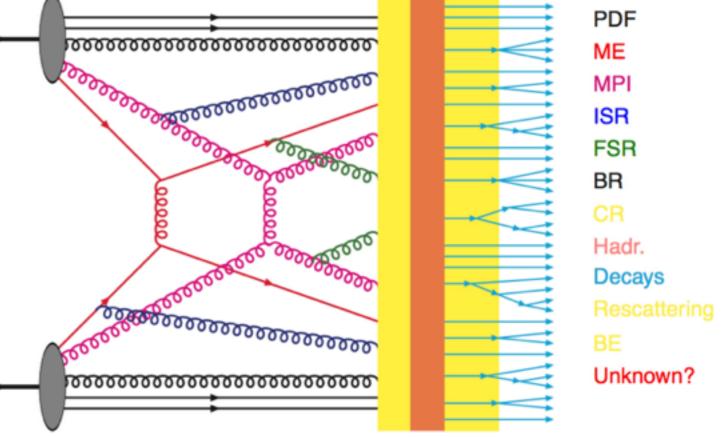
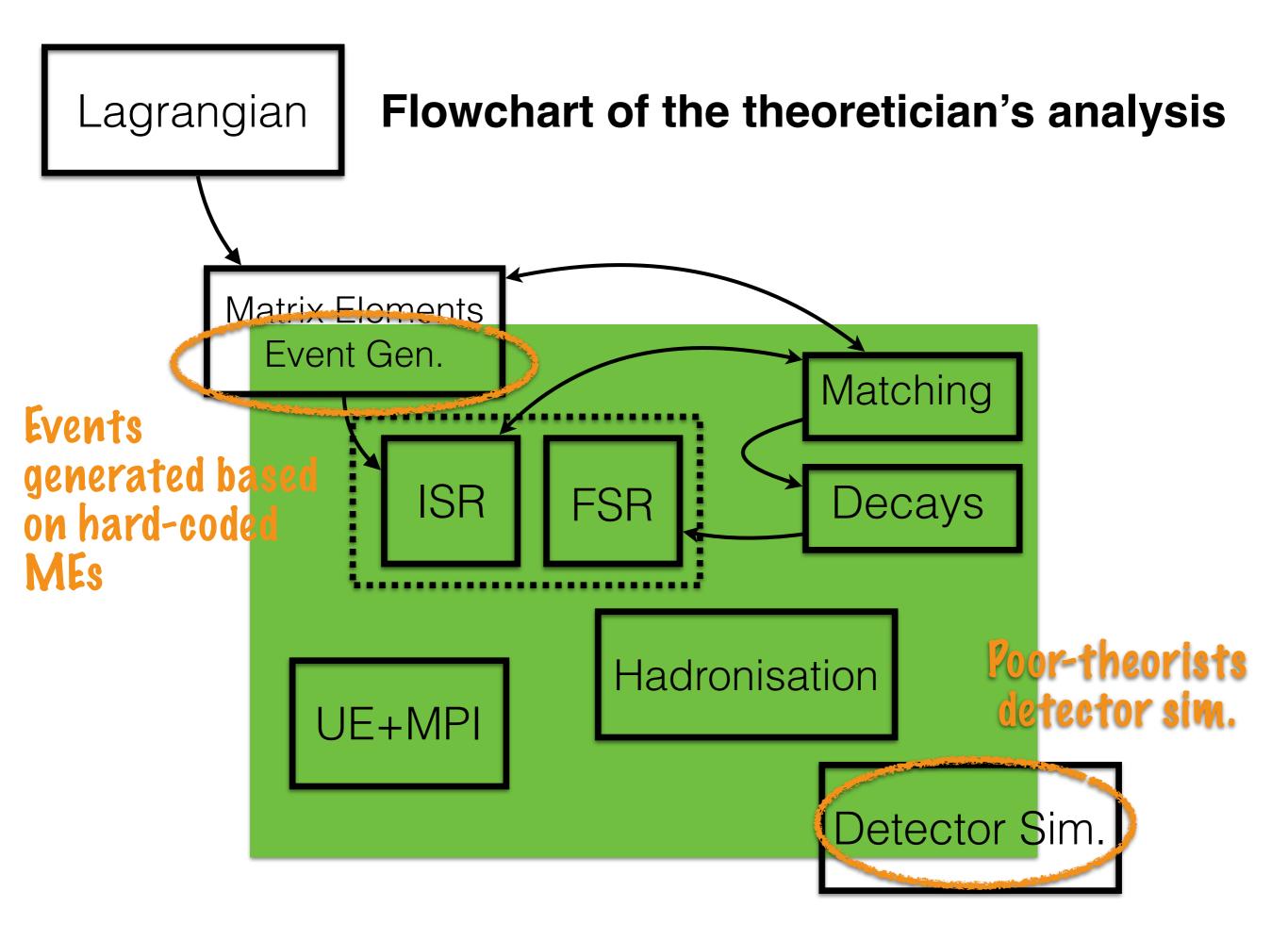
Introduction to Pythia8


