
Introduction to Pythia8
IFT Madrid, 9 Sep 2015

• Purpose of “general-purpose” MC generators
• Program flow
• ISR + FSR
• Hadronisation
• MPI
• (TUT) Hola Mundo! (Simple Z production)
• Using internal BSM models (Z’ production)
• (TUT) Links to external programs I: LHE files
• Aside: Links to external programs II: Semi-internal

processes
• Aside: Jet algorithms
• Simplified event analysis (w/o dedicated detector sim.)
• (TUT) Links to external programs III: HEPMC and ROOT
• (TUT) Matching and merging

Plan of this talk:

What is Pythia 8?

Download and online manual from http://home.thep.lu.se/~torbjorn/Pythia.html

– General purpose Monte-
Carlo generator

– Simulates collision events:
hard process, showering,
hadronisation, multiple
interactions, underlying
event ...

– Version 8.2 released in Oct
2014. Current version 8.210

http://home.thep.lu.se/~torbjorn/Pythia.html

Lagrangian

Matrix Elements
Event Gen.

ISR

Hadronisation

Detector Sim.

Matching

DecaysFSR

UE+MPI
Poor-theorists
detector sim.

Events
generated based
on hard-coded
MEs

Flowchart of the theoretician’s analysis

✦ Pythia 8 has a basic library of BSM processes that can
be used for quick studies.
- BSM Higgses (2HDM)
- Fourth generation quarks
- New Gauge Bosons
- Left-Right symmetric models
- Leptoquarks
- Compositeness
- Hidden Valley
- Extra Dimensions
- SUSY

✦ More exotic processes may be implemented via external
programs.

✦ Important to model backgrounds correctly to
observe BSM signatures.

✦ Current state-of-the-art SM calculations use ME
generators + PS with matching followed by
hadronisation.

➡ Pythia 8 provides various interfaces to external
ME generators

➡ LO/NLO matching for processes available

ME + PS matching at NLO!
UNLOPS results.

ATLAS data

Pythia8

UNLOPS tMS = 15 GeV

UNLOPS tMS = 45 GeV

10 1

10 2

10 3

Inclusive Jet Multiplicity

�
(W

+
�

N
je
t
je
ts
)
[p
b
]

0 1 2 3 4
0

0.5

1

1.5

2

Njet

M
C
/
d
a
ta

ATLAS data

Pythia8

UNLOPS tMS = 15 GeV

UNLOPS tMS = 45 GeV

10�2

10�1

1

10 1

First Jet p?

d
�
/
d
p ?

[p
b
/
G
eV

]

50 100 150 200 250 300
0.4

0.6

0.8

1

1.2

1.4

1.6

p? [GeV]

M
C
/
d
a
ta

ATLAS data

Pythia8

UNLOPS tMS = 15 GeV

UNLOPS tMS = 45 GeV

10�2

10�1

1

10 1
Second Jet p?

d
�
/
d
p ?

[p
b
/
G
eV

]

40 60 80 100 120 140 160 180
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

p? [GeV]

M
C
/
d
a
ta

28 / 37

Lonnblad and Prestel; arXiv:1211.7278

Also available LO matching via new Unitarised
ME+PS merging (UMEPS), MLM and CKKW-L.

UNLOPS

Interfaces

✦ Interface to LHAPDF or other external PDF libraries.

✦ Les Houches Accord (LHA) files for reading events
or runtime LHA interface.

✦ Semi-internal processes for programs like Madgraph
5.

✦ HepMC output for programs like RIVET, Delphes etc.

✦ Can be compiled as a plugin to ROOT.

✦ Input from generalised SLHA input for any BSM
model.

Other major improvements:
✦ Improvements to parton showers; possibility to use

external PS programs (e.g. Vincia)

✦ Improvements to MPI

✦ Showering to take into account colour-epsilon
topologies, sextets.

✦ Hadronisation in presence of coloured exotic particles
(R-hadrons [M. Fairbairn et al.,Phys. Rep. 438 (2007)], long-lived
triplets or octets, ...)

✦ Tau polarisation in both production and decay [P. Ilten,
arXiv:1211.6730 [hep-ph]]

User-friendly, more intuitive; settings can be changed
without requiring recompilation.

The Parton-Shower Approach

2! n = (2! 2) � ISR � FSR

FSR = Final-State Radiation = timelike shower
Q

2

i

⇠ m

2 > 0 decreasing
ISR = Initial-State Radiation = spacelike showers
Q

2

i

⇠ �m

2 > 0 increasing

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 19/40

Why “time”like and “space”like?

Consider four-momentum conservation in a branching a! b c

p?a

= 0) p?c

= �p?b

p

+

= E + p

L

) p

+a

= p

+b

+ p

+c

p� = E � p

L

) p�a

= p�b

+ p�c

Define p

+b

= z p

+a

, p

+c

= (1� z) p

+a

Use p

+

p� = E

2 � p

2

L

= m

2 + p

2

?

m

2

a

+ p

2

?a

p

+a

=
m

2

b

+ p

2

?b

z p

+a

+
m

2

c

+ p

2

?c

(1� z) p

+a

) m

2

a

=
m

2

b

+ p

2

?
z

+
m

2

c

+ p

2

?
1� z

=
m

2

b

z

+
m

2

c

1� z

+
p

2

?
z(1� z)

Final-state shower: m

b

= m

c

= 0) m

2

a

=
p

2

?
z(1�z)

> 0) timelike

Initial-state shower: m

a

= m

c

= 0) m

2

b

= � p

2

?
1�z

< 0) spacelike

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 20/40

Initial & Final State Radiation

and the beam-remnant ”hole” left by an initial-state one, which therefore now can take a
recoil. In the ISR algorithm, recoils are always taken by the hard-scattering subsystem as
a whole, regardless of whether the colour partner is in the initial or final state.

