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Planck	is	a	project	
of	the	European	

Space	Agency,	with	
instruments	

provided	by	two	
scien>fic	Consor>a	
funded	by	ESA	

member	states	(in	
par>cular	the	lead	
countries:	France	
and	Italy)	with	

contribu>ons	from	
NASA	(USA),	and	

telescope	
reflectors	provided	
in	a	collabora>on	
between	ESA	and	a	

scien>fic	
Consor>um	led	
and	funded	by	
Denmark.	

The	 scien)fic	 results	 that	we	present	 today	are	 a	product	of	 the	Planck	
Collabora)on,	 including	 individuals	 from	 more	 than	 100	 scien)fic	
ins)tutes	in	Europe,	the	USA	and	Canada.			



Data Analysis 
•  DA challenge comes from 

both systematic and 
statistical uncertainties. 

•  DA pipeline is an alternating 
sequence of  
a)  domain-specific 

systematic mitigation 
b)  S/N-increasing data 

compression 
•  Must propagate both data 

and their covariance for a 
sufficient statistic. 
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Analysis Methods 
•  CMB data volumes: 
–  Time domain: Nt ~ Σdet  Sampling Rate (Hz) x Observation Time (s) 
–  Pixel domain: Np ~ Σfreq, pol  109 x Sky Fraction / [Beam (arcmin)]2 

•  CMB data analysis scaling dominated by: 
– Np

3  for exact methods with explicit covariance matrices. 
– Nmc Nt  for approximate methods with MC uncertainty quantification. 

•  Computational constraints (1% cycles/year on Top 10 system): 
–  2000 :  Np < 106   &  Nt < 1012 

–  2015 :  Np < 107   &  Nt < 1015 
–  2030 :  Np < 108   &  Nt < 1018 

•  Except in special cases, exact methods now computationally intractable. 

Assumes: 
–  Moore’s Law 
–  100% & 1% efficiency 



Simulations 
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•  Needed for: 
–  Forecasting 
–  Mission design & 

development 
–  DA validation & 

verification 
–  Data uncertainty 

quantification & 
debiasing (MC) 

•  From top to bottom, 
trade-off between: 
–  computational cost 
–  realism/reliability  
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Forecasting SimDA 
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•  Speed allows for exploration of full mission 
parameter space, at the price of domain-specific 
approximations. 

•  http://portal.nersc.gov/project/mp107/index.html 



Production SimDA With Feedback 
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	 	 	 				Statistics & Parameters 
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Sky Modeling 
•  Key Challenges: 
–  Reliability: noisy, confused, band-passed, 

beam-convolved templates (inc. Planck) 
and/or speculative modeling. 

–  Self-consistency: eg. CMB secondaries & 
extra-Galactic foregrounds 

–  Usability: software engineering 
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Component Separation 
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•  Key Challenges: 
–  Validation: are these the right algorithms for the (as yet unknown) real 

foregrounds? 
–  Verification: are these algorithms right given (as yet flawed) simulated 

foregrounds? 
–  Polarization! 



•  Key Challenges: 
–  Reliability: sufficiency of data covariance approximations. 
–  Tractability: disk space for many millions of MC maps. 
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TOD Challenges 
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•  Two bounding challenges: 
–  Tractability for massive Monte Carlo sets. 
–  Usability for exploratory pre-processing & mission characterization. 
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Massive Monte Carlos 
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•  Operation count scales with 
–  Number of MC realizations: Nmc ~ 104 

–  Number of map-makings per realization: Nmm ~ 10 
–  Number of PCG iterations per map-making: Nit ~ 10 
–  Number of operations per PCG iteration: Nops ~ 10 x Nt  

•  Required FLOP ~ 107 Nt  ~ 1019 for Planck 



High Performance Computing 
•  1019 FLOP ~ 105 CPU-years at 1% efficiency on 1GHz CPU 

⇒  Massive parallelism + Moore’s Law growth 
•  Whole-data reduction 

⇒  Tightly-coupled cores (not grid/cloud/at-home/etc) 

•  Planck solution:  
–  NERSC: Open-access HPC facility with long-term system upgrade plan. 

