p > t t~h, (t>w+b, w+>e+ ve), (t~ \(>w-b \sim, w->e-v e \sim), h>b b \sim\)

Different here because of cut (not cut should be applied since 2.3.0)```