The shower evolution is based on the standard (LO) DGLAP splitting kernels, P (z) [43,
44, 45]:

Pq!qg(z) = CF
1 + z

2

1� z

, (9)

Pg!gg(z) = CA
(1� z(1� z))2

z(1� z)
, (10)

Pg!qq̄(z) = TR (z2 + (1� z)2) , (11)

with CF = 4
3 , CA = NC = 3, and TR = 1

2 , multiplied by Nf if summing over all contributing
quark flavours, for QCD, and

Pf!f�(z) = e

2
f

1 + z

2

1� z

, (12)

P�!f f̄(z) = e

2
f NC (z2 + (1� z)2) , (13)

for QED, with NC = 1 for charged leptons, and with z the energy-sharing fraction between
the daughter partons. In addition, the current default is that gluon-polarisation e↵ects are
taken approximately into account via a non-isotropic selection of the azimuthal angle of the
branchings, '. Corrections for parton masses are generally also included, for both FSR [46]
and ISR [40]. Additional options for mass corrections for g/� ! f f̄ branchings are discussed
below.

The ISR and FSR algorithms are both based on the above splitting kernels, and are cast
as di↵erential equations expressing the probability of emitting radiation as one moves from
high to low values of the shower evolution variable, which plays the role of factorisation scale
in parton-shower contexts. For FSR, this corresponds to an evolution forwards in physical
time, with a single mother parton replaced by two daughter partons at each branching. For
ISR, however, the progress from high to low factorisation scales corresponds to a backwards
evolution in physical time [47], with the evolving parton becoming unresolved into a new
initial-state mother parton and an accompanying final-state sister one at each branching.
Moreover, the fact that the boundary condition represented by the non-perturbative struc-
ture of the initial beam particle sits at the low-Q end of the evolution chain implies that a
ratio of PDFs accompanies each branching, with the purpose, roughly, of translating from
the PDF of the ”old” mother parton to that of the ”new” one.

Integrated over the kinematically allowed range of z and expressed as a di↵erential
branching probability per unit evolution time, the FSR and ISR kernels used to drive the
shower evolution in Pythia are:

dPFSR

dp

2
?

=
1

p

2
?

Z
dz

↵s

2⇡
P (z) ,

dPISR

dp

2
?

=
1

p

2
?

Z
dz

↵s

2⇡
P (z)

f

0(x/z, p

2
?)

zf(x, p

2
?)

, (14)

11

and the beam-remnant ”hole” left by an initial-state one, which therefore now can take a
recoil. In the ISR algorithm, recoils are always taken by the hard-scattering subsystem as
a whole, regardless of whether the colour partner is in the initial or final state.

The shower evolution is based on the standard (LO) DGLAP splitting kernels, P (z) [43,
44, 45]:

Pq!qg(z) = CF
1 + z

2

1� z

, (9)

Pg!gg(z) = CA
(1� z(1� z))2

z(1� z)
, (10)

Pg!qq̄(z) = TR (z2 + (1� z)2) , (11)

with CF = 4
3 , CA = NC = 3, and TR = 1

2 , multiplied by Nf if summing over all contributing
quark flavours, for QCD, and

Pf!f�(z) = e

2
f

1 + z

2

1� z

, (12)

P�!f f̄(z) = e

2
f NC (z2 + (1� z)2) , (13)

for QED, with NC = 1 for charged leptons, and with z the energy-sharing fraction between
the daughter partons. In addition, the current default is that gluon-polarisation e↵ects are
taken approximately into account via a non-isotropic selection of the azimuthal angle of the
branchings, '. Corrections for parton masses are generally also included, for both FSR [46]
and ISR [40]. Additional options for mass corrections for g/� ! f f̄ branchings are discussed
below.

The ISR and FSR algorithms are both based on the above splitting kernels, and are cast
as di↵erential equations expressing the probability of emitting radiation as one moves from
high to low values of the shower evolution variable, which plays the role of factorisation scale
in parton-shower contexts. For FSR, this corresponds to an evolution forwards in physical
time, with a single mother parton replaced by two daughter partons at each branching. For
ISR, however, the progress from high to low factorisation scales corresponds to a backwards
evolution in physical time [47], with the evolving parton becoming unresolved into a new
initial-state mother parton and an accompanying final-state sister one at each branching.
Moreover, the fact that the boundary condition represented by the non-perturbative struc-
ture of the initial beam particle sits at the low-Q end of the evolution chain implies that a
ratio of PDFs accompanies each branching, with the purpose, roughly, of translating from
the PDF of the ”old” mother parton to that of the ”new” one.

Integrated over the kinematically allowed range of z and expressed as a di↵erential
branching probability per unit evolution time, the FSR and ISR kernels used to drive the
shower evolution in Pythia are:

dPFSR

dp

2
?

=
1

p

2
?

Z
dz

↵s

2⇡
P (z) ,

dPISR

dp

2
?

=
1

p

2
?

Z
dz

↵s

2⇡
P (z)

f

0(x/z, p

2
?)

zf(x, p

2
?)

, (14)

11

The iterative structure

One-emission expression generalizes to many consecutive emissions
if strongly ordered, Q

2

1

� Q

2

2

� Q

2

3

. . . (⇡ time-ordered).
To cover “all” of phase space use DGLAP in whole region
Q

2

1

> Q

2

2

> Q

2

3

. . ..

