International Meeting on Fundamental Physics IFT, Madrid, April 7th 2016 Neutrino astronomy and multi-messenger connections

Juande Zornoza (IFIC, UV-CSIC)

Outline

Multi-messenger astronomyCosmic Rays

- AMS
- Auger
- JEM-EUSO
- Neutrino telescopes
 - IceCube
 - ANTARES
 - Multi-messenger connections
 - KM3NeT (ARCA+ORCA)
- Summary

Diffuse radiation intensities

Multi-messenger approach

 Gamma rays are also produced in these processes, after the decay of the neutral pion

$$N + X \rightarrow \pi^0 + Y \rightarrow \gamma \gamma + Y$$

Gamma ray astronomy

p

p, y, ...

uv

1 PeV neutrinos 20 PeV protons 2 PeV γ-rays

Cosmic Rays

Cosmic origin of CRs

 Balloon experiments by V. Hess and others showed that the flux of radiation measured at Earth increased with altitude, pointing to the "cosmic" origin of these radiation

Extended Air Showers (EAS)

 Experiments by Rossi (1934), Schmeiser and Both (1938), Kolhörster (1938) and Auger (1939) proved the existence of simultaneous arrival of particles extending spread over extended areas

Estimated energy: 10¹⁵ eV "One of the consequences of the extension of the energy spectrum of cosmic rays up to 10¹⁵ eV is that it is actually impossible to imaging a single process able to give a particle such an energy. It seems much more likely that the charged particles which constitute the primary cosmic radiation acquire their energy along electric fields of very great extension "

P. Auger, 1939

Questions on CRs

- OriginSpatial distribution
- Mass composition
- Spectrum
- Propagation
- Evolution
- Hadronic interactions

CR composition

 The question of the CR composition depends very much of the energy. At low energies, similar in general to Solar System abundances (with differences due to spallation)

CR spectrum

Cosmic rays follow a power law:

dN	$\gamma = 2.7$	> the knee
$\frac{d}{d} \propto E^{-\gamma}$	$\gamma = 3.0$	
dE	$\gamma = 2.7$	

Beyond $\sim 5 \times 10^{19}$ eV, the flux should vanish due to the interaction of protons with the CMB (GZK limit).

High energy neutrinos could give information about the origin of cosmic rays.

Detection strategies

 Given the wide flux range in intensity and energy, different approaches are needed:
 Low energy:

- balloons
- satellites
- High energy:
 - ground Cherenkov tanks at ground
 - fluorescence Cherenkov telescopes

Higher energy \rightarrow

- \rightarrow Lower fluxes (bigger detector needed)
- \rightarrow Wider events (less dense detector needed)

Balloons

Balloons are a cheap way for direct measurements of CRs
 Small detector area, suitable for low energy measurements
 Recent examples: C<u>REAM, ATIC</u>

CREAM (Cosmic Ray Energetics and Mass) TDCs and scintillators:

- charge
- velocity
- lonization
 - calorimeters:
 - energy

AMS

Ting, CERN Days, 2015

AMS results

AMS-02 has confirmed the excess of positrons detected by PAMELA
Astrophysical explanation (pulsars?) most likely
Dark matter could be be an explanation, but leptophilic models have to be invoked. Limits from gamma ray detectors neutrino telescopes disagree with this interpretation

 Antiproton/proton ratio compatible with recent secondary production models (but large uncertainties, DM not ruled out)

Detection of EAS

Auger

Pierre Auger Observatory (PAO) is located in Malargüe (Argentina) Hybrid detection Fluorescence Detectors Surface Detectors Detection area: 3,000 km² 50,000 km² sr yr of exposure

Two types of detectors

Surface detectors (SDs)

1660 Cherenkov tanks
Hexagonal grid (1.5 km spacing)
Low energy extension: Infill (61 stations with 0.75 km separation)

Fluorescence detectors (FDs)

- 24 fluorescence telescopes in 4 buildings looking towards SDs
- Low energy extension: HEAT (three additional telescopes looking at Infill, with two operation modes, horizontal and tilted 29° for measuring X_{max} of 10¹⁷eV events)

Hybrid detection

Lateral profile measured with SD Longitudinal profile measured with FD (10%)

Auger upgrade: PRIME

Fraction of Cherenkov tanks in operation

- Auger PRIME "Primary cosmic Ray Identification through Muons and Electrons"
 - Scintillator on top of the tank to measure directly e.m. shower component
 - WCD measures e.m. + muons
 - Upgrade to:
 - Enhance primary identification
 - Improve shower description
 - Reduce systematic uncertainties

