SM + Top (ATLAS/CMS)

Enrique Palencia Cortezón

Universidad de Oviedo

XLIV International Meeting on Fundamental Physics

April 4, 2016

Outline

Enrique Palencia (Oviedo)

Outline

Enrique Palencia (Oviedo)

LHC Performance

Without the high luminosity and outstanding performance of the accelerator

chain, the results shown here would just not be possible $_{CMS Integrated Luminosity, pp, 2015, \sqrt{s} = 13 TeV}$

CERN seminar: Top Physics at CMS

Jets

QCD: very successful theory tested over decades in many experiments

- A deeper understanding of the jet production allow us to better understand
 - Scale uncertainties (important in many measurements)
 - Hadronization and fragmentation effects
- Typically, jet cross-section measurements are also important to validate the detector/trigger/reconstruction chain (first measurements at each new energy)

Inclusive Jet Cross Section @ 13 TeV (CMS)

Double-differential cross-section for inclusive

jets with R=0.7 and 0.4

- Compared to Powheg + Pythia8, NLOJet++
 - + NP and LO MC
- Agreement with NLO is in general better than LO
- Different behaviour observed between the two jet radii^{10⁻³}
- Indication of soft (out of cone) effects

CMS

|y| < 0.5

Preliminary

anti-k₊ R = 0.7

200 300

Ratio to CT14

1.5

0.5

2.5

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Inclusive Jet Cross Section @ 13 TeV (ATLAS)

 10^{2}

10

anti-k, jets, R=0.4; |y| < 0.5

13 TeV, 78 pb⁻¹

ATLAS Preliminary

d²σ/d*p*_T d*y* [pb/GeV]

- Measurement so far restricted to R=0.4 jets and only the central rapidity bin
- Iterative unfolding applied to data
- Comparison performed with NLOJet++
 - + NP corr., and two PDF sets
- Uncertainties highly correlated, proper

Enrique Palencia (Oviedo)

Inclusive Single Boson Production

Cross-section measurements and ratios are sensitive to PDFs

Used to constrain PDFs - important for other LHC measurements

Measurements made for electrons and muons in fiducial cross-section (also extrapolated to total cross-section measurements)

Measured cross-sections (and ratios) compared to theoretical predictions from different PDF sets

Enrique Palencia (Oviedo)

W/Z Production Cross Section @ 13 TeV (ATLAS)

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

W/Z Production Cross Section @ 13 TeV (CMS)

Similar selection except $60 < m(\ell^+\ell) < 120$ GeV for Z boson

Z Differential Cross Section @ 13 TeV

W-like measurement of the Z mass @ 7 TeV

CMS Preliminary

6000

5000

4000

3000

2000

1000

Pull

- Proof of principle and quantitative validation Counts / (0.57 GeV) of techniques developed for a high-precision measurement of m_{W} in $W \rightarrow \mu v$ events
 - Sample of $2 \times 10^5 \text{ Z} \rightarrow \mu^+ \mu^-$ used
 - m(µ⁺µ⁻) > 50 GeV
 - Event enters in the + (-) W-like sample if
 - μ⁺ (μ⁻) has p_τ > 30 GeV, |η| < 0.9</p>
 - µ⁻ (µ⁺) has p₊ > 10 GeV and |η| < 2.1</p>
- Z mass extracted through the W-like lepton p_{τ} , m_{τ} and MET

m(W-like Z) = 91206 ± 36 (stat) ± 30 (syst) MeV

 $m(Z PDG) = 91187.6 \pm 2.1 MeV$

SM + Top (ATLAS, CMS) – IMFP 2016

CMS Preliminary

$$f = T \text{ TeV} (4.7 \text{ fb}^{-1})$$

 $f = T \text{ tev} (4.7 \text{ fb}^{-1})$
 $f = T \text{ tev} (4.7 \text{ fb}^{-1})$

