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1. SKA and HI intensity mapping



  

Cosmological radio signals

The astrophysical radio spectrum
● Characterized by featureless continuum 

emission (e.g. synchrotron).
● Few radio lines. Mainly neutral 

hydrogen (HI).
● Costly to measure for individual 

sources.

NGC 613 (NVSS) NGC 613 (HIPASS)



  

HI intensity mapping
● Large pixels: joint emission from multiple galaxies instead of resolving them.
● We only care about large scales
● “Cheap” way to observe large volumes

Battye, Davies & Weller  2004



  

SKA

Two experiments:
● SKA-LOW: 50-350 MHz
● SKA-MID: 350 MHz – 14 GHz

Many science cases:
● Continuum survey: no z, many 

sources
● Weak lensing (with the above)
● HI survey: good z, few sources
● HI intensity mapping (z<3)
● EoR (z>3)
● Non-cosmological (e.g. pulsars)

Maartens et al. 1501.04076



  

Intensity mapping with the SKA

● Baselines not small enough to cover BAO 
scales in interferometric mode.

● SKA1-MID will be used as a multi-single-
dish experiment.

● Save interferometer data for calibration.

● Proposal to provide calibrated auto-
correlations has been approved by the SKA 
office.

● SKA1 survey: 30K sq-deg, 10K hours,      
350-1050 MHz.

● KAT7 (7)    MeerKAT (64)    SKA1 (197)→ →

Santos et al. 1501.03989



  

The problem of foregrounds
IM signal

Extragalactic foregrounds:
 - Point sources
 - E.G. free-free

Galactic foregrounds:
 - Synchrotron (I,Q,U)
 - Free-free
 - Dust

Earth:
 - Atmosphere: clouds, H2O,
   ionosphere
 - RFI

Instrument:
 - Spillover
 - Gain fluctuations
 - Beam fluctuations
 - Polarization leakage



  

Intensity mapping simulations

Instrumental effects:
 - Beam convolution
 - Polarization leakage
 - Noise

DA et al. ArXiv:1405.1751.



  

Blind foreground subtraction
● Blind methods: minimize assumptions about foregrounds  foregrounds are → -smooth

● Blind source equation

● Methods: LOS fitting, PCA, ICA

Wolz et al. 1310.8144
DA et al. 1409.8667



  

Blind foreground subtraction
Signal+FG



  

Blind foreground subtraction
Signal only



  

Blind foreground subtraction
Cleaned map



  

Blind foreground subtraction

Most important features still observable! (e.g. radial BAO)

~1% measurements of the radial BAO
(DA, F. Villaescusa-Navarro, M. Viel in prep.)

PRELIMINARY



  

2. Optical surveys – the LSST



  

Optical surveys: 

Spectroscopic surveys
● Good radial and angular resolution
● Long integration times →
● Low number density and redshift



  

Optical surveys

Photometric surveys
● Good angular resolution, bad radial
● Higher number densities and redshifts
● Photo-z systematics



  

LSST (2022)
Outstanding numbers:
● World's largest imager

● 8.4 m, 9.6 sq-deg FOV
● Wide: 20K sq-deg
● Deep: r~27
● Fast: ~100 visits per year
● Big data: ~15 TB per day

Multi-science facility:
● Supernovae
● Galaxy clustering
● Cluster science
● Weak & strong lensing
● Non-cosmological:

Transients, Solar System, 
Milky Way

LSST Coll. et al. 0912.0201



  

3. Constraining gravity with multiple tracers



  

Relativistic effects in LSS

Credit: 2MASS



  

Relativistic effects in LSS
RSDs:

Lensing magnification:

Sachs-Wolfe:

{
Challinor and Lewis, arXiv:1105.5292
Bonvin and Durrer, arXiv:1105.5280



  

Density Lensing

GR effects

Relativistic effects in LSS



  

Primordial non-Gaussianity

Camera et al. arXiv:1305.6928

● Massive objects, hosting galaxies, 
form in high-density environments.

● Primordial non-Gaussianity affects 
the clustering statistics of biased 
tracers.

Dalal et al. arXiv:0710.4560
Matarrese and Verde arXiv:0801.4826



  

Results: single tracers

DA et al. arXiv:1505.07596, 1507.03550



  

Multi-tracer analyses

For disjoint tracers deterministically related 
to the density field, terms proportional to 
the bias parameters can be measured below 
the cosmic variance limit

Optimal combination:
● Low-noise tracers.

● Very different bias 
functions.

● E.g.: photometric survey, 
red vs. blue galaxies

Seljak 0807.1770



  

Multi-tracer analyses

LSST-only
● Slight improvement 

for fNL.

● 5-10  detection of 
GR effects.

● 3  detection for DES

SKA-only
● 4 x improvement on fNL.

● No detection of GR 
effects.

LSST x SKA

● IM and photo-z are 
complementary.

● Major improvement in 
both cases. x4 in fNL

● 10-20  detection of 
GR effects.

DA et al. arXiv:1507.03550
Fonseca et al. arXiv:1507.04605



  

Scalar-tensor gravity

Horndeski Lagrangian:
● Most general scalar-tensor theory with 2nd-order equations of motion
● Enormous functional freedom.
● Reduced in the Bellini-Sawicki parametrization:

•      : parametrizes standard kinetic term
•      : off-diagonal kinetic terms. Scale-dependent gravitational constant.
•                              : evolving gravitational constant.
•                          : speed of tensors.

