Deep Galaxy Surveys for Dark Energy

From DES to DESI

E. Sánchez
(CIEMAT)
Why Deep Galaxy Surveys

Intro. Dark Energy
Probes of Dark Energy (mainly related to LSS)
Photometric vs Spectroscopic surveys

The Dark Energy Survey (DES)

Science
Spanish Participation
Status

The Dark Energy Spectroscopic Instrument (DESI)

Science
Spanish Participation
Status

Conclusions
What do we mean by dark energy?

The discovery of the accelerated expansion of the Universe was a huge surprise, since gravity acting on matter slows down the expansion, so we expected a decelerating expansion, not an accelerating one.

Whatever mechanism causes the acceleration, we call it “dark energy”:

- Einstein’s cosmological constant
- Some new field (“quintessence”...)
- Modifications to General Relativity
- ...

Evidence for dark energy

Huge progress from 1998

Betoule et al., 2014
Evidence for dark energy

Planck 2015
What do we know about dark energy?

1) It does not emit nor absorbs electromagnetic radiation
2) It does not dilute with expansion → Negative pression
3) Its distribution is homogeneous. Dark Energy does not cluster significantly with matter on scales at least as large as galaxy clusters

Dark energy is qualitatively very different from dark matter. Its pressure is comparable in magnitude to its energy density (it is energy-like), while matter is characterized by a negligible pressure

Dark energy is a diffuse, very weakly interacting with matter and very low energy phenomenon. Therefore, it will be very hard to produce it in accelerators. As it is not found in galaxies or clusters of galaxies, the whole Universe is the natural (and perhaps the only one) laboratory to study it.
Distances

Scale factor is related to observations through distances.

Comoving distance:

$$r(z) = \frac{c}{H_0} \int_0^z \frac{dz'}{\sqrt{\Omega_\Lambda + \Omega_k (1 + z')^2 + \Omega_M (1 + z')^3 + \Omega_r (1 + z')^4}}$$

Several distances can be measured observationally

Luminosity distance: “Standard Candle” with luminosity L

$$\phi = \frac{L}{4\pi d_L^2}; \quad d_L = r(z)(1+z) \text{ (flat Universe)}$$

Angular diameter distance: “Standard Ruler” with length l

$$\Delta \theta = l/d_A; \quad d_A = r(z)/(1+z) \text{ (flat Universe)}$$

Having a collection of standard candles or rulers at different known redshifts, we can reconstruct the densities and properties of the fluids in the Universe
Distances

Angular Diameter Distance

Luminosity Distance

\((\Omega_M, \Omega_\Lambda) = (0.05, 0)\)

\((\Omega_M, \Omega_\Lambda) = (0.2, 0.8)\)

\((\Omega_M, \Omega_\Lambda) = (1, 0)\)

astro-ph/9905116

standard rulers

standard candles
Growth of Structure

ΛCDM is able to account for the observed structure in the Universe
- Structure grows due only to gravity (and dark energy) from initially small perturbations
- Cold Dark Matter
- Initial power spectrum of density perturbations nearly scale invariant (inflation)

\[\ddot{\delta}_k + 2H \dot{\delta}_k - 4\pi G \rho_M \delta_k = 0 \]

The distribution of fluctuations depends on primordial perturbations and also on the composition of the universe

\[\tilde{\delta} = \frac{\rho_M - \bar{\rho} M}{\bar{\rho} M} \]

CDM: Small Structures form first
Dark matter and energy are new physics

The dark side of the Universe opens the door for new physics, with potential discoveries that are relevant both for cosmology and particle physics.

ΛCDM requires new physics 3 times:
- Dark Matter
- Dark Energy
- Early universe (inflation, baryogenesis...)

Many different properties of the dark side of the universe can be studied using huge galaxy surveys.
All current observations are compatible with dark energy being the cosmological constant. This is the most simple and the most puzzling dark energy candidate.