Iteration gives
(final-state)
parton showers:

Iterative structure allows for
energy–momentum conservation,
unlike simple exponentiation.

Need soft/collinear cuts to stay away from nonperturbative physics.
Details model-dependent, but around 1 GeV scale.

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 1 slide 23/40

The QCD potential – 1

In QCD, for large charge separation, field lines are believed
to be compressed to tubelike region(s)) string(s)

Gives force/potential between a q and a q:

F (r) ⇡ const =  () V (r) ⇡ r

 ⇡ 1 GeV/fm ⇡ potential energy gain lifting a 16 ton truck.

Flux tube parametrized by center location as a function of time
) simple description as a 1+1-dimensional object – a string .

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 22/41

The Lund Model

Combine yo-yo-style string motion with string breakings!

Motion of quarks and antiquarks with intermediate string pieces:

A q from one string break combines with a q from an adjacent one.

Gives simple but powerful picture of hadron production.

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 26/41

How does the string break?

String breaking modelled by tunneling:

P / exp

�

⇡m

2

?q



!
= exp

�

⇡p

2

?q



!
exp

�

⇡m

2

q



!

• Common Gaussian p? spectrum, hp?i ⇡ 0.4 GeV.

• Suppression of heavy quarks,

uu : dd : ss : cc ⇡ 1 : 1 : 0.3 : 10�11.

• Diquark ⇠ antiquark) simple model for baryon production.
String model unpredictive in understanding of hadron mass e↵ects
) many parameters, 10–20 depending on how you count.

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 28/41

What is minimum bias (MB)?

MB ⇡ “all events, with no bias from restricted trigger conditions”
�

tot

=
�

elastic

+ �
single�di↵ractive

+ �
double�di↵ractive

+ · · · + �
non�di↵ractive

Schematically:

Reality: can only observe events with particles in central detector:
no universally accepted, detector-independent definition
�

min�bias

⇡ �
non�di↵ractive

+ �
double�di↵ractive

⇡ 2/3 ⇥ �
tot

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 4/41

What is underlying event (UE)?

In an event containing a jet pair or another hard process, how
much further activity is there, that does not have its origin in the
hard process itself, but in other physics processes?

Pedestal e↵ect: the UE contains more activity than a normal MB
event does (even discarding di↵ractive events).

Trigger bias: a jet ”trigger” criterion E?jet

> E?min

is more easily
fulfilled in events with upwards-fluctuating UE activity, since the
UE E? in the jet cone counts towards the E?jet

. Not enough!

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 5/41

What is pileup?

hni = L�

where L is machine luminosity per bunch crossing, L ⇠ n

1

n

2

/A

and � ⇠ �
tot

⇡ 100 mb.
Current LHC machine conditions) hni ⇠ 10� 20.

Pileup introduces no new physics, and is thus not further
considered here, but can be a nuisance.
However, keep in mind concept of bunches of hadrons
leading to multiple collisions.

Torbjörn Sjöstrand Monte Carlo Generators and Soft QCD 3 slide 6/41

Rescattering Rescattering

Often
assume
that
MPI =

. . . but
should
also
include

Same order in �s, � same propagators, but
• one PDF weight less� smaller �

• one jet less� QCD radiation background 2� 3 larger than 2� 4
� will be tough to find direct evidence.

Rescattering grows with number of “previous” scatterings:
Tevatron LHC

Min Bias QCD Jets Min Bias QCD Jets
Normal scattering 2.81 5.09 5.19 12.19
Single rescatterings 0.41 1.32 1.03 4.10
Double rescatterings 0.01 0.04 0.03 0.15

R. Corke & TS, JHEP 01 (2010) 035
Torbjörn Sjöstrand MPI in PYTHIA slide 6/16

The anatomy to a Pythia8 program

Inside the BLACK BOX

Inside the BLACK BOX
The User (≈ Main Program)

Pythia

Info Event process Event event

ProcessLevel

ProcessContainer

PhaseSpace

LHAinit, LHAevnt

ResonanceDecays

PartonLevel

TimeShower

SpaceShower

MultipleInteractions

BeamRemnants

HadronLevel

StringFragmentation

MiniStringFrag...

ParticleDecays

BoseEinstein

BeamParticle SigmaProcess, SigmaTotal

Vec4, Rndm, Hist, Settings, ParticleDataTable, ResonanceWidths, ...

Fig. 1. The relationship between the main classes in Pythia 8. The thick arrows
show the flow of commands to carry out different physics tasks, whereas the thinner
show the flow of information between the tasks. The bottom box contains common
utilities that may be used anywhere. Obviously the picture is strongly simplified.

corresponding to points 1, 2 and 3 above. Each of these, in their turn, call on
further classes that perform the separate kinds of physics tasks.

Information is flowing between the different program elements in various ways,
the most important being the event record, represented by the Event class.
Actually, there are two objects of this class, one called process, that only
covers the few partons of the “hard” process of point 1 above (i.e., containing
information corresponding to what might be termed the “matrix element”
level), and another called event, that covers the full story from the incoming
beams to the final hadrons. A small Info class keeps track of useful one-of-a-
kind information, such as kinematical variables of the hard process.

There are also two incoming BeamParticles, that keep track of the partonic
content left in the beams after a number of interactions and initial-state radi-

7

To Begin:

1. Tell your program to use the Pythia libraries

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

2. Declare a Pythia object and initialise

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

#include "Pythia.h"
To simplify typing, it also makes sense to declare

using namespace Pythia8;
Given this, the first step in the main program is to create a generator object,
e.g. with

Pythia pythia;
In the following we will assume that the pythia object has been created with
this name, but of course you are free to pick another one.