April 4, 2016

WW, WZ, ZZ, Wγ, Zγ

- EWK precision measurements with higher order corrections
- Explore new final states never observed before
- Searching for SM breakdown \rightarrow new physics beyond SM

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

13/48

April 4, 2016

ZZ ($\rightarrow l^{\dagger}l^{\prime}l^{\prime}$) **Production** @ **13 TeV**

- Selection: 4 OS leptons ($e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$, $\mu^+\mu^-\mu^+\mu^-$)
 - CMS: p₁(Z, ℓ1) > 20 GeV, p₁(Z, ℓ2) > 10 GeV

 $60 < M(Z_{1,2}) < 120 \text{ GeV}$

- a ATLAS: p_τ(Z, ℓ1) > 20 GeV; 66 < m(Z_{1,2}) < 116 GeV</p>
- Fake background measured from data
- CMS (ATLAS) observes 36 (63) events
 - with 0.1 (0.62) expected bkg

8

April 4, 2016

10

12

14

∖s[TeV]

14/48

6

$$\sigma(\rm{pp} \rightarrow ZZ) = 16.7^{+2.9}_{-2.6}\,(\rm{stat})^{+0.7}_{-0.5}\,(\rm{syst}) \pm 0.3\,(\rm{theo}) \pm 0.8\,(\rm{lum})\,\rm{pb}$$

CMS-PAS-SMP-15-005

Phys. Rev. Lett. 116, 101801 (2016)

 $16.7 {}^{+2.2}_{-2.0}(\text{stat.}) {}^{+0.9}_{-0.7}(\text{syst.}) {}^{+1.0}_{-0.7}(\text{lumi.}) \text{ pb}$

Statistics main uncertainty

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

8

2

WZ (→ l⁺l^lv) Production @ 13 TeV (CMS)

1.34 fb⁻¹ (13 TeV) Selection: 3 leptons (e[±]e[∓]µ[±], µ[±]µ[∓]e[±]) Events/5 GeV 160 -CMS Preliminary 140^{-} W: p₊(W, ℓ1) > 20 GeV, MET > 30 GeV Data 120 100 **Z** (OS SF 2ℓ): $p_{\tau}(Z, ℓ1) > 20$ GeV, $p_{\tau}(Z, ℓ2) > 10$ GeV, 80 -Data driven 60 106 < m(Z) <120 GeV 40 1.34 fb⁻¹ (13 TeV) Events/20 GeV CMS 20 ■ m(3ℓ) > 100 GeV 50 Preliminary 1.5 Data Data/MC 40 -0.5 5~~ 120 30 $m_{\ell^-\ell^-}(GeV)$ Data driven 20 Fake background 10 measured from data CMS-PAS-SMP-15-006 Data/MC (main systematic) 350 150 200 250 300 400 450 500 m_{3t}(GeV)

$$\sigma(pp \rightarrow WZ) = 36.8 \pm 4.6 \,(\text{stat})^{+8.1}_{-6.2} \,(\text{syst}) \pm 0.6 \,(\text{theo}) \pm 1.7 \,(\text{lum}) \,\text{pb}$$

Solution: $\sigma_{NLO}^{tot} = 42.7^{+1.6}_{-0.8} \text{ pb}$

Dominated by systematic uncertainties

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

WZ (→ l⁺l'l'v) Production @ 8 TeV (ATLAS)