DA, P. Ferreira, E. Bellini, M Zumalacarregui (in prep.)



  

Constraining Horndeski gravity

● Concept: throw in all tracers (and x-corrs!)
• Galaxy clustering (LSST, blue and red)
• Galaxy shear (LSST, gold sample)
• Intensity mapping (SKA-1, 200 bins)
• CMB primary (Planck)
• CMB lensing (AdvACT)

● ~10x improvement over current constraints.

DA, P. Ferreira, E. Bellini, M Zumalacarregui (in prep.)



  

4. Combining photo-z's and IM.



  

1 Combined cosmological constraints

● Complementary coverage of scales.
● Complementary tracer properties (e.g. bias, magnification).

DA, P. Ferreira, M. Jarvis (in prep.)



  

2 Reducing photo-z systematics

Clustering redshifts:
● Idea: reconstruct photo-z distribution using cross-correlations with spectro-z
● Cross correlate photo-z bin with thin spectro-z bins.
● The amplitude of the cross-correlation traces the shape of the photo-z distribution.
● IM could work just as well!

DA, P. Ferreira, M. Jarvis (in prep.)
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3 Reducing foreground systematics

Villaescusa-Navarro et al. 1410.7393

● Badly behaved foregrounds could be 
impossible to subtract.

● E.g. leaked polarized synchrotron.
● Foregrounds cancel out in cross-

correlation.
● This was used to make 1st detection 

of IM signal (Masui et al. 1208.0331)
● Not yet done with photo-z surveys.



  

4 Bayesian clustering analyses
General motivation: use ALL information to measure redshifts 

Jointly sample the underlying density distribution.

Can be done in a Gibbs-sampling way:

magnitudes angular positions HI density

redshifts sampled individually

Galaxy overdensity according in the (n+1)-th realization

DA, P. Ferreira, M. Jarvis (in prep.)

Jasche & Wandelt 1106.2757



  

4 Bayesian clustering analyses

● The posterior distributions are a lot more informative.
● On average, reduced photo-z uncertainties (>10%)
● On high-density regions, z reduced by a factor of ~10
● Clean sample can be selected:

• ~30% better photo-z's
• Impervious to photo-z bias

● Improved redshift usable for non-clustering analyses (e.g. SNe?)

PRELIMINARY

DA, P. Ferreira, M. Jarvis (in prep.)



  

4 Bayesian clustering analyses

DA, P. Ferreira, M. Jarvis (in prep.)



  

4 Bayesian clustering analyses

DA, P. Ferreira, M. Jarvis (in prep.)



  

4 Bayesian clustering analyses

DA, P. Ferreira, M. Jarvis (in prep.)



  

5. Measuring growth with kSZ



  

AdvACTPlanck ACTPol

Science products:
● CMB primary
● Primordial GW
● CMB lensing
● Thermal SZ
● Kinematic SZ
● Point sources (DSFGs)

Henderson et al. 1510.02809



  

Growth from kSZ

Method:
● CMB experiment + overlapping 

spectroscopic survey
● tSZ-selected clusters

with kSZ measurements
● Use galaxy positions to 

reconstruct cluster velocities.

● Match reconstructed velocity with 
kSZ measurement.

DA et al. 1604.01382 



  

Measuring the kSZ effect

● tSZ can be separated using multi-
frequency.

● kSZ has black-body spectrum
● Must be separated using different 

scale dependence.
● Three methods:

• AP filter: assume only a clear spectral 
separation.

Most conservative method.
• Constrained realizations: assume 

knowledge of CMB power spectrum.
Less conservative, still safe.

• Matched filter: assume knowledge of 
CMB power spectrum AND cluster 
profiles.

Optimal. Dependent on cluster 
assumptions.

DA et al. 1604.01382 



  

Velocity reconstruction

● Simple density-velocity relation 
in the linear regime.

● Better estimates possible (e.g. 
2LPT, full Bayesian modelling).

● Estimated reconstruction error 
from simulations.

● Linear method works well after 
smoothing (e.g. bad in high-
density regions).

DA et al. 1604.01382 



  

Constraints from S-IV experiments

DA et al. 1604.01382 



  

Conclusions
● In the next decade we will have an unprecedented coverage of the sky, in terms of 

area, depth and frequency bandwidth.
● 21cm intensity mapping is a cheap method to cover large portions of the sky, enabling 

large-scale cosmological studies.
● Robust observables, such as the BAO should be impervious to the effect of 

foregrounds.
● HI is also a great probe to combine with other tracers (e.g. low bias, no lensing).
● Relativistic LSS effects are only observables using multi-tracer techniques. fNL 

measurements will benefit greatly from cross-correlations.
● Constraints on modified-gravity parameters will improve by a factor of ~10 with Stage-

IV experiments.
● IM and photo-z's are almost complementary probes in terms of scale-coverage.
● A combination of both can:

• Improve cosmological constraints.
• Eliminate/mitigate individual systematics.
• Improve individual redshift estimates and help reconstruct the true density field.

● The combination of CMB and LSS observations offers multiple new cosmological 
probes.

● Combining velocity reconstruction from spectroscopic surveys and kSZ measurements 
can yield alternative measurements of the growth rate.

● A good understanding of cluster physics is indispensable
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¡Gracias!



  

Relativistic effects in LSS

Density

RSDs

Lensing

“Relativistic effects”

Challinor and Lewis, arXiv:1105.5292
Bonvin and Durrer, arXiv:1105.5280
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