Conceiçao, HEP 2015

JEM-EUSO

In order to detect EHE cosmic rays (10²⁰ eV), larger detection volumes are needed

CR composition at UHE

- Most recent results tend to reconcile TA and Auger results on composition
- Change to heavier composition at UHE

Spectrum at UHE

UHECR Spatial Distribution: Auger

 Correlation with AGN catalogue found... but decreasing with new statistics... (and HiRes favours isotropic distribution)

> black: AGN positions blue UHE events (weighted by visibility)

Galactic Sources

Supernova remnants

- Different scenarios: plerions (center filled SNRs), shelltype SNRs, SNRs with energetic pulsars...
- Micro-quasars
 - A compact object (BH or NS) accreting matter from a companion star. Neutrino beams could be produced in the MQ jets
- Magnetars
 - Isolated neutron stars with surface dipole magnetic fields ~10¹⁵ G, much larger than ordinary pulsars
 - Seismic activity in the surface could induce particle acceleration in the magnetosphere

Extragalactic Sources

Active galactic nuclei

- It includes Seyferts, quasars, radio galaxies and blazars
- Standard model: a super-massive (10⁶-10⁸ Mo) black hole towards which large amounts of matter are accreted
- Time-variable emission would enhance chances of detection
- Gamma-ray bursters
 - GRBs are brief explosions of rays (often + X-ray, optical and radio) In the fireball model, matter moving at relativistic velocities collides with the surrounding material. The progenitor could be a collapsing super-massive star or NS merging
 - Neutrinos could be produced in several stages: precursor (TeV), main-burst (100 TeV-10 PeV), after-glow (EeV). The time information makes detection almost background free
- Starburst galaxies
 - Starburst galaxies are characterized by the existence of regions with a very high star formation rate
 - A galactic scale wind blows out large amounts of mass into the intergalactic medium driven by the collective effect of supernova explosions and massive star winds

Dark matter

- WIMPs (neutralinos, KK particles) are among the most popular explanations for dark matter
 - They would accumulate in massive objects like the Sun, the Earth or the Galactic Center
- The products of such annhiliations would yield "high energy" neutrinos, which can be detected by neutrino telescopes

Sources for DM searches

Sun

Galactic Centre

Dwarf galaxies

Galactic Halo

Galaxy clusters

Ultra-high energy neutrinos

Protons interact with cosmic microwave background, which limits its range at high energies (GZK cut-off): $p \gamma_{CMB} \rightarrow \Delta^+ \rightarrow n \pi^+$ (or $p \pi^0$)

$$\lambda_{\gamma p} = \frac{1}{n_{CMB} \cdot \sigma_{p\gamma_{CMB}}} \cong 10 \text{ Mpc } @ \text{E}_{p} = 5 \times 10^{19} \text{ eV}$$

The GZK cut-off also leads to a measurable to neutrinos

$$\pi \rightarrow \mu + \nu_{\mu} \rightarrow e + \nu_{\mu} + \nu_{e} + \nu_{\mu}$$

~1 neutrino (E > $2x10^{18} \text{ eV}$) per km³ year

Neutrino telescopes

Neutrino Astronomy

Advantages:

- Photons: interact with CMB and matter
- Protons: interact with CMB and are deflected by magnetic fields
- Drawback: large detectors(~GTon) are neded

Scientific Scope

Other physics: monopoles, nuclearites, Lorentz invariance, etc...
Neutrino detection techniques

Optical Cherenkov:

- In Ice: AMANDA, IceCube
- In water: Baikal, ANTARES, KM3NeT
- Atmospheric showers:
 - On earth: Auger
 - In space: JEM-EUSO
- Radio:
 - On earth: RICE, ARIANNA, LOFAR
 - Balloon: ANITA
- Acoustic:
 - AMADEUS, SPATS

Detection Principle

Other signatures

- Cascades are an important alternative signature: detection of electron and tau neutrinos.
- Also neutral interaction contribute (only hadronic cascade)

- Clear signature of oscillations.
- ANTARES is too small to detect double bang signature (they are too rare)
- However, cubic-kilometer
 telescopes could detect them
- Maximum sensitivity at 1-10 PeV

Channels

CC Muon Neutrino

in water: 0.1-0.3 degrees

Neutral Current / Electron Neutrino

 $\nu_{\rm e} + N \rightarrow {\rm e} + X$ $\nu_{\rm x} + N \rightarrow \nu_{\rm x} + X$

cascade (data)

 $\approx \pm 15\%$ deposited energy resolution $- \approx 10^{\circ}$ angular resolution

in water: 1-3 degrees!

