Python Plots & Plots with GetDist

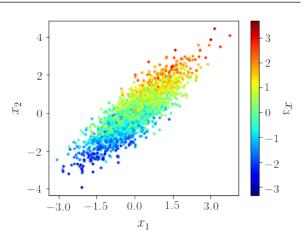
MANUEL TRASHORRAS, IFT/UAM-CSIC

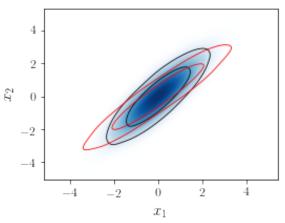
SCHOOL OF COSMOLOGY TOOLS, MARCH 2017

Contents

1. CosmoMC outputs:

chains, input parameters, parameter names and ranges.


- The GetDist package.
 How to compile & analyze MCMC chains.
- 3. GetDist outputs:


convergence, likelihood, marginalization and covariance/correlation.

4. The GetDist GUI.

How to compile & make interactive plots.

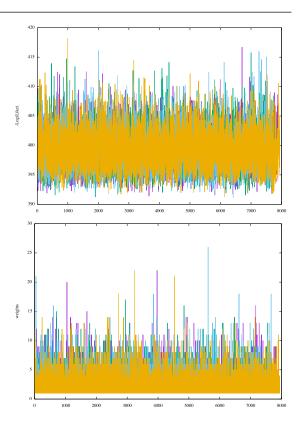
5. Useful links.

CosmoMC outputs

CosmoMC output files:

- root.inputparams
- root.likelihoods
- root.paramnames
- root.ranges
- root_1.txt, root_2.txt...

- \rightarrow CosmoMC execution parameters.
- \rightarrow Likelihoods taking part in the MCMC.
- \rightarrow Names of the chain parameters.
- \rightarrow Min. & max. values of the parameters.
- \rightarrow Chain file with weight, likelihood...


Of these, only go into GetDist/GetDistGUI...

root.ranges

root.paramnames

root_1.txt, root_2.txt...

Let's see them closer

CosmoMC outputs

root.ranges

root.paramnames

omegabh2 omegach2 theta tau omegak mnu meffsterile W	0.5000000E-02 0.1000000E-02 0.5000000E+00 0.1000000E-01 0.0000000E+00 0.6000000E-01 0.0000000E+00 -0.10000000E+01	0.100000E+00 0.990000E+00 0.100000E+02 0.800000E+00 0.000000E+00 0.600000E-01 0.000000E+00 -0.1000000E+01	max	es min. (1 st col.) and . (2 nd) col) value of prior. Hard limit.		omegabh2 \Omega_b h^2 omegach2 \Omega_c h^2 theta 100\theta_{MC} tau \tau logA \rm{ln}{(10^{10} A_s)} ns n_s calPlanck y_{\rm cal} acib217 A^{CIB}_{217}
w wa nnu yhe alpha1 deltazrei Alens Alensf fdm logA ns nrun nrunrun r	-0.1000000E+01 0.000000E+00 0.3046000E+01 0.240000E+00 0.0000000E+00 0.5000000E+01 -0.1000000E+01 0.2000000E+01 0.2000000E+00 0.0000000E+00 0.000000E+00 0.000000E+00	-0.1000000E+01 0.000000E+00 0.2400000E+00 0.0000000E+00 0.5000000E+00 0.1000000E+01 -0.1000000E+01 0.4000000E+01 0.1200000E+01 0.0000000E+00 0.0000000E+00 0.0000000E+00		1 st column: variable names within the co 2 nd column: LaTeX names for plots form	ode.	<pre>xi \xi^{LB}_{217} xi \xi^{LB}_{217} asz143 A^{LS}_{143} aps100 A^{FS}_{100} aps143 A^{PS}_{143} aps143217 A^{PS}_{143} aps143217 A^{PS}_{217} aksz A^{KSZ} kgal100 A^{{\rm dust}TT}_{100} kgal143 A^{{\rm dust}TT}_{143} kgal143217 A^{{\rm dust}TT}_{143} kgal143217 A^{{\rm dust}TT}_{217} cal0 c_{100} cal2 c_{217}</pre>
nt ntrun Aphiphi calPlanck acib217 ncib xi asz143	0.0000000E+00 0.0000000E+00 0.1000000E+01 0.9000000E+00 0.0000000E+00 -0.1300000E+01 0.0000000E+00 0.0000000E+00	0.0000000E+00 0.000000E+00 0.100000E+01 0.1100000E+01 0.200000E+03 -0.1300000E+01 0.1000000E+02		* stands for derived params, not MCMCs		H0* H_0 omegal* \Omega_\Lambda omegam* \Omega_m omegamh2* \Omega_m h^2 omeganuh2* \Omega_n h^2 omegamh3* \Omega_n h^3 sigma8* \sigma_8 s8omegamp5* \sigma_8 \Omega_m^{0.5}