When this object is declared, the Pythia constructor initialises all the default
values for the Settings and the ParticleDataTable data bases. These data
are now present in memory and can be modified in a number of ways before
the generator is initialised (see below). Most conveniently, Pythia’s settings
and parameters can be changed by the two methods

pythia.readString(string);
for changing a single variable, and

pythia.readFile(fileName);
for changing a set of variables, one per line in the input file. The allowed form
for a string/line will be explained as we consider the databases in the next
section. Further, methods will be introduced to list all or only the changed
settings and particle data.

At this stage you can also optionally hook up with some external facilities,
see section 6.

After this, in the initialisation call all remaining details of the generation are
to be specified. The pythia.init(...) method allows a few different input
formats, so you can pick the one convenient for you:

pythia.init(idA, idB, eA, eB);
lets you specify the identities and energies of the two incoming beam particles,
with A (B) assumed moving in the +z (−z) direction;

pythia.init(idA, idB, eCM);
is similar, but you specify the CM energy, and you are assumed in the rest
frame;

pythia.init(LHAinit*, LHAevnt*);
assumes LHA initialisation information is available in an LHAinit class object,
and that LHA event information will be provided by the LHAevnt class object,
see below;

pythia.init(fileName);
assumes that the file obeys the LHEF standard format and that information
can be extracted from it accordingly; and finally

pythia.init();
will take its values from the beam specification stored in the Settings database.

It is when the init(...) call is executed that all the settings values are prop-
agated to the various program elements, and used to precalculate quantities
that will be used at later stages of the generation. Further settings changed

10

after the init(...) call will be ignored (unless methods are used to force
a partial or complete re-initialisation). By contrast, the particle properties
database is queried all the time, and so a later change would take effect im-
mediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However,
all the information on how this should be done has already been specified.
Therefore only a command

pythia.next();
is required to generate the next event. This method would be located inside
an event loop, where a required number of events are to be generated.

The key output of the pythia.next() command is the event record found in
pythia.event, see below. A process-level summary of the event is stored in
pythia.process.

When problems are encountered, in init(...) or next(), they can be as-
signed one of three degrees of severity. Abort is the highest. In that case the
call could not complete its tasks, and returns the value false. If this happens
in init(...) it is then not possible to generate any events at all. If it hap-
pens in next() only the current event must be skipped. In a few cases the
abort may be predictable and desirable, e.g. when a file of LHA events comes
to an end. Errors are less severe, and the program can usually work around
them, e.g. by backing up one step and trying again. Should that not succeed,
an abort may result. Warnings are of informative character only, and do not
require any corrective actions (except, in the longer term, to find more reliable
algorithms).

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated
and on the number of aborts, errors and warnings issued.

4.2 The event record

The Event class for event records is not much more than a wrapper for a
vector of Particles. This vector can expand to fit the event size. The index
operator is overloaded, so that event[i] corresponds to the i’th particle of
an Event object called event. For instance, given that the PDG identity code
[16] of a particle is provided by the id() method, event[i].id() returns the
identity of the i’th particle.

Line 0 is used to represent the event as a whole, with its total four-momentum
and invariant mass, but does not form part of the event history, and only
contains redundant information. When you translate to another event-record
format where the first particle is assigned index 1, such as HepMC, this line
should therefore be dropped so as to keep the rest of the indices synchronised.
It is only with lines 1 and 2, which contain the two incoming beams, that the

11

3. To generate the next event

after the init(...) call will be ignored (unless methods are used to force
a partial or complete re-initialisation). By contrast, the particle properties
database is queried all the time, and so a later change would take effect im-
mediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However,
all the information on how this should be done has already been specified.
Therefore only a command

pythia.next();
is required to generate the next event. This method would be located inside
an event loop, where a required number of events are to be generated.

The key output of the pythia.next() command is the event record found in
pythia.event, see below. A process-level summary of the event is stored in
pythia.process.

When problems are encountered, in init(...) or next(), they can be as-
signed one of three degrees of severity. Abort is the highest. In that case the
call could not complete its tasks, and returns the value false. If this happens
in init(...) it is then not possible to generate any events at all. If it hap-
pens in next() only the current event must be skipped. In a few cases the
abort may be predictable and desirable, e.g. when a file of LHA events comes
to an end. Errors are less severe, and the program can usually work around
them, e.g. by backing up one step and trying again. Should that not succeed,
an abort may result. Warnings are of informative character only, and do not
require any corrective actions (except, in the longer term, to find more reliable
algorithms).

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated
and on the number of aborts, errors and warnings issued.

4.2 The event record

The Event class for event records is not much more than a wrapper for a
vector of Particles. This vector can expand to fit the event size. The index
operator is overloaded, so that event[i] corresponds to the i’th particle of
an Event object called event. For instance, given that the PDG identity code
[16] of a particle is provided by the id() method, event[i].id() returns the
identity of the i’th particle.

Line 0 is used to represent the event as a whole, with its total four-momentum
and invariant mass, but does not form part of the event history, and only
contains redundant information. When you translate to another event-record
format where the first particle is assigned index 1, such as HepMC, this line
should therefore be dropped so as to keep the rest of the indices synchronised.
It is only with lines 1 and 2, which contain the two incoming beams, that the

11

4. All the particles in the event are stored in

after the init(...) call will be ignored (unless methods are used to force
a partial or complete re-initialisation). By contrast, the particle properties
database is queried all the time, and so a later change would take effect im-
mediately, for better or worse.

The bulk of the code is concerned with the event generation proper. However,
all the information on how this should be done has already been specified.
Therefore only a command

pythia.next();
is required to generate the next event. This method would be located inside
an event loop, where a required number of events are to be generated.