IFT Madrid, 9 Sep 2015

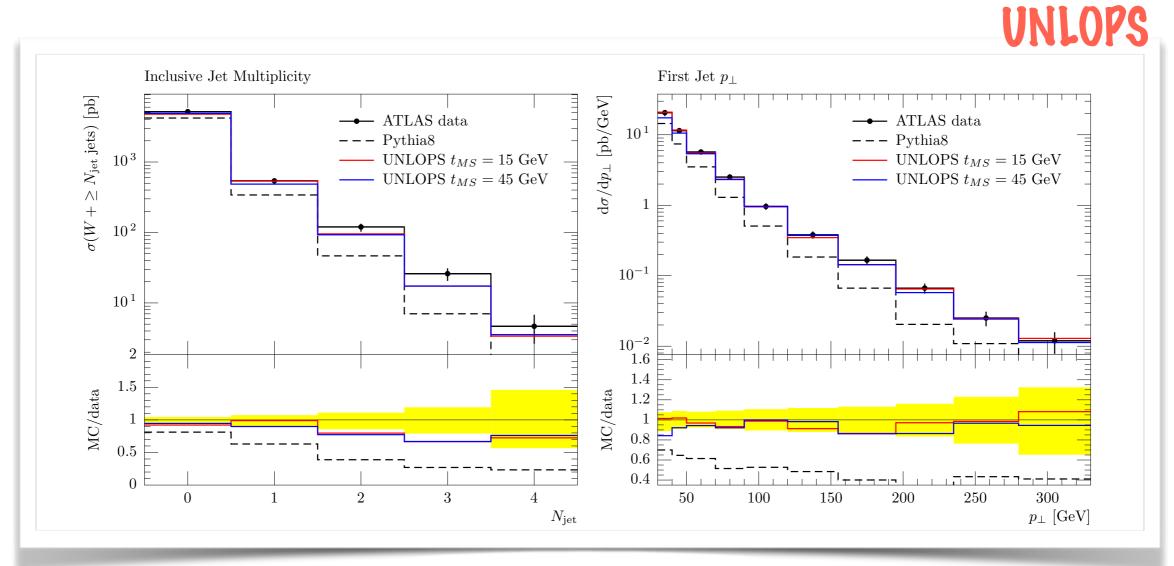
Plan of this talk:


- Purpose of "general-purpose" MC generators
- Program flow
- ISR + FSR
- Hadronisation
- MPI
- (TUT) Hola Mundo! (Simple Z production)
- Using internal BSM models (Z' production)
- (TUT) Links to external programs I: LHE files
- Aside: Links to external programs II: Semi-internal processes
- Aside: Jet algorithms
- Simplified event analysis (w/o dedicated detector sim.)
- (TUT) Links to external programs III: HEPMC and ROOT
- (TUT) Matching and merging

What is Pythia 8?

- General purpose Monte-Carlo generator
- Simulates collision events: hard process, showering, hadronisation, multiple interactions, underlying event ...
- Version 8.2 released in Oct
 2014. Current version 8.210

Download and online manual from <u>http://home.thep.lu.se/~torbjorn/Pythia.html</u>


Pythia 8 has a basic library of BSM processes that can be used for quick studies.

- BSM Higgses (2HDM)
- Fourth generation quarks
- New Gauge Bosons
- Left-Right symmetric models
- Leptoquarks
- Compositeness
- Hidden Valley
- Extra Dimensions
- SUSY

More exotic processes may be implemented via external programs.

- Important to model backgrounds correctly to observe BSM signatures.
- Current state-of-the-art SM calculations use ME generators + PS with matching followed by hadronisation.
 - Pythia 8 provides various interfaces to external ME generators
 - ➡ LO/NLO matching for processes available

ME + PS matching at NLO!

Lonnblad and Prestel; arXiv:1211.7278

Also available LO matching via new Unitarised ME+PS merging (UMEPS), MLM and CKKW-L.

Interfaces

 \blacklozenge Interface to LHAPDF or other external PDF libraries.

- Les Houches Accord (LHA) files for reading events or runtime LHA interface.
- Semi-internal processes for programs like Madgraph 5.
- ✦ HepMC output for programs like RIVET, Delphes etc.
- \blacklozenge Can be compiled as a plugin to ROOT.
- Input from generalised SLHA input for any BSM model.