If it is the vacuum energy

$$\Omega_\Lambda \sim 0.7 \rightarrow \rho_\Lambda \sim (10 \text{ meV})^4$$

while the (naive!!!) estimate from QFT is

$$\rho_\Lambda \sim m_{\text{Planck}}^4 \sim 10^{120} \times \sim (10 \text{ meV})^4$$

or from the Higgs potential, $$\rho_\Lambda \sim 10^{55} \times \sim (10 \text{ meV})^4$$

Why such a huge difference?

w = -1.006 ± 0.045 from Planck 2015
The Cosmological Constant Case

However, the precision of the current measurement of the EoS parameter for dark energy is still limited.

One of the main goals of current and future projects is to improve this measurement (as much as possible).
Observational Probes of dark energy

Test if $w_0 = -1$ and $w_a \neq 0$

DETF Figure of merit: Inverse of the area of the error ellipse enclosing 95% confidence limit in the w0-wa plane. Standard way to compare sensitivities for dark energy projects

Standard Candles: Measure $d_L = (1 + z) r(z)$

Standard Rulers: Measure $d_A = r(z)/(1 + z)$

Number Counts: Measure $\frac{dV}{dz d\Omega} = \frac{r^2(z)}{\sqrt{1 - kr^2(z)}}$

Growth of structure: A more complicated function of H(z)
Observational Probes of dark energy

Many practical implementations:

Distance probes: SN1a, BAO, CMB, weak lensing, galaxy clusters,...

Growth of Structure probes: CMB, redshift space distortions, weak lensing, galaxy clusters...

No single technique is sufficiently powerful to improve the knowledge of dark energy at the level of one order of magnitude

Combination of techniques: More statistical power, ability to discriminate among dark energy models, robustness against systematic errors
Apart from CMB, many of these probes are implemented by means of Galaxy Surveys

Galaxy surveys trace the LSS of the Universe at late times → Where the relative contribution of dark energy is larger, complementary to CMB

The optimal survey for each probe is different → Different surveys for different probes

I will concentrate in 2 main surveys, where several dark energy probes can be measured, but there are many more
Observational Probes of dark energy

Supernovae Ia

- HST discovered
- Ground discovered

BAO

- Correlation function
- Ω, Λ
- No bao

Galaxy Clusters Counts

- dN/dz [4x10^3 deg^2]
- $w = -1.0$
- $w = -0.8$
- $w = -0.6$

- 8m South Pole Telescope SZE Survey

Gravitational Lensing

- Volume effect
- Growth effect

- Distant galaxies will be biased to appear near foreground galaxies because of gravitational lensing.
CURRENT AND FUTURE PROJECTS

Dark Energy Experiments: 2013 - 2031

2013 2015 2017 2019 2021 2023 2025 2027 2029 2031

BOSS
PAU

Dark Energy Survey (DES)
HETDEX
HSC imaging
PFS spectroscopy
Extended BOSS (eBOSS)

Dark Energy Spec. Instrument (DESI)
Euclid

Large Synoptic Survey Telescope (LSST)
WFIRST-AFTA

Blue = imaging
Red = spectroscopy

arXiv:1401.6085
The Dark Energy Survey

Optical/IR imaging survey with the Blanco 4m telescope at Cerro Tololo Inter-American Observatory (CTIO) in Chile

5000 sq-deg (1/8 of the sky) in grizY bands (2500 sq-deg overlapping with SPT survey) + 30 sq-deg time-domain griz (SNe)

Up to $i_{AB} \sim 24$th magnitude at 10 σ ($z \sim 1.5$)

New 570 Mpx camera with 3 sq-deg FoV, DECam
Installed on Blanco since August 2012
NGC 1365 (the Great Barred Spiral Galaxy) is a barred spiral galaxy about 56 million light-years away in the constellation Fornax. (DECam, DES Collaboration)
NGC 1566 (the Spanish Dancer) is a spiral galaxy in the constellation Dorado. (DECam, DES Collaboration)
DECam

