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Introduction

Statement

Accurate interpretation of cosmological observations requires to account
for lensing corrections.

Current situation

Cosmic lensing is generally described with the perturbation theory, in
which matter is modelled as a fluid.

Problem

This approximation breaks down when very narrow light beams are
involved (e.g. for SN observations).
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The lensing Jacobi matrix

The Jacobi matrix D relates the morphology of a light beam to its
observed angular aperture

) (d&/dv),=6,

v A

€M(v) = DAg(v)08
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The lensing Jacobi matrix

The Jacobi matrix D relates the morphology of a light beam to its
observed angular aperture

) (d&/dv),=6,

v A

€M(v) = DAg(v)08

Its determinant defines the geometric distances

Da =+/|detD(vs)| and  D_ = (1+z)%Da.
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The Sachs equation

Evolution of D ruled by the geodesic deviation equation

d?DA,
dv?

= RéDCB

with the optical tidal matrix (projected Riemann tensor)

— v a
RAB = RMVPUSzk kpSB,
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The Sachs equation

Evolution of D ruled by the geodesic deviation equation

d?DA,

_ pANC
dV2 _RCD B

with the optical tidal matrix (projected Riemann tensor)
RaAB = Ruvposhk”kPsg,
decomposed in to Ricci part and a Weyl part as
R 0 Wi W5 R= —ER,Wk“k”
SN

0 X W2 Wl WAB = Cu,,posfjk"kpsg

generates focusing  generates distortions
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Ricci and Weyl lensing

@ Ricci focuses due to diffuse matter inside the beam, as
1
= —SRuwk'K’ = —4mGTy k'K = —47Gw?(p + p).

@ Weyl distorts and focuses mostly due to matter outside the beam.
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Ricci and Weyl lensing
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What is considered Ricci or Weyl depends on the beam'’s scale.

Question
How to efficiently model lensing due to very-small-scale structures?
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Analogy with Brownian motion

dust particle

water
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Analogy with Brownian motion

o
o ° ° o 00 ) ° ° o
® dust particle 3
o o o o o
° o o Oo
o
o ° o °o
() 00 0o
o0 o o b4 o oo o o
° ° o Water
o o o

@ Brownian motion due to a myriad of collisions between the particle
and water molecules.

@ It cannot be described with a fluid approach.

@ Mathematical model: stochastic force.
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The Sachs-Langevin equation

%:((R>+5R)D

@ (R) (deterministic) encodes the large-scale structure;

@ OR (stochastic) models small-scale fluctuations.
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The Sachs-Langevin equation

‘f\f:((R>+5R)D

@ (R) (deterministic) encodes the large-scale structure;

@ OR (stochastic) models small-scale fluctuations.

Hypotheses: statistical isotropy and white noises.

(Wa) =0,
(GR(v)Wa(w)) =0,
(OR(v)OR(w)) = Cr(v)o(v — w)
(Wa(v)Wa(w)) = Gu(v)dagd(v — w)

Covariance amplitude of X such that Cx ~ (6X)2AvVeoh.
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The lensing Fokker-Planck equation

The probability density function p(D, D; v) satisfies

1 0?p
+ = (Crdaedcr + Cwoacder — Cweaceer) PDesDep————i—,
2( R 0aEdcF + Cw dacder — Cweaceer) Des FD@DA58DCD

with a drift term and a diffusion term.

@ It generates evolutions equations for the moments of p(’D,’D; v).
@ Order-n moments form a closed system (no hierarchy).
o Everything is contained in the functions (R) (v), Cx(v), Gu(v).
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General results

e Correction to the mean angular distance. Let Dy be such
that Dy = (R) Dy (e.g. FLRW distance, or Kantowki-Dyer-Roeder
distance), then

Dp) — D
(5g) = L at first order in Weyl fluctuations

/dvl/ dv2/ dV3[DOD0(I;z)(v2)rch(V3)
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General results

e Correction to the mean angular distance. Let Dy be such
that Dy = (R) Dy (e.g. FLRW distance, or Kantowki-Dyer-Roeder
distance), then

5 (DA>—D
Dn =" pn.

at first order in Weyl fluctuations

/ dv1/ C|V2/ dV3[D0 D5 DO)(V2)]22CW(V3)

o Dispersion of the angular distance 03 = (D) — (Da)?,

2
& (o0, 2—2D6(C —2Cy) (22 2~2C D6+6/dx d25(DlA)
dx3 \ Dy OAV=RTEEWI Dy | T TTRTO dx2 |

with dx = dv/D?.
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Application to a Swiss-cheese model
The Einstein-Straus method in brief

Construction

FL spacetime

@ start from a homogeneous
and isotropic model;
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Application to a Swiss-cheese
The Einstein-Straus method in brief

FL spacetime

N .
. ) comoving sphere
7/

model

Construction

@ start from a homogeneous
and isotropic model;

@ pick a comoving sphere;
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Application to a Swiss-cheese
The Einstein-Straus method in brief

FL region
"cheese"

7 ~

\ 9
.« | comoving sphere
/
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Kottler region
"hole"
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model

Construction

@ start from a homogeneous
and isotropic model;

@ pick a comoving sphere;

© concentrate the matter it
contains at the center;
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Application to a Swiss-cheese model
The Einstein-Straus method in brief

Swiss—cheese model Construction
. A ) . @ start from a homogeneous
. ’ and isotropic model,

@ pick a comoving sphere;
: . © concentrate the matter it
contains at the center;
@ do it again, without
overlapping holes.

Amount of holes quantified by
the smoothness parameter

Ve
vV

a
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The Einstein-Straus method in brief
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Ricci=0
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Application to a Swiss-cheese model

Comparison with numerical simulations
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Application to a Swiss-cheese model

Comparison with numerical simulations
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Non-gaussianity: a limitation
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Conclusion
The idea

Modelling small-scale lensing as a diffusion process.

Advantages
@ Simple and flexible approach.
@ Paves the way to a multiscale treatment of cosmic lensing.

@ Potential applications: accurate estimation of SN lensing; lensing by a
stochastic background of gravitational waves, etc.

v

To be done

@ Apply the formalism to realistic cosmological models, and compare
with observations.

@ Merge with the standard treatment of lensing by the large-scale
structure.

@ Address the problem of non-Gaussianity.

v
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The (Kantowski-)Dyer-Roeder approximation
[Kantowski 69, Dyer & Roeder 72,73,74]

Effective distance-redshift relation in a clumpy universe.

Hypotheses:
@ Affine parameter-redshift relation identical to FL.
@ Neglected Weyl focusing.
© Reduced Ricci focusing wrt FL: Reif = aRpL

Leads to the KDR equation

d’Dy 2 N dinH\ dDy N 30Qmo [ Ho
dz? 1+z dz dz 2 H(z
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Swiss-cheese models and the (Kantowski-)Dyer-Roeder
approximation
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CMB VS SNe
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