Similar selection

Additional lepton $p_{\tau}(Z, l_2) > 20 \text{ GeV}$

Similar Addition	selectio onal lep [.]	n ton p _⊤ (Z	, {2) >2	20 GeV		Events / 10 GeV	300 250 200	ATLAS s = 8 TeV, 20.3 fb ⁻¹	• Data 2012 • W [±] Z (× 1.17) • Misid. leptons • ZZ • tt+V • Others • Tot. unc. $\ell'\ell\ell$ $(\ell', \ell = e \text{ or } u)$
Channel	eee	μee	$e\mu\mu$	$\mu\mu\mu$	All		150 E	-	
Data	406	483	539	663	2091		E	t <mark>,</mark>	-
Total expected	336.7 ± 2.2	410.8 ± 2.4	469.1 ± 2.1	608.2 ± 3.5	1824.8 ± 7.0		100 H	† <mark>+</mark>	
WZ	255.7 ± 1.1	337.2 ± 1.0	367.0 ± 1.1	495.9 ± 2.3			-	+	3
Misid. leptons	43.7 ± 1.9	32.2 ± 2.1	50.2 ± 1.7	52.8 ± 2.6	178.9 ± 4.2		50 -	****	-
	25.9 ± 0.2	26.7 ± 0.3	36.1 ± 0.3	39.5 ± 0.3	128.2 ± 0.6		E.		-
tt + V	5.5 ± 0.2	6.7 ± 0.2	7.2 ± 0.3	9.1 ± 0.3	28.5 ± 0.5	~			
tZ	4.2 ± 0.1	5.5 ± 0.2	6.0 ± 0.2	7.7 ± 0.2	23.3 ± 0.3	¥	2F		↓ T ♦
DPS	1.2 ± 0.1	1.9 ± 0.1	1.8 ± 0.1	2.3 ± 0.2	7.2 ± 0.3	-	E		T, †↓ ↓ ¶
	0.5 ± 0.0	0.7 ± 0.0	0.8 ± 0.0	0.9 ± 0.0	3.0 ± 0.1	ata	1		╵╻╷╷╷╷╷
Main sy	vst: fake	lepton a	and elec	tron id		Da	0		↓ ↓ ↓ ↓ ↓ ↓ 300 40 p ^Z _T [GeV]
$\sigma^{\mathrm{tot.}}_{W^{\pm}Z}$	= 24	4.3 ± 0.1	.6 (stat.) ± 0.6	$(sys.) \pm$	0.4	(th	.) ± 0.5 (lumi.)	pb
	σ (Ν	NLO) = 2	21.0 ± 1	.6 pb					
	`	1		•	F				
						~ /			

arXiv:1603.0215

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

400

WW ($\rightarrow \ell^+ \nu \ell \nu$) Production @ 8 TeV (ATLAS)

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

WW ($\rightarrow l^+ v l v$) Production @ 8 TeV (CMS) arXiv: 1507.03268

Similar selection

Events / (5 GeV)

MC/data

800

600

400

200

1.5

0.5

p_⊥(W, ℓ1 and ℓ2) > 20 GeV

■ m(ℓℓ) > 12 GeV

Other vetos: jet, Z, third lepton, top

 $\sigma_{W^+W^-} = 60.1 \pm 0.9 \text{ (stat)} \pm 3.2 \text{ (exp)} \pm 3.1 \text{ (theo)} \pm 1.6 \text{ (lumi)} \text{ pb} = 60.1 \pm 4.8 \text{ pb}$

Good agreement with NNLO (no Higgs \rightarrow WW): σ (NNLO) = 59.8^{+1.3}₋₁₁ pb

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Top Physics

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Top Quark Production @LHC

Top quark pairs are produced via QCD production

Top Quark Decay

Subscription \Rightarrow BR(t \rightarrow Wb) \approx 1 \Rightarrow top quark decay is driven by the decay of the W **Top Pair Decay Channels**

all hadronic

`iet

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

21/48

I, q

Top pair production cross sections

- Stringent test of pQCD predictions
- Rediscovery → precision
 - 8 TeV: experimental uncertainty better than theory
 - 13 TeV: getting closer
- Useful as probe for new Physics!
 pp → X → tt

SM + Top (ATLAS, CMS) – IMFP 2016

Inclusive Cross Section @ 13 TeV (ATLAS)

Largest uncertainty: hadronization, luminosity

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

23/48

April 4, 2016

Inclusive Cross Section @ 13 TeV (CMS)