74 CCD chips (570 Mpx/image) (62 2kx4k image, 8 2kx2k alignment/focus, 4 2kx2k guiding)

Red Sensitive CCDs
QE>50% @ 1000 nm
250 microns thick

3 sq-deg FoV
Excellent image quality
0.27″/pixel

Low noise electronics (<15 e @ 250 kpx/s) done by DES-Spain group
74 CCD chips (570 Mpx/image) (62 2kx4k image, 8 2kx2k alignment/focus, 4 2kx2k guiding)

Red Sensitive CCDs
QE>50% @ 1000 nm
250 microns thick

3 sq-deg FoV
Excellent image quality
0.27″/pixel

Low noise electronics (<15 e @ 250 kpx/s) done by DES-Spain group
DES Science Summary

4 Probes of Dark Energy

Galaxy Clusters (dist & struct)
Tens of thousands of clusters to z~1
Synergy with SPT, VHS

Weak Lensing (dist & struct)
Shape and magnification measurements of 200 million galaxies

Baryon Acoustic Oscillations (dist)
300 million galaxies to z~1.4

Supernovae (dist)
3500 well-sampled Sne Ia to z~1
DES Science Summary

4 Probes of Dark Energy

Galaxy Clusters (dist & struct)
Tens of thousands of clusters to \(z \sim 1 \)
Synergy with SPT, VHS

Weak Lensing (dist & struct)
Shape and magnification measurements of 200 million galaxies

Baryon Acoustic Oscillations (dist)
300 million galaxies to \(z \sim 1.4 \)

Supernovae (dist)
3500 well-sampled Sne Ia to \(z \sim 1 \)
USA: Fermilab, UIUC/NCSA, University of Chicago, LBNL, NOAO, University of Michigan, University of Pennsylvania, Argonne National Laboratory, Ohio State University, Santa Cruz/SLAC Consortium, Texas A&M University, CTIO (in Chile)

UK Consortium: UCL, Cambridge, Edinburgh, Portsmouth, Sussex, Nottingham

Germany: Munich

Switzerland: Zurich

Spain Consortium: CIEMAT, ICE, IFAE

Brazil Consortium: Observatorio nacional, CBPF, Universidade Federal do Rio de Janeiro, Universidade Federal do Rio Grande do Sul

DES Collaboration
~300 scientists from 25 institutions in 7 countries
darkenergysurvey.org
Facebook.com/darkenergysurvey

OzDES: CAASTRO, AAO, ANU, Queensland, Swinburne
DES Y3 ended on February 2016

DES is projected for 5 years, up to 2018

5000 sq-deg already covered, to ~50% of the final projected depth
DES has produced many results already

64 papers: 26 published and 38 submitted

Many different topics: From cosmology using weak lensing to studies of the Milky Way or the Solar System, most of them from the Science Verification data (3% of the total survey)

Y1-Y3 data are in the analysis phase. DES is already the most precise survey ever for many results, and a careful study of systematic errors is required before publications

I will flash a few selected results
Clustering of Galaxies

Angular 2pt correlation function of 2.3×10^6 galaxies
SV data, 116 sq-deg ($i < 22.5$), Crocce et al. arXiv:1507.05360
Used to constrain linear bias of the galaxy sample
Clustering of Galaxies

2-pt angular correlation functions in 5 redshift (photoz) bins

- Sys corrected
- Sys uncorrected
Clustering of Galaxies

Linear bias
DES–SV benchmark sample (i<22.5)

- BPZ (template)
- TPZ (machine learning)

\[b(z) \left(\frac{\sigma_8}{0.83} \right) \]

- CFHTLS (i<22.5)
Weak Lensing

Tomographic WL shear 2 pt correlations measurement in 3 redshift bins (Becker et al., arXiv:1507.05598)

SV data: 139 sq-deg

Based on DES SV shear catalog: Jarvis et al. 2015
Cosmological parameter estimation, DES Coll. 2015
arXiv: 1507.05552