CC Tau Neutrino

time

"double-bang" and other signatures (simulation)

(not observed yet)

Channels

track

cascade

1 PeV atm. nu + muon bundle

Physical Background

There are two kinds of background:

- Muons produced by cosmic rays in the atmosphere (→ detector deep in the sea and selection of up-going events)
- Atmospheric neutrinos (cut in the energy)

$$p \rightarrow \pi^{+}(+K^{+}...) - \mu^{+} + \nu_{\mu}$$
$$\mapsto e^{+} + \overline{\nu}_{\mu} + \nu_{e}$$

NTs in the world

 Several projects are working/planned, both in ice and ocean and lakes.

Water vs Ice

- Very large volumes of medium transparent to Cherenkov light are needed:
 - Ocean, lakes...
 - Antarctic ice
 - Advantages of <u>oceans</u>:
 - Larger scattering length better angular resolution
 - Weaker depth-dependence of optical parameters
 - Possibility of recovery
 - Changeable detector geometry
- Advantages of <u>ice</u>:
 - Larger absorption length
 - No bioluminescence, no ⁴⁰K background, no biofouling
 - Easier deployment
 - Lower risk of point-failure
- Anyway, a detector in the Northern Hemisphere in necessary for complete sky coverage (Galactic Center!), and it is only feasible in the ocean.

Regions observed by NTs

IceCube (South Pole) (ang. res.: 0.5°)

ANTARES/KM3NeT (43° North) (ang. res.: ~0.3°/0.1°)

Amundsen-Scott South Pole Station

runway

South Pole

AMANDA-II IceCube

IceCube

IceTop

80 pairs of ice Cherenkov tanks Threshold ~ 300 GeV

IC86:

- ~ 5x10¹⁰ muons/year
- ~ 20,000 neutrinos/year

IceCube Array

80 strings with 60 OMs 17 m between OMs 125 m between strings 1 km³. A 1-Gton detector

Deep Core

6 strings with 60 HQE OMs Inner part of the detector

IceCube + Deep Core = 5160 OMs

12222222222222

5 megawatt power plant 10⁶ kg of drilling equipment

String deployment

about 2 days to drill the 2.5 km hole

Ernie and Bert

2012: Looking for UHE neutrinos, two events (cascades) appeared with $E \sim 1 \text{ PeV}$ (0.14 expected, 2.36 σ)...

HESE events

HESE (High Energy
Starting Events): Events
of high energy (>30
TeV) starting inside the
detector

- This strategy allows to reduce the background due to atmospheric muons because they would have left a signal in the external part of the detector (veto)
- It also helps to filter atmospheric neutrinos, since they are usually accompanied by muons
- Disadvantage: the volume is greatly reduce (only "contained" events)

28 events in total (including Ernie and Bert)
Expected background:

- 6.0±3.4 atm. muons
- 4.6±1.5 atm. neutrinos

Significance: 4.9σ

IceCube HESE 4y

- Four years: 54 events (~7σ)
- Mostly cascades
- Excess confirmed in other analyses (upgoing v_{μ} , MESE...), BUT, with some tensions (spectral index, normalization...)

IceCube Skymap (HESE 4y)

Diffuse flux

• Highest energy observed in muon: 560 TeV \rightarrow 1 PeV neutrino

Flavour ratios

muon-suppressed pion decay (0:1:0)

- pion & muon decay (1:2:1)
- 🗖 neutron decay (1:0:0)

+ best fit (0:0.2:0.8)

3 year sample

 129 showers and 8 tracks (superset of HESE sample)

Best fit:

$$\gamma = 2.6 \pm 0.15$$

$$\Phi_0 = (2.3 \pm 0.4) \times 10^{-18} \,\text{GeV}^{-1} \,\text{s}^{-1} \,\text{cm}^{-2} \,\text{sr}^{-1}$$

(spectrum with HE cutoff also disfavoured)

Best composition at Earth is (0:0.2:0.8), but the limits are compatible with all compostions possible under averaged oscillations

IceCube-Gen2

The ANTARES Detector

12 lines (885 PMTs)

25 storeys / 3 PMT / stor

14.5 m 🕇

~60-

First line of ANTARES is **10 years old** since Feb. 14th 2016!

orizontal layout

/

\ Electrooptical cable

DN

REQUOUT CUDIES

Connection

Nautile (manned)

Victor (ROV)

Neutrino candidate

Flux limits

Candidate search

Best limits for TeV-PeV energies in the Southern Hemisphere
IceCube threshold for SH is ~1 PeV