- Dilepton (e-mu) channel
- On top of the dilepton selection:
 - ≥ 2 jets with with p_T> 30 GeV and |η|< 2.4
 - ≥ 1 b-tag jet
- Simple and robust cut and count technique

$$\sigma(t\,\bar{t}) = \frac{N_{data} - N_{bkg}}{A \cdot \epsilon \cdot BR \int dt L}$$

Largest uncertainty: NLO generator, JES, lepton Id

 $\sigma_{t\bar{t}} = 793 \pm 8 \,(\text{stat}) \pm 38 \,(\text{syst}) \pm 21 \,(\text{lumi}) \,\text{pb}$

CMS-PAS-TOP-16-005

April 4, 2016

24/48

Enrique Palencia (Oviedo)

SUSY Constraints from ttbar Cross Section

- Solution at the top mass threshold $m_{stop} m_{LSP} = m_{top}$ from direct searches because (in part) stop becomes indistinguishable from top
- Stop quark events would produce final states very much ttbar like

■ Everything that produces ttbar could
 "in principle" be seen as an excess of
 ttbar events ⇒ differences between
 theoretical calculations and measuremer
 We can set limits based on the ttbar

SUSY Constraints from ttbar Cross Section

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016 26/48

Differential top pair production measurements

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Measure ttbar Differentially

Why?

- Extensive test of pQCD
- Help to constrain PDF and some MC parameters
- The huge amount of data collected in allow us to do it!

How?

- Use a tight event selection to have a pure tt sample
- Top quark kinematic reconstruction
- Background subtraction
- Apply corrections (detector acceptance, resolution) → unfolding techniques
- Compare to theory predictions at parton or particle level

```
Normalized Differential Cross
Section: Master Formula\frac{1}{\sigma} \frac{d\sigma_i}{dX} = \frac{1}{\sigma} \frac{\text{unfold}(s_i^X - b_i^X)}{\Delta_i^X \cdot \int \mathcal{L} \, dt}
```

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Differential Cross Section @ 13 TeV (dilepton)

Differential Cross Section @ 13 TeV (I + jets)

Top pair production in association with a vector boson

- Expected small SM cross sections (~200 fb @ 8TeV) but probe for BSM
- Test top quark coupling to bosons
- Background for ttH and BSM searches

Enrique Palencia (Oviedo)

tt + V production @ 13 TeV (ATLAS)

- ttW: select events with (b) jets and 2 or 3 leptons (one same-sign pair) 8
- ttZ: select events with (b) jets and 3 or 4 leptons (one $Z \rightarrow \ell \ell$ candidate) ATLAS-CONF-2016-003
- Diboson backgrounds from control regions
 - WZ: 3l, 1 Z candidate, 3 untagged jets
 - ZZ: 4*l*, 2 Z candidates, low MET

Enrique Palencia (Oviedo)

tt + Z production @ 13 TeV (CMS)

- Select events with 3 or 4 leptons and at least 2 jets
- Data-driven estimates for non-prompt leptons, control regions for WZ and ZZ

