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Planck

1.5 m off-axis Gregorian
telescope

2 instruments:

LFI (20K)

HFI (0.1K)

Angular resolution : 30" to 5’

650 M€, 600 scientists, 29
laboratories, 14 countries
(Europe, USA, Canada)




The Planck instruments

LFI

- LFl instrument: HEMT antennas, 3 bands between
33 and 70 GHz

- HFl instrument: bolometers cooled down to 100 mK,
6 bands between 100 and 857 GHz
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HFI focal plane




Thermal stability

Temperature fluctuations induced by cosmic ray hit
fluctuations!!

Corrected by PID at time scales larger than the hour ~ Great thermal stability of detectors

Second correction from the dilution plate PID
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Additive systematic effects

Cosmic rays

1/f noise

Thermal fluctuations
Microphonics from the coolers
Scan synchronous effects



Cosmic rays

Mainly galactic
protons and
Helium nuclei

Primary mirror

Telescope baffle
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Normalized values

Number of sunspots
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CR interaction with detectors
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- Only 3 families of glitches

- Long glitches are direct impact of protons in
the silicon wafer

Thermal modeling is important.
Long time constants come from
the links between the wafer and
the detector housing

- short glitches are direct impact of protons in
the grid/crystal. Should be representative of
response to photons.



CR populations ..o
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- Almost all depositing energy on the
wafer are glitches detected !

Partly because of ballistic phonon
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Cosmic ray removal

Joint fit of templates for § "‘ ‘
each detected event. |
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Analysis made difficult because of the high
confusion of events
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frequencies < 0.2 Hz
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At the end, the glitch contribution
to the noise on the maps is
significant only for ell < 10, still
smaller than detector noise
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Next generation experiments

Example TES detectors

Impact of cosmic rays on
detector arrays for future
satellite missions have to be

studied carefully
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Noise spectra on Planck-HFI TOls
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Glitches below the detection threshold common between PSB-a and PSB-b

Provide a limit on the level of remaining glitches in data ~ 5% contribution



Uncorrelated noise

Uncorrelated component
seen in all detector time-
streams.

- Not observed while
measuring intrinsic
detector noise

- Observed to some extent
after plug in to the
electronic box

fenee™ 0.15 Hz

knee
No clear explanation, can’t
be due to CRs since not
modulated as glitch rate

Gives the fundamental
limit after removal of
systematics
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Map-Making

Y
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High redundancy of observations
allows to reduce the low frequency
noise in maps

Low frequency noise produces stripes in
the maps if not accounted properly.

Map-making techniques are based on
maximum likelihood approaches to solve
for the I, Q, U signals in the maps.




Intensity to polarization leakages

Polarization parameters Q and U are obtained by differencing different detector
measurements or measurements obtained at different time.

Ex: linear combination of Q and U can be

In that case
obtained by: S, -Sg unpolarized
intensity vanishes
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Intensity to polarization leakages

Any mismatch between detectors create intensity to
polarization leakages :

- Relative gain errors: small enough thanks to
accurate dipole calibration

- Beam mismatch: well taken care in Planck data

- Band-Pass mismatches :

- ADC non-linearities: main limiting systematic effect
in Planck.

Example: Beam mismatch
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Leakages strongly dependent on
the scanning strategy.



Planck scanning strategy

Pointing 85 degrees from the spin axis
7 degree precession angle

mm) Same regions in the sky are
observed every 6 month

W) Time varying effects are hardly
constrained

Small angle difference :

Polarization estimation requires
differencing different detectors

m=)> Detector mismatch have an
impact on final results



Future experiments

Example: LiteBird scanning strategy

Earth orpyy

Direction to the Sun

Boresight Spin axis
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Satellite

More uniform coverage

Many polarizer angle from
the same detector

Allows single detector
polarization maps



Gain calibration and long time constants
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Thermal modeling is important.