139 sq-deg

3 redshift bins:
0.30 < z < 0.55
0.55 < z < 0.83
0.83 < z < 1.3

Marginalized over a set of nuisance parameters (shear & photoz calibrations, IA, non-linearities)

Flat priors: 0.2<h<1, 0.01<Ob<0.07, 0.7<nS<1.3
First Cosmology Results

Results from DES in between Planck and CFHTLenS

Not very precise yet, but show that DES is able to measure cosmological parameters from WL (even if WL image distortions are very small ~1%, and must be measured to 1% to obtain \(w \) at 1%)

To be substantially improved from Y1-Y3 data
Combination of LSS and WL

Combined analysis of angular clustering of red galaxies and their cross-correlation with weak gravitational lensing of background galaxies. DES-SV: 139 sq-deg
We have placed constraints on the matter density and the amplitude of fluctuations as $\Omega_M = 0.31 \pm 0.09$ and $\sigma_8 = 0.74 \pm 0.13$

Full tomographic analysis with multiple lens bins and a joint analysis with cosmic shear in future DES releases.
Clusters: Detection of the SZ effect in SV

Clear signature of SZ effect in SV data (~125 sq-deg)
719 optically identified clusters
Clusters: Detection of the kSZ effect in Y1

DES Y1 data, ~1200 sq-deg
~6700 clusters with N>20 galaxies
SPT Temperature data
$\sigma_z/(1+z) \sim 0.01-0.015$

Pairwise estimator of kSZ amplitude

4.2 sigmas detection of the effect
Supernovae

Photometric Classification
- 900 (Y1+Y2) likely SNeIa for cosmology, pass rigorous cuts

800 have good host photo-z
530 have host spec-z

After 3 seasons, largest sample of SNIa
- Redshift distribution 0.2<z<1.2
- New challenges in photometric classification
New Dwarf Satellites of the Milky Way

Bechtol et al., 2015 ApJ 807 1

No excess of gamma ray emission (from Fermi-LAT) is detected coming from these objects.
No hints of dark matter.
WIMPs with mass <100 GeV are excluded (model dependent)
Summary: DES Status

DES has finished its 3rd year of data taking

It has already produced many scientific results, mainly from the SV data (3% of the total survey). *DES SV catalogs are now public.*

Many DES results not covered in this talk: More WL measurements, Cluster catalog, strong lensing, non-cosmology results (trans-neptunian objects and Planet 9, Milky Way, GW follow-up, galaxy evolution, quasars...)

Y1-Y3 data are being analysed. DES will already be the best survey ever for many of these results. Careful control of systematics required

First dark energy results expected for this year.
DESI, the Dark Energy Spectroscopic Instrument, is a new instrument currently under construction.

It is designed to improve our understanding of the role of dark energy in the expansion history of the universe.

It will do this by measuring the redshifts of more than 30 million galaxies and quasars, with unprecedented precision.
DESI Science Goals

Is cosmic expansion accelerating because of a breakdown of General Relativity (GR) on cosmological scales or because of a new energy component that exerts repulsive gravity within GR?

If the latter, is it consistent with a cosmological constant or does it evolve in time?

Any answers to this will point to new physics!

Measure the expansion rate of the Universe

The distance-redshift relation $D_A(z)$

Directly measure $H(z)$

Measure the rate at which structures grow in the Universe

Growth function and its derivatives

DESI will do both in one survey
DESI Science Goals

Use BAO to measure the distance scale of the universe over nearly the whole northern sky and nearly the entire age of the universe (out to $z \sim 3.5$, 12 billion years ago)

Test modifications of gravity by measuring the growth rate of structures with RSD

Measure the mass of the neutrino through the suppression of small-scale clustering (~ 20 meV precision on the measurement of the sum of neutrino masses)

Test inflation by measuring non-Gaussianity and spectral shape of inflationary perturbations
DESI Survey Data Set