Other major improvements:

- Improvements to parton showers; possibility to use external PS programs (e.g. Vincia)
- ✦ Improvements to MPI
- Showering to take into account colour-epsilon topologies, sextets.
- Hadronisation in presence of coloured exotic particles (R-hadrons [M. Fairbairn et al., Phys. Rep. 438 (2007)], long-lived triplets or octets, ...)
- Tau polarisation in both production and decay [P. Ilten, arXiv:1211.6730 [hep-ph]]

User-friendly, more intuitive; settings can be changed without requiring recompilation.

The Parton-Shower Approach

$$2 \rightarrow n = (2 \rightarrow 2) \oplus \text{ISR} \oplus \text{FSR}$$

 q
 Q_1^2
 Q_2^2
 Q_2

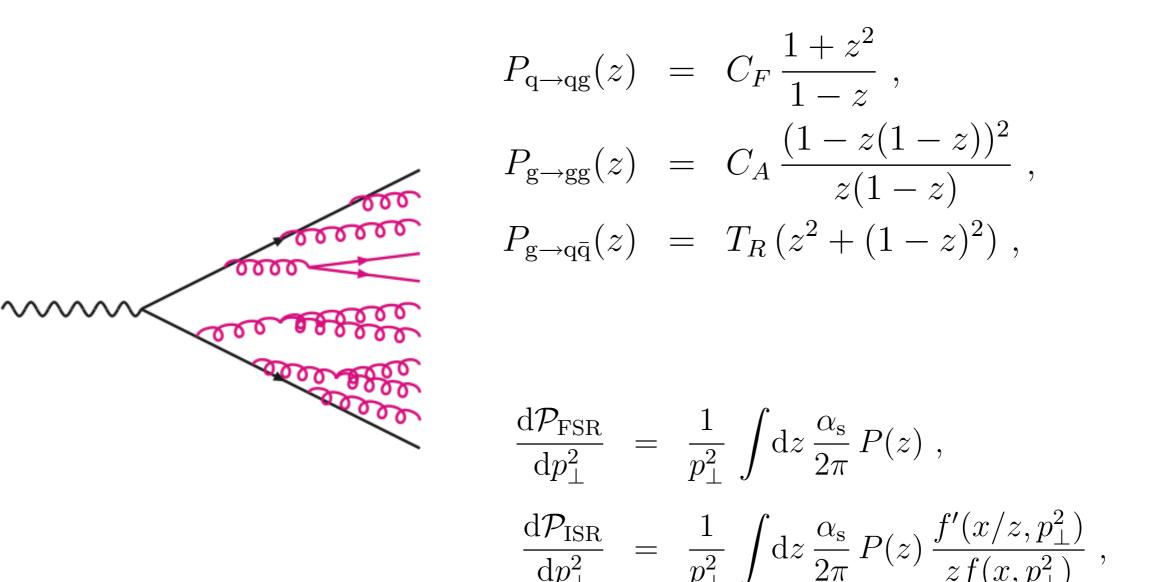
 $\begin{array}{l} {\sf FSR} = {\sf Final-State Radiation} = {\sf timelike shower} \\ Q_i^2 \sim m^2 > 0 \ {\sf decreasing} \\ {\sf ISR} = {\sf Initial-State Radiation} = {\sf spacelike showers} \\ Q_i^2 \sim -m^2 > 0 \ {\sf increasing} \end{array}$

Why "time" like and "space" like?

Consider four-momentum conservation in a branching $a \rightarrow b c$

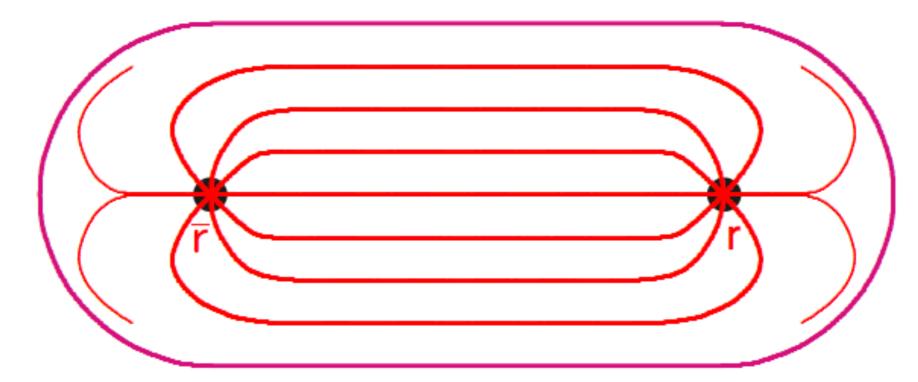
$$\mathbf{p}_{\perp a} = 0 \implies \mathbf{p}_{\perp c} = -\mathbf{p}_{\perp b}$$