			_
ATLAS+CMS Preliminary	LHC <i>top</i> WG	March 2016	
$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top quar	rk production		
σ _{thee} : NLO+NNLL MSTW2008nnlo PRD83 (2011) 091503, PRD82 (2010 PRD81 (2010) 054028	0) 054018,		Sindle Ion
$\Delta\sigma_{ ext{theo}}$: scale \oplus PDF		total theo	
m _{top} = 172.5 GeV		$ \mathbf{f}_{LV}\mathbf{V}_{tb} \pm (meas) \pm (theo)$	
t-channel:			
ATLAS 7 TeV ¹ PRD 90 (2014) 112006 (4.59 fb ⁻¹)	⊦-+= +1 ÷	$1.02 \pm 0.06 \pm 0.02$	Test the EW couplings, PDF, V,
ATLAS 8 TeV ATLAS-CONF-2014-007 (20.3 fb ⁻¹)	F	$0.97 \pm 0.09 \pm 0.02$	
CMS 7 TeV JHEP 12 (2012) 035 (1.17 - 1.56 fb ⁻¹)	⊢ ∔⊕∤−1	$1.020 \pm 0.046 \pm 0.017$	
CMS 8 TeV JHEP 06 (2014) 090 (19.7 fb ⁻¹)	⊢-+== -1	$0.979 \pm 0.045 \pm 0.016$	
CMS combined 7+8 TeV JHEP 06 (2014) 090	<mark>⊦∔≑∔-1</mark>	0.998 ± 0.038 ± 0.016	ATLAS+CMS Preliminary LHC <i>top</i> WG • ATLAS t-channel
CMS 13 TeV CMS-PAS-TOP-15-004 (42 pb ⁻¹)	├	1.12 ± 0.24 ± 0.02	Single top-quark production March 2016 March 2016 M
ATLAS 13 TeV ATLAS-CONF-2015-079 (3.2 fb ⁻¹)	▶ ■ − 	$1.03 \pm 0.11 \pm 0.02$	→ → → → → → → → → → → → → → → → → → →
Wt:			PLB716 (2012) 142, JHEP01(2016) 064
ATLAS 7 TeV PLB 716 (2012) 142-159 (2.05 fb ⁻¹)	F1	$1.03 {}^{+ 0.15}_{- 0.18} \pm 0.03$	Open Description PRL110(2013) 022003, PRL112 (2014) 231802 t-channel * LHC combination, Wt ATLAS-CONF-2014-052, CMS-PAS-TOP-14-009 -
CMS 7 TeV PRL 110 (2013) 022003 (4.9 fb ⁻¹)	├──┼● ┼───┥	$1.01^{+0.16}_{-0.13}$ $^{+0.03}_{-0.04}$	ATLAS s-channel ATLAS-CONF-2011-118 95% C.L.
ATLAS 8 TeV (*) ATLAS-CONF-2013-100 (20.3 fb ⁻¹)		H 1.10 ± 0.12 ± 0.03	arXiv:1511.05980 CMS s-channel arXiv:150.02555.95% C. L.
CMS 8 TeV ¹ PRL 112 (2014) 231802 (12.2 fb ⁻¹)	F	$1.03 \pm 0.12 \pm 0.04$	NNLO PLB736 (2014) 58
LHC combined 8 TeV ^{1,2} ATLAS-CONF-2014-052,	<mark>⊢ ┼▼┼──</mark> ┨	1.06 \pm 0.11 \pm 0.03	m _{tige} 172.5 GeV, MSTW2008nnlo scale uncertainty
CMS-PAS-TOP-14-009			NLO + NNLL PRD83(2011) 091503, PRD82(2010) 054018, PRD81(2010) 054028
s-channel: ATLAS 8 TeV ²		$0.93 {}^{+ 0.18}_{- 0.20} \pm 0.04$	$\begin{array}{c c} 10 \\ \hline \\ $
ATLAS 8 TeV ^{1,2}		1.01±0.10±0.03	CT10nlo, MSTW2C08nlo, NNPDF2.3nlo (PDF4LHC) Wt: p ⁺ _veto for ti removal=60 GeV and µ = 65 GeV
JHEP 01 (2016) 064 (20.3 fb ⁻¹)	w the line	¹ including top-quark mass uncertainty	scale @ PDF @ a, uncertainty
			All exp. results are w.r.t. m _{top} = 172.5GeV
0.4 0.6 0.	.8 1 1.3	2 1.4 1.6 1.8	7 8 13 _
	$ \mathbf{f}_{LV}\mathbf{V}_{tb} $		√s [TeV

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

Single Top t-channel @ 13 TeV

Events / 0.