Search on IC tracks

- Most significant case at (a, δ) = (130.7°, -29.5°)
 - ID 3, with original (α, δ) = (127.9°, -31.2°)
 - ns: 5.3 (tracks) + 0.6 (cascades)

ID	RA (°)	DEC (°)	Φ ^{90%} (GeVcm ⁻² s ⁻¹)
3	127.9	-31.2	4.30E-08
5	110.6	-0.4	3.30E-08
8	182.4	-21.2	1.50E-08
13	67.9	40.3	2.30E-08
18	-14.4	24.8	5.20E-08
23	-151.3	-13.2	1.80E-08
28	164.8	-71.5	1.70E-08
37	167.3	20.7	1.70E-08

ANTARES+IceCube Combined

- An analysis has been done looking for point sources combining ANTARES and IceCube data There is an improvement in the declination region
- corresponding to the crossing of sensitivities (it depends on the spectral index and a potential energy cutoff)
- Data (ANTARES 6y + IceCube 3y) has been unblinded and a common skymap produced (no excess found)

Diffuse fluxes

- Expected:
 - background: 9.5 ± 2.5 events
 - IC flux: 5.0 ± 1.1 events
- Observed: 12 events

- Consistent with background and IC flux

Fermi Bubbles

The origin is not clear: if due to CRs, neutrinos would be produced

$$E^{2.18} \frac{d\Phi_{\gamma}(E_{\gamma})}{dE_{\gamma}} = 0.5 - 1.0 \cdot 10^{-6} \text{GeV}^{1.18} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1}$$

C. Lunardini, S. Razzaque, and L. Yang, arXiv1504.07033

$$\Phi_{v}(E_{v}) = 0.36 \ \Phi_{\gamma}(E_{\gamma})$$

 N_{bg} (OFF) = 33/3=11 events N_{obs} = 16 events

Multimessenger

- It increases the chances of detection
 - Common sources for different messengers
 - Backgrounds and systematics non-correlated
 - MoUs signed with each collaboration

Correlations with Auger

- Stacked search using bins of 4.9 degrees (radius)
- No correlation has been found (290 ev. observed vs 301.5 ev. expected from bg)
- Interpretation dependent on the composition and magnetic fields assumed

Gravitational waves

High-energy Neutrino follow-up search of Gravitational Wave Event GW150914 with ANTARES and IceCube

S. Adrián-Martínez,¹ A. Albert,² M. André,³ G. Anton,⁴ M. Ardid,¹ J.-J. Aubert,⁵ T. Avgitas,⁶ B. Baret,⁶ J. Barrios-Martí,⁷ S. Basa,⁸ V. Bertin,⁵ S. Biagi,⁹ R. Bormuth,^{10,11} M.C. Bouwhuis,¹⁰ R. Bruijn,^{10,12} J. Brunner,⁵ J. Busto,⁵ A. Capone,^{13,14} L. Caramete,¹⁵ J. Carr,⁵ S. Celli,^{13,14} T. Chiarusi,¹⁶ M. Circella,¹⁷ A. Coleiro,⁶ R. Coniglione,⁹ H. Costantini,⁵ P. Coyle,⁵ A. Creusot,⁶ A. Deschamps,¹⁸ G. De Bonis,^{13,14} C. Distefano,⁹ C. Donzaud,^{6,19} D. Dornic,⁵ D. Drouhin,² T. Eberl,⁴ I. El Bojaddaini,²⁰ D. Elsässer,²¹ A. Enzenhöfer,⁴ K. Fehn,⁴ I. Felis,²² L.A. Fusco,^{23,16} S. Galatà,⁶ P. Gay,^{24,25} S. Geißelsöder,⁴ K. Geyer,⁴ V. Giordano,²⁶ A. Gleixner,⁴ H. Glotin.^{27,28} R. Gracia-Ruiz.⁶ K. Graf.⁴ S. Hallmann.⁴ H. van Haren.²⁹ A.J. Heijboer.¹⁰ Y. Hello.¹⁸ J.J. Hernández-Rev.⁷ J. Hößl.⁴ J. Hofestädt.⁴ C. Hugon.^{30, 31} G. Illuminati,^{13, 14} C.W James.⁴ M. de Jong.^{10, 11} M. Jongen,¹⁰ M. Kadler,²¹ O. Kalekin,⁴ U. Katz,⁴ D. Kießling,⁴ A. Kouchner,^{6,28} M. Kreter,²¹ I. Kreykenbohm,³² V. Kulikovskiv,^{9,33} C. Lachaud,⁶ R. Lahmann,⁴ D. Lefèvre,³⁴ E. Leonora,^{26,35} S. Loucatos,^{36,6} M. Marcelin,⁸ A. Margiotta,^{23,16} A. Marinelli,^{37,38} J.A. Martínez-Mora,¹ A. Mathieu,⁵ K. Melis,¹² T. Michael,¹⁰ P. Migliozzi,³⁹ A. Moussa,²⁰ C. Mueller,²¹ E. Nezri,⁸ G.E. Păvălaș,¹⁵ C. Pellegrino,^{23,16} C. Perrina,^{13,14} P. Piattelli,⁹ V. Popa,¹⁵ T. Pradier,⁴⁰ C. Racca,² G. Riccobene,⁹ K. Roensch,⁴ M. Saldaña,¹ D. F. E. Samtleben,^{10,11} M. Sanguineti,^{30,31} P. Sapienza,⁹ J. Schnabel,⁴ F. Schüssler,³⁶ T. Seitz,⁴ C. Sieger,⁴ M. Spurio,^{23,16} Th. Stolarczyk,³⁶ A. Sánchez-Losa,^{7,41} M. Taiuti,^{30,31} A. Trovato,⁹ M. Tselengidou,⁴ D. Turpin,⁵ C. Tönnis,⁷ B. Vallage,^{36,25} C. Vallée,⁵ V. Van Elewyck,⁶ D. Vivolo,^{39,42} S. Wagner,⁴ J. Wilms,³² J.D. Zornoza,⁷ and J. Zúñiga⁷ (The ANTARES Collaboration)