These measurements can be achieved by means of 5 populations that should give the easiest redshifts over a broad redshift range:

- Bright Galaxies (BG) \((0 < z < 0.4)\)
- Luminous Red Galaxies (LRG) \((0.4 < z < 1)\)
- Emission Line Galaxies (ELG) \((0.6 < z < 1.6)\)
- Tracer Quasars (QSO) \((1 < z < 2.1)\)
- High Redshift Quasars (Ly-\(\alpha\) forest) \((z > 2.1)\)

Successful \(z\) object density/sq-deg

- BGs > 700
- LRGs > 300
- ELGs > 1280
- QSOs > 120
- Ly-\(\alpha\) > 50

Number of redshifts \(\sim 34\ M\)
DESI Survey Data Set
RSD constrain the growth rate \rightarrow Test of GR
DESI will measure the growth rate with precision <1% over $0.5<z<1.4$
Will measure distance scale to better than 0.3% statistical errors. Figure of Merit (FoM) surpasses definition of a Stage-IV Dark Energy Experiment with margin.

<table>
<thead>
<tr>
<th>Surveys</th>
<th>FoM</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOSS BAO</td>
<td>37</td>
</tr>
<tr>
<td>DESI 14k galaxy BAO</td>
<td>133</td>
</tr>
<tr>
<td>DESI 14k galaxy and Ly-α forest BAO</td>
<td>169</td>
</tr>
<tr>
<td>DESI 14k BAO + gal. broadband to $k < 0.1 , \text{h Mpc}^{-1}$</td>
<td>332</td>
</tr>
<tr>
<td>DESI 14k BAO + gal. broadband to $k < 0.2 , \text{h Mpc}^{-1}$</td>
<td>704</td>
</tr>
</tbody>
</table>
DESI Survey Data Set

14000 sq-deg footprint
DESI targeting requires new imaging over this area

North Cap: Accessible from Northern telescopes only Bok (gr) + Mayall (z)

Equatorial: Accessible from Northern or Southern telescopes
To achieve these measurements, we need:

4m telescope: Mayall @ Kitt Peak

8 sq-deg field of view optics

5000 fibers in robotic actuators

10 spectrographs x 3 bands (blue, red and NIR; 360-1020 nm)
The DESI project will build:

A new corrector for the telescope (creating a 8 deg2 FOV)
A new top ring and cage, barrel and hexapod assembly
A focal plane with 5000 fiber positioner robots in 10 petals
A fiber optic system to transport the light to spectrographs
Ten 3-arm spectrographs based upon the BOSS design
Instrument controls and data processing
DESI Instrument: New Corrector

C4 Lens, ~1m diameter!!!
10 Petals. Each one contains 500 optical fiber positioners and one GFA camera

Responsibility of BCN-MAD
DESI Instrument: Spectrographs

Schematic of a spectrograph. DESI will have 10 spectrographs with 3 bands each (Blue, Red, NIR)

Some of the spectrograph cameras
The DESI Collaboration

The DESI Collaboration has ~200 Participants from ~40 institutions

Project Director: M. Levi (LBNL)

Spokespersons: D. Eisenstein (Harvard), R. Wechsler (SLAC)

USA (ANL, Arizona, BNL, BU, CMU, Cornell, FNAL, Harvard, Irvine, LBNL, LLNL, Michigan, NOAO, OSU, Ohio, Pennsylvania, Pittsburgh, Siena, SLAC, SMU, UCB, UCSC, Utah, Yale),
Australia (Queensland, Swinburne), Canada (Toronto), China (NAOC RPG), Colombia (Andes), France (CEA, CPPM, LAM, LPNHE, OHP), Korea (KASI, KIAS), Mexico, Spain (BCN-MAD RPG, GMT RPG), Switzerland (EPFL, ETHZ), UK (Durham, Portsmouth, UCL, RPG)
Summary: DESI Status

- Dark energy is one of the most important puzzles of fundamental physics. Baryon Acoustic Oscillations and Redshift Space Distortions are key probes of Dark Energy, complementary to other probes with low systematics.