4500E

3500

30.00

2500

2000

4000 E 3j1t region

- MVA based on 11 kinematic variables
- Binned likelihood fit on the MVA output
- Bkgs with similar templates grouped together
- Simultaneous fit to the signal region (2j1t) and to the two bkg regions (3j1t, 3j2t)

 $\sigma_{t-ch.} = 227.8 \pm 9.1 \, (stat.) \pm 14.0 \, (exp.) \, {}^{+28.7}_{-27.7} \, (theo.) \pm 6.1 \, (stat.) \pm 14.0 \, (exp.) \, {}^{+28.7}_{-27.7} \, (stat.) \pm 14.0 \, (sta$

Total uncertainty of 14.8%. Main systematics: Signal modeling, JES, b-tagging, PDF

ATLAS-CONF-2015-079

- Binned maximum likelihood fit on a NN
- Total uncertainty of 21%
- Similar dominant systematics

Enrique Palencia (Oviedo)

ATLAS

SM + Top (ATLAS, CMS) – IMFP 2016

 $\sigma(tq + \bar{t}q)$

Data / Pred

$$= 229 \pm 48 \text{ pb}$$

April 4, 2016

Data

tī, tW

t-channel

W/Z+jets

QCD (DD)

Post-fit unc

CMS Preliminary

Events / 0.

5000F

4000

3000

2000

35/48

2.3 fb⁻¹ (13 TeV

t-channel

W/Z+jets

QCD (DD)

tť, tW

CMS Preliminary

2i1t reaion

Single Top s-channel @ 7 and 8 TeV

- Rare process, grows much slower with ECM than other top production modes
- Binned likelihood fit on the ME discriminant (ATLAS) and MVA output (CMS)

April 4, 2016

36/48

Main systs: JES, generator (CMS only), b-tagging

Enrique Palencia (Oviedo)

Top Properties

- Decay before hadronization (probe bare quark) and before spin decorrelation (predicted by QCD)
- Access to 'bare' quark properties through decay products
- Properties sensitive to new physics
 - Look at spin, charge, FCNC...

Enrique Palencia (Oviedo)

Charge Asymmetry @ 8 TeV

CP Violation @ 8 TeV

19.7 fb⁻¹ (8TeV) ö 20 CMS I+jets channel 🗕 Data Preliminary 18Ē $Events \times 10^3$ SM tī 16 SM non-tt 1σ, Stat.+Syst. Semi-leptonic ttbar channel Asymmetries based on T-odd triple 0.5 -0.50 products (T is the time-reversal operator) 0, 19.7 fb⁻¹ (8 TeV) A'_{CP} [%] -+ tt events ± 1σ (stat.+syst.) First time! Before background subtraction Estimated background CP violation if non-zero value of $A_{CP}(O_i) = \frac{N_{events}(O_i > 0) - N_{events}(O_i < 0)}{N_{events}(O_i > 0) + N_{events}(O_i < 0)}$ -2 -3**O**₂^{e+µ} O_2^e O_2^{μ} $A_{CP}'(O_i)$ e+jets μ +jets *ℓ*+jets $+0.27 \pm 0.41 \pm 0.01$ $-0.01 \pm 0.61 \pm 0.01$ $+0.50 \pm 0.56 \pm 0.02$ $-1.03 \pm 0.56 \pm 0.04$ $-0.71 \pm 0.41 \pm 0.03$ O_3 $-0.34 \pm 0.61 \pm 0.02$ O_4 $-0.24 \pm 0.61 \pm 0.02$ $-0.49 \pm 0.56 \pm 0.04$ $-0.38 \pm 0.41 \pm 0.03$ $-0.06 \pm 0.41 \pm 0.01$ $-0.42 \pm 0.61 \pm 0.00$ $+0.46 \pm 0.56 \pm 0.01$ O_7 **Enrique Palencia (Oviedo)** SM + Top (ATLAS, CMS) – IMFP 2016 **April 4, 2016** 39/48