M. G. Aartsen,⁴⁴ K. Abraham,⁷⁴ M. Ackermann,⁹¹ J. Adams,⁵⁸ J. A. Aguilar,⁵⁴ M. Ahlers,⁷¹ M. Ahrens,⁸¹ D. Altmann,⁴ T. Anderson,⁸⁷ I. Ansseau,⁵⁴ G. Anton,⁴ M. Archinger,⁷² C. Arguelles,⁵⁶ T. C. Arlen,⁸⁷

Gravitational waves

- Neutrino telescopes offer a complete sky coverage and almost continuous data taking: crucial for transient events
- A search for ANTARES and IceCube events correlated in time and space with the GW150916 event has been carried out
 - ANTARES: 0 events
 - IceCube: 3 events (as expected from background)

Upper limits in the flux are set
ANTARES on IceCube signal (I)

- What can ANTARES say about this? (seven events in the HESE analysis close to the GC)
- In arXiv:1310.7194 (González-García, Halzen, Niro), it is proposed to come from a point source with flux 6x10⁻⁸ GeV cm⁻² s⁻¹.
- ANTARES data allows to reject this possibility (it is not a point-like source) at the flux proposed there and limits depending on the size of the source are set

ANTARES on IceCube signal (II)

A&A 566, L7 (2014) DOI: 10.1051/0004-6361/201424219 © ESO 2014 Astronomy Astrophysics

Letter to the Editor

TANAMI blazars in the IceCube PeV-neutrino fields*

F. Krauß^{1,2}, M. Kadler², K. Mannheim², R. Schulz^{1,2}, J. Trüstedt^{1,2}, J. Wilms¹, R. Ojha^{3,4,5}, E. Ros^{6,7,8}, G. Anton⁹, W. Baumgartner³, T. Beuchert^{1,2}, J. Blanchard¹⁰, C. Bürkel^{1,2}, B. Carpenter⁵, T. Eberl⁹, P. G. Edwards¹¹, Astronomy & Astrophysics manuscript no. antares_tanami_aa January 16, 2015 ©ESO 2015

Letter to the Editor

ANTARES Constrains a Blazar Origin of Two IceCube PeV Neutrino Events

The ANTARES Collaboration: S. Adrián-Martínez¹, A. Albert², M. André³, G. Anton⁵, M. Ardid¹, J.-J. Aubert⁶, B. Baret⁷, J. Barrios⁸, S. Basa⁹, V. Bertin⁶, S. Biagi²³, C. Bogazzi¹², R. Bormuth^{12, 13}, M. Bou-Cabo¹, M.C. Bouwhuis¹², P. Bruin^{12, 14}, L. Brunne⁶, L. Busto⁶, A. Capona^{15, 16}, L. Carameta¹⁷, L. Care⁶, T. Chierusi¹⁰