Long time constants might come
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seen on both categories of glitches
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Bolo Thermal Model

PSB'simplified thermal model
Simulation of a 23MeV Proton in the silicon die

Celta Temperature

Fore bolometer (a) Aft bolometer (b)
1 O P Stray y c Stray 1 1
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Thermometer Thermometer
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Plate wiring
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Bolo plate
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Equation p

Andrea Catalano B-mode from Space 10-16 Dec 2015



Impact of long time constants on data

* Long time constants are observed in data ~ 2 s for the longest
seen in the tail of short glitches
seen on planet maps
induces a shift of the dipole

* Induce percent effect in the calibration if not
properly corrected as it affects the highest and lowest multipoles in a

different way

* Time constants are variable from detector to detector

* Having different survey with nearly opposite scan directions helped to
constrain and correct the longest time constants

* Solved at the map-making stage by template fitting (largest multipole
shifts)



transmission
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Band-pass mismatch

Differences in the band shapes from detector to detector induced intensity to
polarization of galactic components when calibrating on CMB
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CO transition line 1-> 0 falls at the edge of the 100 Hz
filters so the CO components has very different
amplitude from detector to detector
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A few percent effects for the
amplitude of the dust from
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Relative calibration from dust

Band-pass mismatch correction

-Band passes were measured from the ground. The precision is not accurate
enough to remove the dust intensity to polarization leakage with the predicted
coefficients

- Joint estimation of CO and dust leakages at the map-making level in Planck.
Naturally minimizes the survey difference contamination
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(14 1)Cy/ (2m)[uK?)]

Future missions

- Future missions will avoid CO lines in frequency bands

- Effect should be reduced as compared to Planck but treatment will probably be

required
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Lines induced by the 4K compressors

4He — JT cooler induced sharp lines in
the data, due to electromagnetic and
microphonic interference to the
detector wires
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Amplitudes vary across the mission



4 K line processing

300 T T T

250 |- 2015 release | Removed by notch filters, ring by ring
Resonant rings, for which harmonics
of the signal are close to the 4K line
frequencies are removed

200

Better rejection for 2015 results

2013 release : : .
50 |- . correcting an artifact affecting

cosmology in 2013 data.

1 | 1
1700 1750 1800 1850 1900
Multipole ¢

: Biggest problem is that 4K lines affect
the ADC non-linearities!




ADC non-linearities

Thput Tttt T rrermTmT rrormTmT T
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Analog to Digital convertor have some non-  3278x10°
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Data model

Fast sample data (40*180 Hz):

-300E
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One sampl
e ampE Digitization: ~ d,, () = ADC[d(1)] (+dakte)

t; +40

Data sample:  m, = EADC(d(t))

40

Non-linearity function :

(m) = F(S)

F is a non-linear function
Correction is straightforward with the
knowledge of F.

ADU corr — ADU coded

F depends on elect. response and ADC shape



ADC correction

15t order correction with time dependant gain is not accurate enough.

The non-linearity function is estimated for each ring using a maximum likelihood
approach.
- The ADC shape is estimated using warm data taken at the end of the mission
- The electronic response is measured every 100 seconds for each detector

Gain half difference [10"3]
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15
Ring [103]

20
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Data Jackknives are very efficient to
test the quality of the ADC correction

Correction allows to reduce the
systematics level by 1 to 2 orders of
magnitude!!

Limited by 4K line knowledge

2" correction performed at the
map-making stage.



ADC correction
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Fig. B.13. Simulation of residual polarization (Q on the top row
and U on the bottom row) maps at 100 GHz. Maps in the left
column are obtained by using a constant gain per ring, while
maps in the right column are obtained when the simulations are
run with the ADC NL model.



Estimated contributions to the
polarization spectra
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the level of noise. The ADC (; .
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Conclusions

Main systematics in Planck HFI data affecting the low multipoles:
- ADC non-linearities/ 4K lines

- CR glitches

- Band-pass mismatches
- Long time constants

- Far side-lobes

Some of the systematics could have been avoided or reduced with dedicated measurement on the
ground. In particular ADC and glitches

Dedicated methods removed efficiently most of the effects in Planck. Many effects are removed at
the map-making stage.

Most of the residuals are below the HFI Planck noise after correction
Dominant effects residual ADC non-linearities at the level of noise for | < 10

Future satellite experiments will have to deal with all those effects carefully, given the precision
required for r

Large number of detectors and scanning strategies with large precession angle will help.