$$p_{+} = E + p_{\mathrm{L}} \implies p_{+a} = p_{+b} + p_{+c} \quad a$$


$$p_{-} = E - p_{\mathrm{L}} \implies p_{-a} = p_{-b} + p_{-c}$$
Define $p_{+b} = z p_{+a}, \quad p_{+c} = (1 - z) p_{+a}$
Use $p_{+}p_{-} = E^{2} - p_{\mathrm{L}}^{2} = m^{2} + p_{\perp}^{2}$

$$\frac{m_a^2 + p_{\perp a}^2}{p_{+a}} = \frac{m_b^2 + p_{\perp b}^2}{z \, p_{+a}} + \frac{m_c^2 + p_{\perp c}^2}{(1-z) \, p_{+a}}$$

$$\Rightarrow m_a^2 = \frac{m_b^2 + p_\perp^2}{z} + \frac{m_c^2 + p_\perp^2}{1 - z} = \frac{m_b^2}{z} + \frac{m_c^2}{1 - z} + \frac{p_\perp^2}{z(1 - z)}$$


Final-state shower: $m_b = m_c = 0 \Rightarrow m_a^2 = \frac{p_\perp^2}{z(1-z)} > 0 \Rightarrow$ timelike Initial-state shower: $m_a = m_c = 0 \Rightarrow m_b^2 = -\frac{p_\perp^2}{1-z} < 0 \Rightarrow$ spacelike

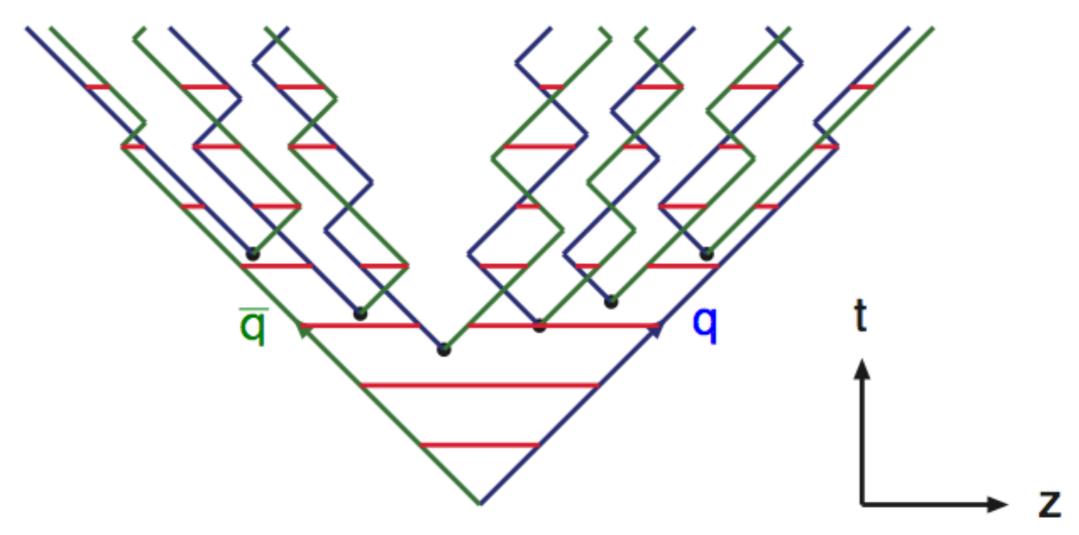
Initial & Final State Radiation

The QCD potential – 1

In QCD, for large charge separation, field lines are believed to be compressed to tubelike region(s) \Rightarrow string(s)

Gives force/potential between a q and a \overline{q} :

 $F(r) \approx \text{const} = \kappa \quad \Longleftrightarrow \quad V(r) \approx \kappa r$


 $\kappa \approx 1 \text{ GeV/fm} \approx \text{potential energy gain lifting a 16 ton truck.}$

Flux tube parametrized by center location as a function of time \Rightarrow simple description as a 1+1-dimensional object – a string.

The Lund Model

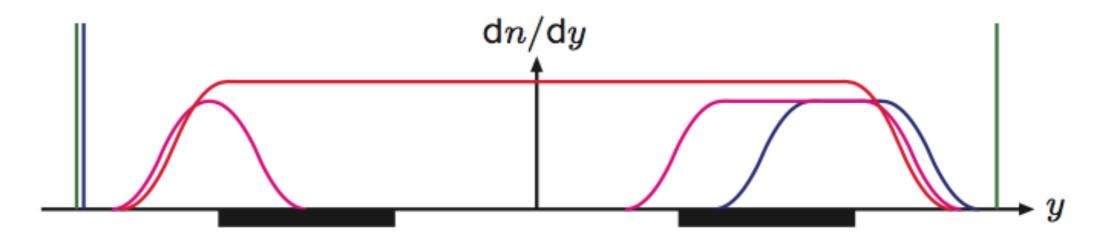
Combine yo-yo-style string motion with string breakings!