- TANAMI collaboration has shown that the two first PeV events of the IC HESE analysis are consistent with the integrated energy output of six blazars positionally coincident with these events
- The analysis by ANTARES shows that each of the two blazars to be predicted to be the most bright has a signal flux fitted by the LH corresponding to about one ANTARES event (the other four have no associated event)

ers.	Source	Cat. Name	F_{γ}	$N_{\nu_{\epsilon}}$	IC	
ette			$[\text{GeV cm}^{-2} \text{ s}^{-1}]$	_		
A L	0235-618	PKS 0235-618	$(6.2^{+3.1}_{-3.1}) \times 10^{-8}$	$0.19^{+0.04}_{-0.04}$	20,7	
A&	0302-623	PKS 0302-623	$(2.1^{+0.4}_{-0.4}) \times 10^{-8}$	$0.06^{+0.01}_{-0.01}$	20	
150 1 by	0308-611	PKS 0308-611	$(4.7^{+1.8}_{-1.8}) \times 10^{-8}$	$0.14^{+0.05}_{-0.05}$	20	
te c	1653-329	Swift J1656.3-3302	$(2.8^{+0.3}_{-0.3}) \times 10^{-7}$	$0.86^{+0.10}_{-0.10}$	14, 2, 25	
	1714-336	TXS 1714-336	$(1.5^{+0.3}_{-0.4}) \times 10^{-7}$	$0.46^{+0.10}_{-0.12}$	14,2,25	
ů U	1759-396	MRC 1759-396	$(7.5^{+1.9}_{-1.9}) \times 10^{-8}$	$0.23^{+0.50}_{-0.40}$	14, 2, 15, 25	

ANTARES on IceCube signal (III)

Gaggero, Grasso, Marinelli, Urbano, Valli, arxiv/1504.00227 subm. to Phys.Rev.Lett.

Model to explain both MILAGRO/HESS and FERMI-LAT observations: Galactocentric radial dependence of diffusion scaling

Dark Matter: Sun

- Neutrino telescopes:
 - Best results for spin-dependent WIMP-nucleon cross section
 - No significant astrophysical backgrounds

Galactic center

- ANTARES:
 - Better visibility than IceCube for the Galactic Centre

KM3NeT

- KM3NeT is a common project to construct neutrino telescope in the Mediterranean with an instrumented volume of several cubic kilometers
- It will also be a platform for experiments on sea science, oceanography, geophysics, etc.
- 240 groups of Astroparticle
 Physics and Sea Science from 12
 countries are involved
- New groups very welcome! (UGR just joined)

- Prototype lines have already been installed
- The first KM3NeT line has been installed in December 2015

Phases

PHASE 1:

- Already funded
- 31 lines (24 in Italy, 7 in France) to be deployed in 2015- early 2017
- Proof of feasibility and first science results

PHASE 2.0:

- ARCA (Astroparticle Research with Cosmic Rays)
 - Test IceCube signal
 - Italy
 - 2x115 lines
 - Sparse configuration

- **ORCA** (Oscillation Research with Cosmic Rays)
 - Mass hierarchy (and DM)
 - France
 - 115 lines
 - Dense configuration

PHASE 3: FINAL CONFIGURATION

- 6x115 lines (in total)
- Neutrino astronomy including Galactic sources

95-125 M€

31 M€ (already secured

95 M€

KM3NeT time line

ORCA and ARCA

Same technology

Italy

KM3NeT Optical Modules

(Multi-PMT) Optical Module

- 31 x 3" PMTs
- diameter: 17''
- Iow power requirements
- "full" module: no additional electronics vessel needed
- uniform angular coverage
- information of the arrival direction of photons
- better rejection of background
- Detector Units (strings)
 - 18 DOMs, separated vertically by: 6 m (ORCA) or 36 m (ARCA)
 - anchored at sea floor by a dead weight
 - kept vertical by buoys
 - 115 DUs = 1 building block

First KM3NeT Line!

Instalada la primera línea de detección del telescopio de neutrinos KM3NeT

Enviado por Isidoro.Garcia@ific.uv.es en Vie, 04/12/2015 - 10:33

Este jueves se ha dado un paso crucial en la construcción del que será el mayor telescopio de neutrinos del mundo, KM3NeT. La colaboración internacional del experimento ha instalado la primera línea de detección frente a las costas de Capo Passero, cerca de Sicilia (Italia). El Instituto de Física Corpuscular (IFIC, CSIC-UV) ha contribuido de forma importante al éxito de este primer paso en la construcción de KM3NeT.