Top Mass

Enrique Palencia (Oviedo)

Top Mass: Current Status

- World combination reaching a precision of 0.5 GeV (<0.3%)</p>
- Precision limited by understanding of hadronization modeling
- Different ways to improve
- Use cleaner observables
 Avoid jets
- Use theoretically calculable
 observables sensitive to the mass
 σ(tt), m(lb)
- Constrain modeling systematics

SM + Top (ATLAS, CMS) – IMFP 2016

Lepton(s) + J/Ψ Events @ 8 TeV

Select events in the main leptonic top quark decay where the b-quark decays

Very small BR ⇒ statistically limited (for now)

- 666 events ⇒ stat. unc. of 3.0 GeV
- But no use of jets to build observable
 - Avoid JES/bJES
 - Systematic uncertainty < 1 GeV</p>
 - **a** Limited by top p_{τ} modeling, QCD scales

April 4, 2016

42/48

Lepton + Secondary Vertices @ 8 TeV

- More general version of J/ψ analysis
- Sensitivity to $m_{_{top}}$ from leptons (e/µ) and via decay lengths of charged hadrons (from b-quark decay)
 - Stronger sensitivity to m_{ton} without inclusion of jets
- Semileptonic and dileptonic channels
- Invariant mass of lepton and secondary vertex used

as observable (in bins of SV--track multiplicity)

Experimental uncertainties <500 MeV

Dominant systematic: top quark p_{τ} and b-quark fragmentation

April 4, 2016

43/48

SM + Top (ATLAS, CMS) – IMFP 2016

ЪС

GeV

Events

Top Mass from Leptonic Observables @ 8 TeV

Dilepton channel

The transverse momentum of the lepton pair from the decay of the top quark pair is 8 TeV a.u. chosen to extract the top quark mass CMS PAS.TOP.16.002 Simulation 0.16 Clean but overwhelmed by QCD scale unc. 0.14 0.12 Based on LO Madgraph (Run I MC) 0.1 Expected to improve using NLO+PS 0.08 — Nominal ME/PS Down ME/PS Up 0.06 After the calibration with simulated events NLO Scale Down 0.04 Scale Up $m_{\rm t} = 171.7 \pm 1.1 \, ({
m stat.}) \pm 0.5 \, ({
m exp.}) \, {}^{+2.5}_{-3.1} \, ({
m th.}) \, {}^{+0.8}_{-0.0} \, (p_T \, ({
m t})) \, \, {
m GeV}$ 0.02 - - Top p_ Ratio wrt 172.5 GeV Signal modeling is the dominant 1.2 systematic uncertainty 0.8 150 50 100 200 250 p_(I+I) [GeV]

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

Top Mass from Single Top (t-channel) @ 8 TeV

Analyses targeting alternative topologies can give further insights, e.g. pure EW

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

Top Pole Mass

- Extract m_{top} from production cross section
- Calculate mass dependence at NNLO

Main systematics (for both experiments): PDF, luminosity

Enrique Palencia (Oviedo)

CT14 and MMHT2014)

SM + Top (ATLAS, CMS) – IMFP 2016

Summary

- Both ATLAS/CMS have a very comprehensive program in SM and Top physics
 - Great coverage over the full spectrum
- Most of the results shown today have been released very recently
 - In time for the winter 2016 conferences
 - And many with the full 13 TeV dataset
- In general, good agreement between experiments
 - Discrepancies are under investigation
- So far, no significant deviation with respect to the SM has been observed
 But we will keep testing the SM in all its corners!
- Stay tuned!!! More results are just around the corner

http://cms-results.web.cern.ch/cms-results/public-results/publications/

https://twiki.cern.ch/twiki/bin/view/AtlasPublic

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

Thank you

for your

attention!

Enrique Palencia (Oviedo)

SM + Top (ATLAS, CMS) – IMFP 2016

April 4, 2016