Motion of quarks and antiquarks with intermediate string pieces:

A q from one string break combines with a \overline{q} from an adjacent one. Gives simple but powerful picture of hadron production.

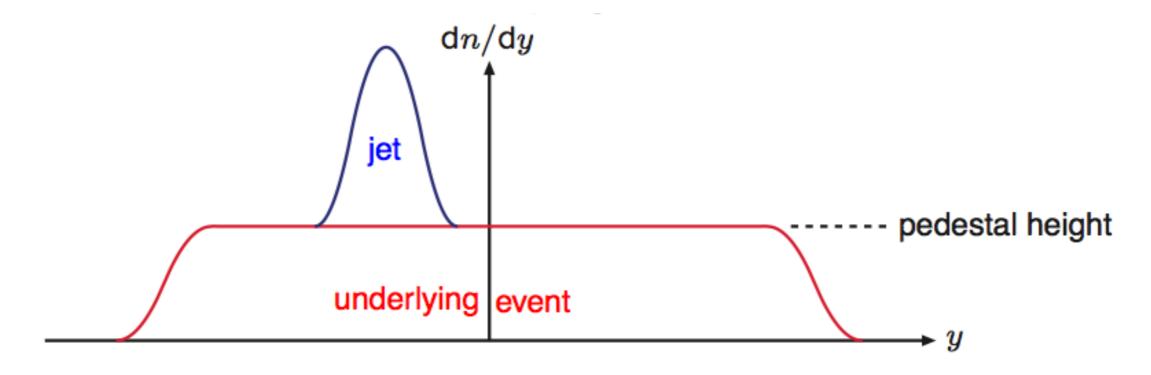
$$\overline{\mathbf{q}} \qquad \mathbf{q}' \longleftrightarrow \overline{\mathbf{q}'} \qquad \mathbf{q} \qquad \overline{\mathbf{q}} \qquad \overline{\mathbf{q}} \qquad \mathbf{q} \qquad \overline{\mathbf{q}} \qquad \mathbf{q} \qquad \mathbf{q$$

String breaking modelled by tunneling:


$$\mathcal{P} \propto \exp\left(-\frac{\pi m_{\perp q}^2}{\kappa}\right) = \exp\left(-\frac{\pi p_{\perp q}^2}{\kappa}\right) \exp\left(-\frac{\pi m_q^2}{\kappa}\right)$$

- Common Gaussian p_{\perp} spectrum, $\langle p_{\perp} \rangle \approx 0.4$ GeV.
- Suppression of heavy quarks, $u\overline{u} : d\overline{d} : s\overline{s} : c\overline{c} \approx 1 : 1 : 0.3 : 10^{-11}.$

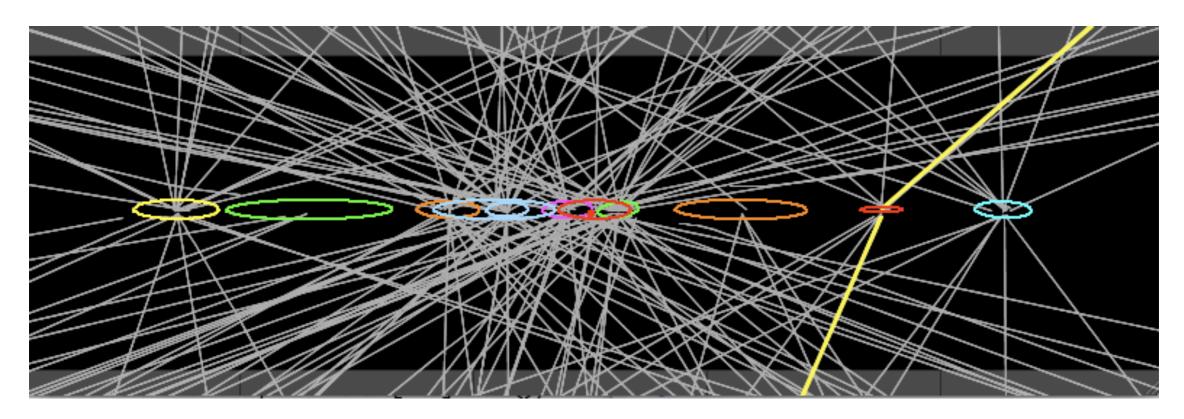
• Diquark \sim antiquark \Rightarrow simple model for baryon production. String model unpredictive in understanding of hadron mass effects \Rightarrow many parameters, 10–20 depending on how you count.


What is minimum bias (MB)?