•  New Top 10 system every 2-3 years 
•  6,000 users from 50 countries 

–  NASA/DOE MOU guaranteed minimum annual NERSC allocation for 
mission lifetime: 
•  In practice 1% NERSC cycles/year ~ 105 x Peak FLOP/s 



Implementation/Architecture Evolution 
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Architecture Evolution 
•  Clock speed is no longer able to maintain Moore’s Law. 
•  Many-core and GPU are two major approaches. 
•  Both of these will require  
–  significant code development 
–  performance experiments & auto-tuning 

•  Eg. NERSC’s Cray XE6 system Hopper 
–  6384 nodes 
–  2 sockets per node 
–  2 NUMA nodes per socket 
–  6 cores per NUMA node 

•  What is the best way to run hybrid code 
 on such a system? 



Configuration With Concurrency 
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Results: Planck Full Focal Plane 8 
•  104 Monte Carlo realizations reduced to 106 maps 
–  multiple maps made per simulation 



Data & HPC Growth 
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Next Generation Challenges 
•  Computational Efficiency 
–  Required FLOP ~ 107 Nt   
–  Available FLOP ~ 105 x Peak 
–  Efficiency: ε > 102 Nt / Peak 

•  compare suborbital & space! 

•  Next-generation HPC challenges 
–  Energy constraints limiting Watt/FLOP               (Tianhe-2 ~ Belize!) 
–  More complex architectures will be harder to program efficiently 

•  system heterogeneity, deep memory hierarchies, dark silicon, etc 
–  End of Moore’s Law  
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Pre-Processing & Mission Characterization 

•  A limiting factor for Planck has been our ability to easily and quickly 
–  simulate detector-level data in full detail  
–  prototype pre-processing/mission characterization algorithms. 

•  As sensitivity increases, mitigating systematics and characterizing their 
residuals becomes ever more important. 
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TOAST Overview 
•  Competing requirements: 
–  Massively parallel & very efficient even on coming HPC architectures 
–  Easy for non-HPC experts to adapt, extend & run 

•  Re-implement entire TOAST framework as open source python modules 
–  Expanded developer base 
–  Rapid prototyping 
–  Split generic and experiment-specific elements 

•  Efficiency issues: 
–  Start-up cost: pre-bundle libraries (eg. pyinstaller) 
–  I/O avoidance: pass data between modules in memory 
–  Compute efficiency: link to compiled C(++) code at key points 



Example: Single-Detector Maps 
•  Single-detector maps provide powerful systematics tests since they avoid 

beam, bandpass mismatch issues. 
–  Also provide checks on single-detector systematics (side-lobes etc) 

•  Polarized single-detector maps require observations of each pixel with 
many attack angles. 

•  Comparing scanning strategies is an inherently time-domain activity. 
•  Satellite scans parameterized by precession & spin angles & rates. 
•  Compare 4 cases: 
–  Planck 
–  LiteBIRD (with HWP) 
–  COrE fast spin 
–  COrE slow spin 



Example: Single-Detector Hit Maps 
Planck                      LiteBIRD 

COrE Fast                   COrE Slow 



Example: Single-Detector Condition Maps 
Planck                      LiteBIRD 

COrE Fast                   COrE Slow 



TOAST Status 
•  Base framework & generic tools/scripts 
–  Public git repo https://github.com/hpc4cmb/toast 

•  Experiment-specific extensions & scripts: 
–  Private git repos https://github.com/hpc4cmb/toast-X 
–  X: toast-planck, toast-litebird, toast-core, toast-cmbs4, etc 

•  Planned additions/extensions: 
–  Xeon Phi KNL port/optimization 
–  On-the-fly band-pass integration 
–  HWP-varying beam, bandpass 
–  Multichroic/multiplexed cross-talk 
–  Planet/variable source observations 
–  Atmosphere & ground-pickup 



Energy-Constrained Node Evolution 

Magny-Cours      =>     Knights Landing 
(24 threads)         (~160 threads) 



•  A two-tier community-wide program: 
–  developing common, generic capabilities in the public domain 
–  deploying them for specific analyses within our various collaborations   

Public	Domain/Open	Source	Development	

A Modest Proposal 
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