- DESI is a massive spectroscopic survey, which will use those probes with impressive forecast. DESI will be the final measurement of BAO up to z<2.

- The project is funded and construction has started.

- On track for on-sky commissioning <4 years from now in 2019 and start of the survey in second-half of 2019!

- BCN-MAD RPG is actively involved in the collaboration.
Conclusions

- Dark energy is one of the most important puzzles of fundamental physics. Progress on its understanding will come from current and future galaxy surveys.

- DES is taking data and already producing science. Its first competitive results on dark energy are expected for this year.

- DESI is on track to start the survey before the end of 2019.

- This is a very active scientific area, where there is room for discoveries.
Backup Slides
DESI Survey Data Set

Luminous Red Galaxies
\(\sim 4 \times 10^6 \) goal
\(0.4 < z < 1.0 \)

\(H(z)/(1+z) \) (km/s/Mpc)

Relative Flux

Wavelength (nm)

DESI predictions
DESI Survey Data Set

Emission Line Galaxies

~17 x 10^6 goal
0.6 < z < 1.6
DESI Survey Data Set

Quasar Ly-α Forest
~0.6 x 10^6 goal
2.2 < z < 3.5

$H(z)/(1+z)$ (km/s/Mpc)

Relative Flux

Wavelength (nm)

DESI predictions
DESI Funding

• Office of High Energy Physics of the U.S. Department of Energy,
• U.S. National Science Foundation,
• Science and Technologies Facilities Council of the United Kingdom,
• Gordon and Betty Moore Foundation,
• Heising-Simons Foundation,
• National Council of Science and Technology of Mexico,
• DESI Member Institutions (Spanish from Plan Nacional)
DESI: Spanish Contribution

2 spanish RPGs + some individuals

Barcelona-Madrid Regional Participation Group Institutions
ICE, IEEC/CSIC, IFAE, CIEMAT, IFT/UAM

Instrumentation
Guide Focus and Alignment Units
Guiding software

Science
Working Group participation
Leading image validation task force

Management
Part of Institutional Board
Member of several committees

GMT Regional Participation Group Institutions
CEI/UAM+CSIC, IAA, IAC
DESI Instrument: Spanish Contribution

Full construction of the Guiding, Focus and Alignment (GFA) System

• Focal Plane composed of 10 petals

• Each petal contains a GFA camera (There are 10 cameras)

• GFA of two types:
 • 6 for guiding and field acquisition
 • 4 for focus and alignment
 • Identical except for optical filter

• The only imaging systems in DESI

• GFA cameras use stars to provide the guide signal and measure focus and alignment
The GFA cameras have to operate at ambient temperature to minimize local heating near the focal surface.

The GFA camera footprint has to be such as to minimize the number of science fibers displaced.

GFA system requirements:
- Provide imaging data during commissioning of the instrument.
- Determine the current telescope pointing within 20 seconds after telescope slew.
- Determine focal plane scale, rotation and astrometric solution.
- Monitor the intensity and PSF of stars during observations to provide feedback on observing conditions.
- Provide guide signals to the telescope at 1Hz to a precision of <30 mas.
- Determine the wavefront error in focus, decenter, tip and tilt, and provide corrective information to the hexapod system.
Each 10 GFA camera contains a single CCD sensor, mounted and operated as a standalone instrument.

Each camera contains all CCD readout electronics and all controls, and requires only DC power and a Gigabit Ethernet connection.
DESI Instrument: Spanish Contribution

GFA System Status:
Design has been finalized and is ready for fabrication.

Mechanics: Prototype built and tested.

Electronics Schematics defined, Layout finished.

Software: Designed and being written.

CCDs have been selected, in process of purchasing.
Characterization and test setups for CCDs (BCN) and filters (MAD) are ready.

The plan is to have the GFA completed by the end of 2017.