 $MB \approx$ "all events, with no bias from restricted trigger conditions" $\sigma_{tot} = \sigma_{elastic} + \sigma_{single-diffractive} + \sigma_{double-diffractive} + \cdots + \sigma_{non-diffractive}$ Schematically:

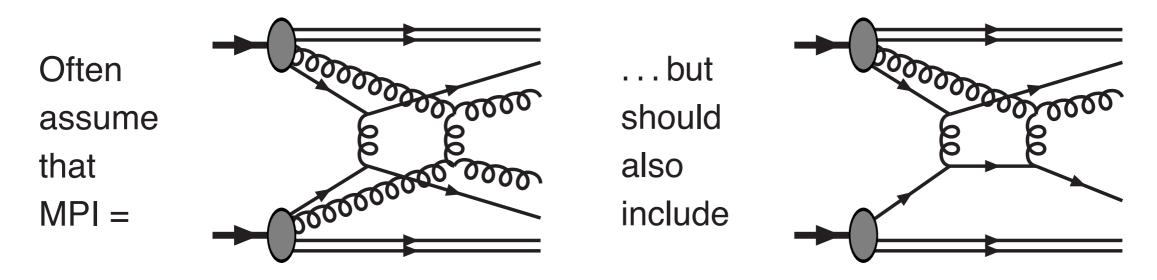
Reality: can only observe events with particles in central detector: no universally accepted, detector-independent definition $\sigma_{\rm min-bias} \approx \sigma_{\rm non-diffractive} + \sigma_{\rm double-diffractive} \approx 2/3 \times \sigma_{\rm tot}$

What is underlying event (UE)?



In an event containing a jet pair or another hard process, how much further activity is there, that does not have its origin in the hard process itself, but in other physics processes?

Pedestal effect: the UE contains more activity than a normal MB event does (even discarding diffractive events).


Trigger bias: a jet "trigger" criterion $E_{\perp \text{jet}} > E_{\perp \text{min}}$ is more easily fulfilled in events with upwards-fluctuating UE activity, since the UE E_{\perp} in the jet cone counts towards the $E_{\perp \text{jet}}$. Not enough!

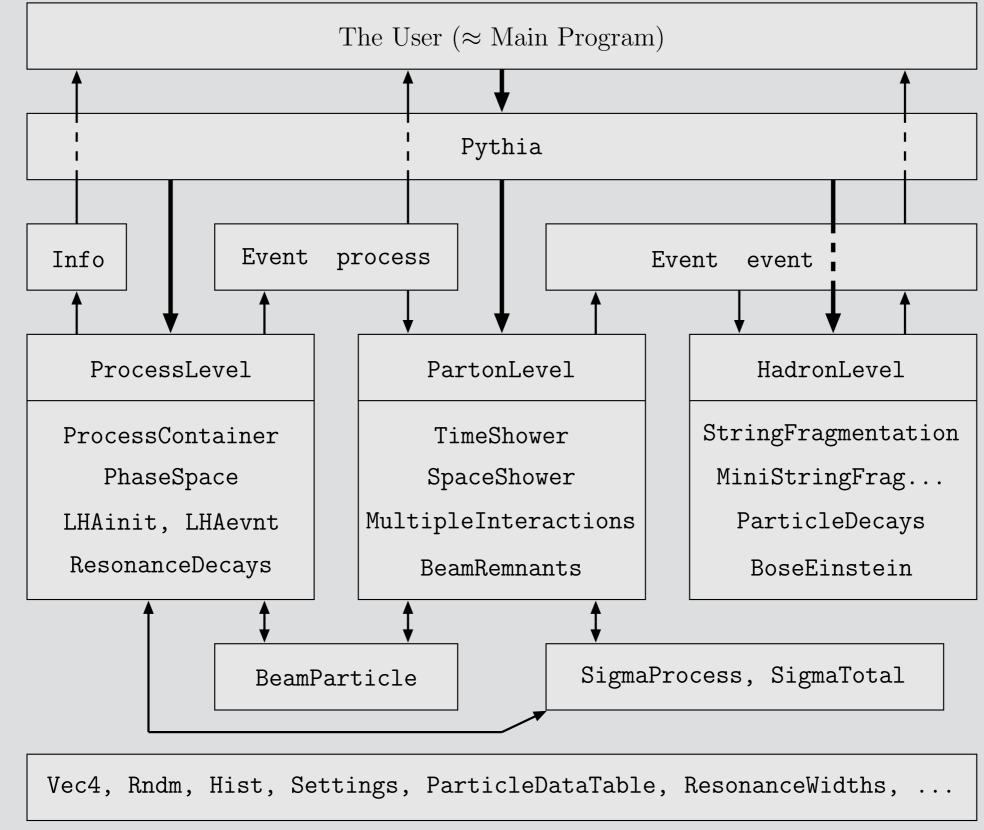
What is pileup?