Leer más

Letter of Intent

KM3NeT 2.0

Letter of Intent for ARCA and ORCA

- Astroparticle & Oscillation Research with Cosmics in the Abyss -

27th January 2016

Contact: spokesperson@km3net.de

Crucial step to show to the community the level of maturity of the project Crucial to ourselves to converge on the evaluation of the performance of the detector

Now sent to J. Phys. G.arXiv:1601.07459

STRATEGY REPORT **ON RESEARCH** INFRASTRUCTURES

European Strategy Forum on Research Infrastructures

ESFRI

KM3NeT 2.0

KM3 Neutrino Telescope 2.0: Astroparticle & Oscillations Research with Cosmics in the Abyss

Description

be the same sources that produce the flux of the highest my namma rays observed, for instance, by H F

the first time. The phase one of the project has led to

engineering of the modular detector and to construction

TYPE: distributed **COORDINATING COUNTRIES: NL** PROSPECTIVE MEMBER COUNTRIES: EL FR. IT. NL

PARTICIPANTS: CY, DE, ES, IE, PL, RO, UK

TIMELINE

 ESFRI Roadmap entry: 2006, 2016 Preparation phase: 2008-2014 Construction phase: 2016-2020 Operation start: 2020

ESTIMATED COSTS

 Capital value: 137 M€ Preparation: 45 M€ Construction: 92 M€ Operation: 3 M€/year

HEADOUARTERS KM3NeT-HO Amsterdam Science Park Amsterdam The Netherlands

WEBSITE

http://www.km3net.org/

THE NETHERLANDS

ESFRI Projects

The ESFRI Projects have been selected for scientific excellence and maturity and are included in the Roadmap in order to underline their strategic importance for the European Research Infrastructure system and support their timely implementation. The ESFRI Projects can be at different stages of their preparation according to the date of inclusion in the ESFRI Roadmap.

ROADMAP 2016

typical energies observed in cosmic rays. Neutrinos are ideal for observing the highest-energy phenomena in the Universe and, in particular, pinpointing the hitherto unknown sources of cosmic rays. The IceCube neutrino telescope at the South Pole has detected a flux of cosmic neutrinos which is assumed

of the final prototypes. The resubmission of KM3NeT 2.0 redefines the previous project and adopts it to the scientific and technological progress which has been made in the last years. It is effectively under construction as a first set of the new detectors is being deployed at to have its origin in extragalactic sources. They might this time

ESFRI Roadmap 2016

	ESFRI PROJECTS				CH 2016)	z	EAR)	
	NAME	FULL NAME	ROADMAP ENT (YEAR)	OPERATION (YEAR)	(AS OF 10 MAR	CONSTRUCTIO COSTS (ME)	OPERATIONAL BUDGET (M&/	
	СТА	Cherenkov Telescope Array	2008	2023*		297	20	
	EST	European Solar Telescope	2016	2026*	***************************************	200	9	
PHYSICAL SCIENCES& ENGINEERING	KM3NeT 2.0	KM3 Neutrino Telescope 2.0: Astroparticle & Oscillations Research with Cosmics in the Abyss	2016	2020*		92	3	

Relevance of the ESFRI Roadmap

The inclusion in the ESFRI Roadmap list is a **seal of quality**

Concerning funding:

- FEDER funds for scientific infrastructures can only be used in project in the ESFRI list
- According to RIS3 rules, FEDER funds can only be used in regions where the infrastructure is NOT located (provided it is shown that this investment help to the region development)

Nanobeacons

 One pulsed LED in each DOM, pointing upwards, for time calibration and measurements of water optical properties

0

0

 \bigcirc

 \mathbf{O}

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

First data

 Downgoing track. Reconstructed zenith angle: 0.89 deg

ARCA performance (I)

Water: best angular resolution

- For tracks: ~0.1-0.2 degrees
- For cascades: < 2 degrees:</p>

Tracks

Cascades

ARCA performance (II)

• Energy resolution (1σ) :

- ~0.27 in $Log_{10}(E_{\mu})$ for tracks
- 5%-10% for contained cascades

Tracks

ARCA: sensitivity to diffuse fluxes

Significance as a function of time for the detection of a diffuse flux of neutrinos corresponding to the signal reported by IceCube, for cascade-like events (red line) and track-like events (black line). The blue line indicates the result of the combined analysis.

ARCA: sensitivity to point sources

§ F.L. Villante and F. Vissani, Phys. Rev. D 78 (2008) 103007.

ARCA: sensitivity to point sources

• KM3NeT/ARCA 5 σ discovery potential as a function of the source declination (red line) for one neutrino flavour, for point-like sources with a spectrum $\propto E^{-2}$ and 3 years of data-taking

Phase 3

§ F.L. Villante and F. Vissani, Phys. Rev. D 78 (2008) 103007.