The key output of the pythia.next() command is the event record found in
pythia.event, see below. A process-level summary of the event is stored in
pythia.process.

When problems are encountered, in init(...) or next(), they can be as-
signed one of three degrees of severity. Abort is the highest. In that case the
call could not complete its tasks, and returns the value false. If this happens
in init(...) it is then not possible to generate any events at all. If it hap-
pens in next() only the current event must be skipped. In a few cases the
abort may be predictable and desirable, e.g. when a file of LHA events comes
to an end. Errors are less severe, and the program can usually work around
them, e.g. by backing up one step and trying again. Should that not succeed,
an abort may result. Warnings are of informative character only, and do not
require any corrective actions (except, in the longer term, to find more reliable
algorithms).

At the end of the generation process, you can call
pythia.statistics();

to get some run statistics, both on cross sections for the subprocesses generated
and on the number of aborts, errors and warnings issued.

4.2 The event record

The Event class for event records is not much more than a wrapper for a
vector of Particles. This vector can expand to fit the event size. The index
operator is overloaded, so that event[i] corresponds to the i’th particle of
an Event object called event. For instance, given that the PDG identity code
[16] of a particle is provided by the id() method, event[i].id() returns the
identity of the i’th particle.

Line 0 is used to represent the event as a whole, with its total four-momentum
and invariant mass, but does not form part of the event history, and only
contains redundant information. When you translate to another event-record
format where the first particle is assigned index 1, such as HepMC, this line
should therefore be dropped so as to keep the rest of the indices synchronised.
It is only with lines 1 and 2, which contain the two incoming beams, that the

11

5. At the end

 1 2212 (p+) -12 0 0 3 0 0 0 0.000 0.000 7000.000 7000.000 0.938
 2 2212 (p+) -12 0 0 4 0 0 0 0.000 0.000 -7000.000 7000.000 0.938
 3 21 (g) -21 1 0 5 6 503 502 0.000 0.000 122.026 122.026 0.000
 4 21 (g) -21 2 0 5 6 501 503 0.000 0.000 -441.322 441.322 0.000
 5 6 (t) -22 3 4 7 8 501 0 -91.828 87.872 -266.639 342.315 173.000
 6 -6 (tbar) -22 3 4 9 10 0 502 91.828 -87.872 -52.657 221.033 173.000

The combined particle is always classified with code 23, however. So generate events
and study the �

⇤
/Z0 mass and p? distributions. Then restrict to a more “Z0-like”

mass range with PhaseSpace:mHatMin = 75. and PhaseSpace:mHatMax = 120.

• Use a jet clustering algorithm, e.g. one of the SlowJet options described in Ap-
pendix B.2, to study the number of jets found in association with the Z0 above.
You can switch o↵ Z0 decay with 23:mayDecay = no, and negate its status code by
pythia.event[iZ].statusNeg(), so that it will not be included in the jet finding.
Here iZ is the last copy of the Z0, cf. how the last top copy was found above. Again
check the importance of FSR/ISR/MPI.

Note that the Pythia homepage contains two further tutorials, in addition to older
editions of the current one. These share some of the introductory material, but then put
the emphasis on two specific areas:

• a merging tutorial, showing the step-by-step construction of a relevant main pro-
gram, and more details on possible merging approaches than found in Section 6 of
the current manual; and

• a BSM tutorial, describing how you can input events from Beyond-the-Standard-
model scenarios into Pythia.

A The Event Record

The event record is set up to store every step in the evolution from an initial low-
multiplicity partonic process to a final high-multiplicity hadronic state, in the order that
new particles are generated. The record is a vector of particles, that expands to fit the
needs of the current event (plus some additional pieces of information not discussed here).
Thus event[i] is the i’th particle of the current event, and you may study its properties
by using various event[i].method() possibilities.

The event.list() listing provides the main properties of each particles, by column:

• no, the index number of the particle (i above);

• id, the PDG particle identity code (method id());

• name, a plaintext rendering of the particle name (method name()), within brackets
for initial or intermediate particles and without for final-state ones;

• status, the reason why a new particle was added to the event record (method
status());

• mothers and daughters, documentation on the event history (methods mother1(),
mother2(), daughter1() and daughter2());

• colours, the colour flow of the process (methods col() and acol());

• p x, p y, p z and e, the components of the momentum four-vector (p
x

, p

y

, p

z

, E), in
units of GeV with c = 1 (methods px(), py(), pz() and e());

• m, the mass, in units as above (method m()).

For a complete description of these and other particle properties (such as production and
decay vertices, rapidity, p?, etc), open the program’s online documentation in a browser

16

! 1) Settings that are used in the main program.
Main:numberOfEvents = 1000 ! number of events to generate
Main:timesAllowErrors = 10 ! abort run after this many flawed events

! 2) Settings related to output in init(), next() and stat().
Init:showChangedSettings = on ! list changed settings
Init:showChangedParticleData = on ! list changed particle data
#Init:showChangedResonanceData = on ! also print changed resonance data
Init:showOneParticleData = 25 ! print data for this particular particle
Next:numberCount = 100 ! print message every n events
Next:numberShowInfo = 1 ! print event information n times
Next:numberShowProcess = 1 ! print process record n times
Next:numberShowEvent = 0 ! print event record n times
Stat:showPartonLevel = on ! more statistics on MPI

! 3) Beam settings.
Beams:idA = 2212 ! first beam, p = 2212, pbar = -2212
Beams:idB = 2212 ! second beam, p = 2212, pbar = -2212
Beams:eCM = 14000. ! CM energy of collision, LHC

! 4) Settings for hard-process generation internal to Pythia8.
HiggsSM:gg2H = on ! Higgs production by gluon-gluon fusion
25:m0 = 125.4 ! Higgs mass

! 5) Switch off some key components of the simulation, for comparisons.
#PartonLevel:all = off ! stop after hard process
#PartonLevel:MPI = off ! no multiparton interactions
#PartonLevel:ISR = off ! no initial-state radiation
#PartonLevel:FSR = off ! no final-state radiation
#HadronLevel:all = off ! stop after parton level
#HadronLevel:Hadronize = off ! no hadronization

Example card file
Sample programs

How do you set the parameters?