 $\langle n \rangle = \overline{\mathcal{L}} \, \sigma$

where $\overline{\mathcal{L}}$ is machine luminosity per bunch crossing, $\overline{\mathcal{L}} \sim n_1 n_2/A$ and $\sigma \sim \sigma_{\text{tot}} \approx 100$ mb. Current LHC machine conditions $\Rightarrow \langle n \rangle \sim 10 - 20$. Pileup introduces no new physics, and is thus not further considered here, but can be a nuisance. However, keep in mind concept of bunches of hadrons leading to multiple collisions.

Same order in α_{s} , \sim same propagators, but

- one PDF weight less \Rightarrow smaller σ
- one jet less \Rightarrow QCD radiation background 2 \rightarrow 3 larger than 2 \rightarrow 4
- \Rightarrow will be tough to find direct evidence.


Rescattering grows with number of "previous" scatterings:

	Teva	atron	LHC		
	Min Bias	QCD Jets	Min Bias	QCD Jets	
Normal scattering	2.81	5.09	5.19	12.19	
Single rescatterings	0.41	1.32	1.03	4.10	
Double rescatterings	0.01	0.04	0.03	0.15	

The anatomy to a Pythia8 program

Inside the BLACK BOX

Inside the BLACK BOX

To Begin:

1. Tell your program to use the Pythia libraries

```
#include "Pythia.h"
using namespace Pythia8;
```

2. Declare a Pythia object and initialise

```
Pythia pythia;
pythia.readString(string);
```

```
pythia.readFile(fileName);
```

```
pythia.init(idA, idB, eCM);
```

3. To generate the next event
 pythia.next();

4. All the particles in the event are stored in pythia.event

5. At the end

pythia.statistics();

The event.list() listing provides the main properties of each particles, by column:

- no, the index number of the particle (i above);
- id, the PDG particle identity code (method id());
- name, a plaintext rendering of the particle name (method name()), within brackets for initial or intermediate particles and without for final-state ones;
- status, the reason why a new particle was added to the event record (method status()),
- mothers and daughters, documentation on the event history (methods mother1(), mother2(), daughter1() and daughter2());
- colours, the colour flow of the process (methods col() and acol());
- p_x, p_y, p_z and e_y , the components of the momentum four-vector (p_x, p_y, p_z, E) , in units of GeV with c = 1 (methods $p_x(), p_y(), p_z()$ and e());

m, the mass, in units as above (method m()).

$\begin{pmatrix} 1 \end{pmatrix}$	2212	(p+)	-12	0	0	3	0	0	0	0.000	0.000	7000.000	7000.000	0.938
$\left(2\right)$	2212	(p+)	-12	0	0	4	0	0	0	0.000	0.000	-7000.000	7000.000	0.938
3	21	(g)	-21	1	0	5	6	503	502	0.000	0.000	122 026	122.026	0.000
4	21	(g)	-2	2	0	5	6	501	503	0.000	0.000	-441.322	441.322	0.000
5	6	(t)	(-22)	3	4	7	8	501	0	-91.828	87.872	-266.639	<u>342.31</u> 5	173.000
6	-6	(tbar)	-22	3	4	9	10	0	502	91.828	-87.872	-52.657	221.033	173.000

Example card file

! 1) Settings that are used in		<pre>Sample programs • main01.cc : a simple study grams</pre>
Main:numberOfEvents = 1000	5	• main01.cc: a simple study gram.
Main:timesAllowErrors = 10	! abort run after this many flawed events	
! 2) Settings related to output	in $init()$ next() and $stat()$	• main02.cc: a simple study (
Init:showChangedSettings = on		 main03.cc: a simple study c
	on ! list changed particle data	main04.cc: tests of cross se
0	= on ! also print changed resonance data	topologies, using main04.cm
Init:showOneParticleData = 25	! print data for this particular particle	
Next:numberCount = 100	! print message every n events	 main05.cc : generation of Q
Next:numberShowInfo = 1	<pre>! print event information n times</pre>	recombination finder and the
Next:numberShowProcess = 1	! print process record n times	 main06.cc: generation of Ll
Next:numberShowEvent = 0	! print event record n times	and jet analysis.
<pre>Stat:showPartonLevel = on ! 3) Beam settings.</pre>	! more statistics on MPI	 main07.cc: set up a fictitiou body) decay modes to a variet
Beams: $idA = 2212$! first beam, p = 2212, pbar = -2212	neutrinos. Suitable for astropa
Beams:idB = 2212	! second beam, $p = 2212$, $pbar = -2212$	another program.
Beams:eCM = 14000 .	! CM energy of collision, LHC	main08.cc: generation of th
		splitting the run into subruns, e
! 4) Settings for hard-process		in the main program or by sub
HiggsSM:gg2H = on 25:m0 = 125.4	! Higgs production by gluon-gluon fusion ! Higgs mass	the selection, compensated by
	. 112993 11033	events.
! 5) Switch off some key compone	ents of the simulation, for comparisons.	main09.cc: generation of tw
<pre>#PartonLevel:all = off</pre>	! stop after hard process	• main10.cc: illustration how
<pre>#PartonLevel:MPI = off</pre>	! no multiparton interactions	
<pre>#PartonLevel:ISR = off</pre>	! no initial-state radiation	• main11.cc: a study of top e
<pre>#PartonLevel:FSR = off</pre>	! no final-state radiation	currently only contains 100 ev
<pre>#HadronLevel:all = off</pre>	! stop after parton level	demonstration of the principles
#HadronLevel:Hadronize = off	! no hadronization	