M. Jong, NeuTel 2015

Introduction

Neutrino mass hierarchy is one of the most relevant unknowns in Particle Physics constrain theoretical models to explain the origin of mass in leptonic sector Impact on potential performance of nextgeneration experiments for **CP-phase measurement**

- absolute value of neutrino masses
- 0vββexperiments

NMH in ORCA

In matter, the sign of Δm_{13}^2 is revealed through the CC interactions of v_e with electrons

$$P_{3\nu}^{m}(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2}2\theta_{13}^{m} \sin^{2}\left(\frac{\Delta^{m}m_{31}^{2}L}{4E_{\nu}}\right),$$
$$\sin^{2}2\theta_{13}^{m} \equiv \sin^{2}2\theta_{13}\left(\frac{\Delta m_{31}^{2}}{\Delta^{m}m_{31}^{2}}\right)^{2}$$
$$\Delta^{m}m_{31}^{2} \equiv \sqrt{(\Delta m_{31}^{2}\cos2\theta_{13} - 2E_{\nu}A)^{2} + (\Delta m_{31}^{2}\sin2\theta_{13})^{2}},$$

 Resonance condition is met for NH (IH) in the neutrino (anti-neutrino) channel when

$$E_{\rm res} \equiv \frac{\Delta m_{31}^2 \cos 2\theta_{13}}{2 \sqrt{2} G_F N_e} \simeq 7 \,\text{GeV} \left(\frac{4.5 \,\text{g/cm}^3}{\rho}\right) \left(\frac{\Delta m_{31}^2}{2.4 \times 10^{-3} \,\text{eV}^2}\right) \cos 2\theta_{13}$$

E_{res}~7 GeV for mantle E_{res}~3 GeV for core

Oscillation probabilities

Neutrinos

 $\cos(\theta_z) = -1.0$

 $\cos(\theta_z) = -0.8$

 $\cos(\theta_{z}) = -0.6$

 $\cos(\theta_{2}) = -0.4$

20

15

solid: NH dashed: IH

10

E [GeV]

ORCA

The proposed ORCA detector consists of 2070 OMs (with multi-PMTs) 18 OMs/line, 9 m spaced Instrumented volume 5.8 Mton

Oscillograms

 Finite angular/energy resolutions, uncertainties in oscillation parameters, etc. blur quite a lot the "theoretical" oscillograms, but it still seems to be enough signal

 $A' = (N_{IH} - N_{NH}) / N_{NH}$

Sensitivity to NMH

Phase 1 status

First line deployed in December 2015
2015-2017: installation of 31 lines
24 à la ARCA in the Italian site
7 à la ORCA in the French site

LOMs ready for deployment

DOMs during tests @ NIKHEF

DOMs in dark room @ CPPM

Phase 1 status

KM3NeT-It:

- one primary node and two secondary nodes were connected in summer 2015
- deployment of DU3 and DU4 planned for May 2016
- KM3NeT-Fr:
- deployment of cable during this week (April 2016)
- node to be deployed in May 2016
- qualification of ORCA in spring 2016
- deployment of first ORCA line planned for early summer

Construction plans

DOM integration:

- Target production speed: 3-5 DOMs/week/site
- Four sites preparing massive DOM integration (NIKHEF, Erlangen, Naples, Catania). Strasbourg preparing to join.

DU integration:

- Target speed: faster than 1 DU/month/site
- Three sites preparing for DU integration (NIKEF, CPPM, Naples). Catania will join.

Summary (I)

- A new era of extended multi-messenger astronomy is starting
- Cosmic rays, more than one century after their discovery, still bring many interesting questions
- Neutrino astronomy is a extraordinary tool for both Astroparticle and Particle Physics
- IceCube has found the first evidence for a cosmic neutrino signal
- ANTARES has showed the feasibility of the technique in water
- ANTARES, although quite smaller, has produced a very rich scientific results and is able to say a lot about the IceCube signal

Summary (II)

- First KM3NeT line constructed, to be deployed in the following weeks
 KM3NeT-ARCA will take advantage of the Mediterranean:
 - medium: best angular resolution
 - location: best visibility of our Galaxy
- with the appropriate size for (all-flavour!) neutrino <u>astronomy and improved technology</u> (multi-PMTs)
- KM3NeT-ORCA is an extraordinary opportunity for the first measurement of the neutrino mass hierarchy in terms of timescale and budget
- Multi-messenger astronomy has a lot to offer...