Extra Gauge Bosons
NewGaugeBoson:ffbar2gmZZprime = on 
Scattering f fbar ->Z'^0. [..]

mode Zprime:gmZmode (default = 0; minimum = 0; maximum = 6)  
Choice of full gamma^*/Z^0/Z'^0 structure or not in the above process. [...] 
option 0 : full gamma^*/Z^0/Z'^0 structure, with interference included.  
option 1 : only pure gamma^* contribution.  
option 2 : only pure Z^0 contribution.  
option 3 : only pure Z'^0 contribution.  
option 4 : only the gamma^*/Z^0 contribution, including interference.  
option 5 : only the gamma^*/Z'^0 contribution, including interference.  
option 6 : only the Z^0/Z'^0 contribution, including interference.

Can be turned on with full interference with
gamma/Z

flag Zprime:universality (default = on)  
If on then you need only set the first-generation couplings below, and these are automatically also used for the second and
third generation. If off, then couplings can be chosen separately for each generation.

parm Zprime:vd (default = -0.693)  
vector coupling of d quarks.

parm Zprime:ad (default = -1.)  
axial coupling of d quarks.

parm Zprime:vu (default = 0.387)  
vector coupling of u quarks.

parm Zprime:au (default = 1.)  
axial coupling of u quarks.

Versatile assignment of couplings

Improvements to SLHA interface

Problem with designing a generic interface for all BSM
models is how to implement arbitrary blocks

BLOCK MODSEL # Model selection
 1 1 sugra
#
BLOCK SMINPUTS # Standard Model inputs
 1 1.27934000E+02 # alpha_em^-1(M_Z)^MSbar
 2 1.16637000E-05 # G_F [GeV^-2]
 3 1.18000000E-01 # alpha_S(M_Z)^MSbar
 4 9.11876000E+01 # M_Z pole mass
 5 4.25000000E+00 # mb(mb)^MSbar
 6 1.75000000E+02 # mt pole mass
 7 1.77700000E+00 # mtau pole mass
#
BLOCK MINPAR # Input parameters - minimal models
 1 1.00000000E+02 # m0
 2 2.50000000E+02 # m12
 3 1.00000000E+01 # tanb
 4 1.00000000E+00 # sign(mu)
 5 -1.00000000E+02 # A0

Was designed for SUSY

3.1.1 QNUMBERS

The SLHA file should contain a QNUMBERS block [9] for each state not already associated with
an ID code (a.k.a. PDG code, see [1,11] for a list) in Pythia 8. For a hypothetical electrically
neutral colour-octet self-conjugate fermion (a.k.a. a gluino) that we wish to assign the code
7654321 and the name “balleron”, the structure of this block should be

BLOCK QNUMBERS 7654321 # balleron
1 0 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 8 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 0 # Particle/Antiparticle distinction (0=own anti)

For a non-selfconjugate particle, separate names can be given for the particle and its
antiparticle. For a heavy up-type quark,

BLOCK QNUMBERS 8765432 # yup yupbar
1 2 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 3 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 1 # Particle/Antiparticle distinction (0=own anti)

Note that the name(s) given after the # mark in the block definition are optional and
entirely up to the user. If present, they will be used, e.g., when printing out event records
with Pythia’s event.list() method.

The SM quantum numbers given in the QNUMBERS blocks are required by Pythia 8 for
QED and QCD showering, and for colour-flow tracing. (Currently, Pythia does not make
use of the spin information.) As a rule, we advise to avoid clashes with existing ID codes,
to the extent possible in the implementation. A useful rule of thumb is to only assign codes
higher than 3 million to new states, though one should be careful not to choose numbers
larger than a 32-bit computer integer can contain, which puts a cap at ∼ 2 billion.

3.1.2 MASS

The file should also contain the SLHA block MASS, which must, as a minimum, contain one
entry for each new state, in the form

BLOCK MASS
ID code pole mass in GeV

7654321 800.0 # m(balleron)
8765432 600.0 # m(yup)

In principle, the block can also contain entries for SM particles. Here, some caution and
common sense must be applied, however. Allowing SLHA spectra to change hadron and/or
light-quark masses in Pythia 8 is strongly discouraged, as these parameters are used by the
parton-shower and hadronization models. Changing the b-quark mass, for instance, should
ideally be accompanied by a retuning of the b fragmentation parameters. Since this is not the
sort of question a BSM phenomenology study would normally address, by default, therefore,
Pythia 8 tries to protect against unintentional overwriting of the SM sector via the flag
SLHA:keepSM, which is on by default. To be more specific, this flag causes particle data
(including decay tables, see below) for ID codes in the ranges 1 – 24 and 81 – 999,999 to be

7

3.1.1 QNUMBERS

The SLHA file should contain a QNUMBERS block [9] for each state not already associated with
an ID code (a.k.a. PDG code, see [1,11] for a list) in Pythia 8. For a hypothetical electrically
neutral colour-octet self-conjugate fermion (a.k.a. a gluino) that we wish to assign the code
7654321 and the name “balleron”, the structure of this block should be

BLOCK QNUMBERS 7654321 # balleron
1 0 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 8 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 0 # Particle/Antiparticle distinction (0=own anti)

For a non-selfconjugate particle, separate names can be given for the particle and its
antiparticle. For a heavy up-type quark,

BLOCK QNUMBERS 8765432 # yup yupbar
1 2 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 3 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 1 # Particle/Antiparticle distinction (0=own anti)

Note that the name(s) given after the # mark in the block definition are optional and
entirely up to the user. If present, they will be used, e.g., when printing out event records
with Pythia’s event.list() method.