How do you set the parameters?

Extra Gauge Bosons

```
NewGaugeBoson:ffbar2gmZZprime = on
Scattering f fbar ->Z'^0. [..]
mode Zprime:gmZmode (default = 0; minimum = 0; maximum = 6)
Choice of full gamma^*/Z^0/Z'^0 structure or not in the above process. [...]
option 0 : full gamma^*/Z^0/Z'^0 structure, with interference included.
option 1 : only pure gamma^* contribution.
option 2 : only pure Z^0 contribution.
option 3 : only pure Z'^0 contribution.
option 4 : only the gamma^*/Z^0 contribution, including interference.
option 5 : only the gamma^*/Z'^0 contribution, including interference.
option 6 : only the Z^0/Z'^0 contribution, including interference.
```

Can be turned on with full interference with gamma/Z

flag Zprime:universality (default = on)

If on then you need only set the first-generation couplings below, and these are automatically also used for the second and third generation. If off, then couplings can be chosen separately for each generation.

```
parm Zprime:vd (default = -0.693)
vector coupling of d quarks.
```

```
parm Zprime:ad (default = -1.)
axial coupling of d quarks.
```

parm Zprime:vu (default = 0.387)
vector coupling of u quarks.

```
parm Zprime:au (default = 1.)
axial coupling of u quarks.
```

Versatile assignment of couplings

Improvements to SLHA interface

Was designed for SUSY

```
BLOCK MODSEL # Model selection
    1
          1
               sugra
#
BLOCK SMINPUTS # Standard Model inputs
                           # alpha em^-1(M Z)^MSbar
    1
          1.27934000E+02
     2
          1.16637000E-05
                           # G F [GeV^-2]
          1.1800000E-01
     3
                           # alpha S(M Z)^MSbar
                           # M Z pole mass
     4
          9.11876000E+01
     5
          4.25000000E+00
                           # mb(mb)^MSbar
     6
          1.75000000E+02
                           # mt pole mass
     7
          1.77700000E+00
                           # mtau pole mass
#
BLOCK MINPAR # Input parameters - minimal models
    1
                           # m0
          1.00000000E+02
     2
          2.5000000E+02
                           # m12
     3
          1.00000000E+01
                           # tanb
                           # sign(mu)
     4
          1.00000000E+00
     5
          -1.0000000E+02
                           # A0
```

Problem with designing a generic interface for all BSM models is how to implement arbitrary blocks

	particle ID particle name								
BLOCK QNUMBERS	S 7654321 # balleron								
1 0 # 3 times electric charge									
2 2	2 2 # number of spin states (2S+1)								
3 8	3 8 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)								
4 0	4 0 # Particle/Antiparticle distinction (0=own anti)								
	particle name anti-particle name								
	S 8765432 # yup yupbar								
1 2 # 3 times electric charge									
	2 2 # number of spin states (2S+1)								
	3 3 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)								
4 L	4 1 # Particle/Antiparticle distinction (0=own anti)								
BLOCK MASS									
# ID cod	de pole mass in GeV								
765432	21 800.0 # m(balleron)								
	32 600.0 # m(yup)								
	ID WIDTH in GeV								
	4321 2.034369169E+00 # balleron decays								
# BR	NDA ID1 ID2 ID3								
		BR(-> t b s)							
		BR(-> c b s)							
1.0000									

Use either a **semi-internal process** (your own derived subclass of a Pythia process) to provide production cross section expressions or **read in LHE file** generated externally.

What if you need extra parameters (blocks)?

Pythia provides functionality to retrieve data from arbitrarily named blocks

bool slhaPtr->getEntry(string blockName, double& val); bool slhaPtr->getEntry(string blockName, int indx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val); bool slhaPtr->getEntry(string blockName, int indx, int jndx, int kndx, double& val);