The SM quantum numbers given in the QNUMBERS blocks are required by Pythia 8 for
QED and QCD showering, and for colour-flow tracing. (Currently, Pythia does not make
use of the spin information.) As a rule, we advise to avoid clashes with existing ID codes,
to the extent possible in the implementation. A useful rule of thumb is to only assign codes
higher than 3 million to new states, though one should be careful not to choose numbers
larger than a 32-bit computer integer can contain, which puts a cap at ∼ 2 billion.

3.1.2 MASS

The file should also contain the SLHA block MASS, which must, as a minimum, contain one
entry for each new state, in the form

BLOCK MASS
ID code pole mass in GeV

7654321 800.0 # m(balleron)
8765432 600.0 # m(yup)

In principle, the block can also contain entries for SM particles. Here, some caution and
common sense must be applied, however. Allowing SLHA spectra to change hadron and/or
light-quark masses in Pythia 8 is strongly discouraged, as these parameters are used by the
parton-shower and hadronization models. Changing the b-quark mass, for instance, should
ideally be accompanied by a retuning of the b fragmentation parameters. Since this is not the
sort of question a BSM phenomenology study would normally address, by default, therefore,
Pythia 8 tries to protect against unintentional overwriting of the SM sector via the flag
SLHA:keepSM, which is on by default. To be more specific, this flag causes particle data
(including decay tables, see below) for ID codes in the ranges 1 – 24 and 81 – 999,999 to be

7

particle ID particle name

anti-particle name

3.1.1 QNUMBERS

The SLHA file should contain a QNUMBERS block [9] for each state not already associated with
an ID code (a.k.a. PDG code, see [1,11] for a list) in Pythia 8. For a hypothetical electrically
neutral colour-octet self-conjugate fermion (a.k.a. a gluino) that we wish to assign the code
7654321 and the name “balleron”, the structure of this block should be

BLOCK QNUMBERS 7654321 # balleron
1 0 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 8 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 0 # Particle/Antiparticle distinction (0=own anti)

For a non-selfconjugate particle, separate names can be given for the particle and its
antiparticle. For a heavy up-type quark,

BLOCK QNUMBERS 8765432 # yup yupbar
1 2 # 3 times electric charge
2 2 # number of spin states (2S+1)
3 3 # colour rep (1: singlet, 3: triplet, 6: sextet, 8: octet)
4 1 # Particle/Antiparticle distinction (0=own anti)

Note that the name(s) given after the # mark in the block definition are optional and
entirely up to the user. If present, they will be used, e.g., when printing out event records
with Pythia’s event.list() method.

The SM quantum numbers given in the QNUMBERS blocks are required by Pythia 8 for
QED and QCD showering, and for colour-flow tracing. (Currently, Pythia does not make
use of the spin information.) As a rule, we advise to avoid clashes with existing ID codes,
to the extent possible in the implementation. A useful rule of thumb is to only assign codes
higher than 3 million to new states, though one should be careful not to choose numbers
larger than a 32-bit computer integer can contain, which puts a cap at ∼ 2 billion.

3.1.2 MASS

The file should also contain the SLHA block MASS, which must, as a minimum, contain one
entry for each new state, in the form

BLOCK MASS
ID code pole mass in GeV

7654321 800.0 # m(balleron)
8765432 600.0 # m(yup)

In principle, the block can also contain entries for SM particles. Here, some caution and
common sense must be applied, however. Allowing SLHA spectra to change hadron and/or
light-quark masses in Pythia 8 is strongly discouraged, as these parameters are used by the
parton-shower and hadronization models. Changing the b-quark mass, for instance, should
ideally be accompanied by a retuning of the b fragmentation parameters. Since this is not the
sort of question a BSM phenomenology study would normally address, by default, therefore,
Pythia 8 tries to protect against unintentional overwriting of the SM sector via the flag
SLHA:keepSM, which is on by default. To be more specific, this flag causes particle data
(including decay tables, see below) for ID codes in the ranges 1 – 24 and 81 – 999,999 to be

7

ignored. Notably this includes Z0 (ID 23), W± (ID 24), and t (ID 6). The SM Higgs (ID 25),
however, may still be modified by the SLHA input, as may other particles with ID codes in
the range 25 – 80 and beyond 1,000,000. If you switch off this flag then also SM particles are
modified by SLHA input.

Alternatively, the parameter SLHA:minMassSM, with default value 100.0 GeV, can be spec-
ified to allow any particle with ID code below 1,000,000 to be modified, if its default mass in
Pythialies below some threshold value, given by this parameter. The default value of 100.0
allows SLHA input to modify the top quark, but not, e.g., the Z0 and W± bosons.

3.1.3 DECAY

The file may also include one or more SLHA decay tables [12]. New BSM particles without
decay tables will be treated as stable by Pythia 8. For coloured states, this may result in
errors at the hadronization stage, and/or in the possibly unintentional production of so-called
R-hadrons [25], with a reasonably generic model for the latter available in Pythia 8 [26]. On
the other hand, a redefinition of Pythia’s treatment of the decays of SM particles, like Z0 and
W± may be undesirable, since Pythia’s internal treatment is normally more sophisticated
(discussed briefly in sec. 2.4). Thus, again, caution and common sense is advised when
processing (B)SM particles through Pythia, with the protection parameters SLHA:keepSM

and SLHA:minMassSM described above also active for decay tables. An option for overriding the
automatic read-in of decay tables is also provided, by setting the flag SLHA:useDecayTable

= false.
The format for decay tables is [12]

ID WIDTH in GeV
DECAY 7654321 2.034369169E+00 # balleron decays
BR NDA ID1 ID2 ID3

9.900000000E-01 3 6 5 3 # BR(-> t b s)
1.000000000E-02 3 4 5 3 # BR(-> c b s)

Note that the branching ratios (BRs) must sum up to unity, hence zeroing individual
BRs is not a good way of switching modes off. Instead, Pythia 8 is equipped to interpret a
negative BR as a mode which is desired switched off for the present run, but which should be
treated as having the corresponding positive BR for purposes of normalization.

Finally, a note of warning on double counting. This may occur if a particle can decay via
an intermediate on-shell resonance. An example is H0 → q1q̄2q3q̄4 which may proceed via
H0 → WW followed by W → qq̄′. If branching ratios for bothH0 → WW andH0 → q1q̄2q3q̄4
are included, each with their full partial width, a double counting of the on-shell H0 → WW
contribution would result. (This would also show up as branching ratios summing to a value
greater than unity.) Such cases should be dealt with consistently, e.g., by subtracting off the
on-shell contributions from the H0 → q1q̄2q3q̄4 partial width.

3.2 Accessing the Information from a Semi-Internal Process

Already the original SLHA1 [12] allowed for the possibility to create user-defined blocks, be-
yond those defined by the accord itself. The only requirement is obviously that the block
names already defined in the accord(s) should not be usurped. The SLHA interface in
Pythia 8 will store the contents of all blocks, both standard and user-defined ones, as internal
vectors of strings.

8

particle name

What if you need extra parameters (blocks)?

Use either a semi-internal process (your own derived
subclass of a Pythia process) to provide production cross
section expressions or read in LHE file generated
externally.

By default, Pythia’s internal BSM implementation only extracts numerical content from
those blocks it recognizes (i.e., the standard SLHA 1&2 blocks and QNUMBERS), and uses those
to initialize its couplings and particle data arrays. However, generic methods are also provided,
that can be used access to the contents of any block, whether standard or user-defined, from
inside any class inheriting from Pythia’s SigmaProcess class (i.e., in particular, from any
semi-internal process written by a user), through its SLHA pointer, slhaPtr, by using the
following methods:

bool slhaPtr->getEntry(string blockName, double& val);
bool slhaPtr->getEntry(string blockName, int indx, double& val);
bool slhaPtr->getEntry(string blockName, int indx, int jndx, double& val);
bool slhaPtr->getEntry(string blockName, int indx, int jndx, int kndx, double& val);

This particular example assumes that the user wants to read the entries (without in-
dex, indexed, matrix-indexed, or 3-tensor-indexed, respectively) in the user-defined block
blockName, and that the entry value, val, should be interpreted as a double. In fact, the
last argument is templated, and hence if anything other than a double is desired to be read,
the user has only to give the last argument a different type. Since the user presumably knows
what type of content his/her own user-defined blocks contain, this solution allows the content
to be accessed in the correct format, without Pythia needing to know what that format is
beforehand. If anything goes wrong (i.e., the block does not exist, or it does not have an
entry with that index, or that entry cannot be read as a double), the method returns false;
true otherwise. This effectively allows input of completely arbitrary parameters using the
SLHA machinery, with the user having full control over names and conventions. Of course, it
is then also the user’s responsibility to ensure complete consistency between the names and
conventions used in the SLHA input, and those assumed in any user-written semi-internal
process code.

Note also that the special SLHA block SMINPUTS (containing SM parameters [12]) will al-
ways be accessible through the methods above, regardless of whether a corresponding SLHA
block has been read in or not. The SMINPUTS block is initialized starting from PYTHIA’s own
internal default values, with subsequent modifications as dictated by updates to PYTHIA’s
particle and parameter databases before initialization and/or by SLHA read-in. This func-
tionality is intended to give a generic BSM implementation access to the SM parameters
contained in SMINPUTS in a universal way.

To give a specific example, the interface to Madgraph 5 was structured in the following
way. Among the possible output formats available for matrix elements in Madgraph 5, one
is a mode called pythia8. When invoked, this mode writes out the corresponding matrix
element(s) in exactly the format required by Pythia 8’s semi-internal process machinery.
The resulting code can therefore be imported directly into Pythia 8, and Madgraph even
provides explicit instructions and a Makefile for doing precisely that. In general, however, such
matrix elements may contain parameters that refer, e.g., to couplings in a model unknown
to Pythia. A central question was therefore how to provide information on such parameters
at runtime, in a sufficiently generic manner. The solution is that Madgraph writes out the
relevant parameters as custom-made SLHA-like blocks in a BSM/SLHA file included together
with the matrix-element code. It then also inserts appropriate calls to slhaPtr->getEntry()
in the cross-section expressions, so that each parameter can be retrieved when needed, without
any user intervention required.

Note that this entirely circumvents a particularly troublesome issue that before was
thought to make any truly universal “BSM Accord” impractical, the problem of agreeing

9

➡Pythia provides functionality to retrieve data from
arbitrarily named blocks