CosmoMC outputs

root_1.txt

6.00000E+				
7.961286E-02	3.095802E+00	9.689967E-01	1.000905E+00	5.072992E+01
9.992040E-01	3.612232E+00	2.627977E+02	3.357852E+01	3.989548E+01
1.090350E+02	6.971365E+00	1.173381E+01	9.813909E+00	1.323354E+01
7.928245E+01	9.996154E-01	9.943139E-01	6.693115E+01	6.785014E-01
3.214986E-01	1.440243E-01	6.451439E-04	9.639711E-02	8.366901E-01
4.744104E-01	6.300274E-01	1.022705E+00	2.510974E+00	1.011810E+01
2.210495E+00	1.885119E+00	1.228440E+03	5.695538E+03	2.539407E+03
8.190871E+02	2.324751E+02	9.689967E-01	2.453968E-01	2.467233E-01
2.589648E+00	1.380795E+01	1.089994E+03	1.441675E+02	1.040856E+00
1.385086E+01	1.060047E+03	1.468169E+02	1.411623E-01	1.606773E-01
3.426328E+03	1.045747E-02	8.088600E-01	4.470520E-01	7.099794E-02
9.281875E+01	1.395937E+03	6.785478E-01	4.889963E-01	6.199804E-01
2.472889E+01	2.928717E+01	1.041134E+02	1.359998E+01	7.821099E+02
8.408603E+00	7.957099E+02			
1.00000E+	-00 4.051888E+	02 2.200543E-	02 1.235358E-	01 1.040069E+00
3.637712E-02	3.013929E+00	9.567040E-01	9.996694E-01	7.415064E+01
4.920187E-01	6.157384E+00	3.232672E+02	4.418528E+01	3.463432E+01
7.945601E+01	4.202721E+00	7.431789E+00	8.378352E+00	1.865833E+01
7.722513E+01	9.991016E-01	9.974961E-01	6.555908E+01	6.598728E-01
3.401272E-01	1.461864E-01	6.451439E-04	9.583848E-02	8.081931E-01
4.713416E-01	6.171993E-01	9.981566E-01	2.463189E+00	5.836487E+00
2.036726E+00	1.893808E+00	1.241035E+03	5.693506E+03	2.535620E+03
8.129329E+02	2.288998E+02	9.567040E-01	2.452225E-01	2.465484E-01
2.660936E+00	1.387338E+01	1.090697E+03	1.438041E+02	1.040291E+00
1.382344E+01	1.059322E+03	1.465729E+02	1.411301E-01	1.610327E-01
3.478011E+03	1.061516E-02	7.984244E-01	4.418493E-01	7.007005E-02
9.217150E+01	1.415249E+03	6.831381E-01	4.765368E-01	5.946455E-01
3.156666E+01	3.240660E+01	1.049658E+02	1.475256E+01	7.915088E+02
4464055.00	0.0000005.00			

1st point in the Markov chain. weight = 6.0 -LogLike = 4.0E+02 ...

In general we are interested in the 1D (histograms) and 2D (contours) marginalized posterior probability densities of this parameters.

2nd point in the Markov chain. weight = 1.0-LogLike = 4.1E+02 ...

GETDIST COMPILATION

Stand alone version: A. Lewis, March 2017 GitHub: https://github.com/cmbant/getdist

- 1. tar -xvf getdist-master.tar.gz
- 2. cd getdist-master
- 3. python setup.py install
- 4. python GetDist.py

CosmoMC version: A. Lewis, March 2017

- GitHub: https://github.com/cmbant/CosmoMC
- 1. tar xvf cosmomc-master
- 2. cd cosmomc-master
- 3. make getdist
- 4. ./getdist distparams.ini chains/root

Caution! GetDist only supported by versions
 Python 2.7 or newer.
 In Hydra = Python version 2.7

Caution! You need to add CosmoMC's python path to your environment variables. export PYTHONPATH=COSMOMCPATH/python:\$PYTHONPATH

 There is a ton of scripts to plot the chains in the /COSMOMCPATH/python directory...
 ... that can be used as a black box.

distparams.ini

- ./getdist distparams.ini chains/root
- Caution! The GetDist output folder has to be created beforehand or no output is created.
- Caution! Some parameters have hard boundaries that have to be taken care of:
 - #Need to give limits if prior cuts off distribution where not
 very small
 limits[r02]= 0 N

> For 1D plots:

#Parameters to use. If not specified use all parameters which have labels.

#plot_params = PARAM1 PARAM2 PARAM3...

> For 2D plots:

plot_2D_param = 0
#if both zero it will plot most correlated variables
plot_2D_num = 0
plot1 = XPARAM YPARAM
plot2 = XPARAM YPARAM

./getdist distparams.ini


[[mtrashorras@hydra0 cosmomc-master]\$./qetdist distparams.ini producing files in directory ./chains/plikHM_TT_lowTEB_lensing/dist/ reading chains/plikHM_TT_lowTEB_lensing/base_plikHM_TT_lowTEB_lensing_1.txt reading chains/plikHM_TT_lowTEB_lensing/base_plikHM_TT_lowTEB_lensing_2.txt reading chains/plikHM_TT_lowTEB_lensing/base_plikHM_TT_lowTEB_lensing_3.txt reading chains/plikHM_TT_lowTEB_lensing/base_plikHM_TT_lowTEB_lensing_4.txt Number of chains used = 4 var(mean)/mean(var), remaining chains, worst e-value: R-1 = 0.00644 20 RL: Thin for Markov: RL: Thin for indep samples: 22 RL: Estimated burn in steps: 126 (55 rows) mean input multiplicity = 2.27828971618135 Random seeds: 31201, 17315 rand_inst: 0 using 24417 rows, processing 2 parameters Approx indep samples: 2529 Best fit sample $-\log(Like) =$ 5638.37700000000 Ln(mean 1/like) = 5652.96527696196 mean(-Ln(like)) = 5646.14296077585 -Ln(mean like) = 5643,28888428720 Producing 1 2D plots producing 1 2D colored scatter plots [mtrashorras@hydra0 cosmomc-master]\$

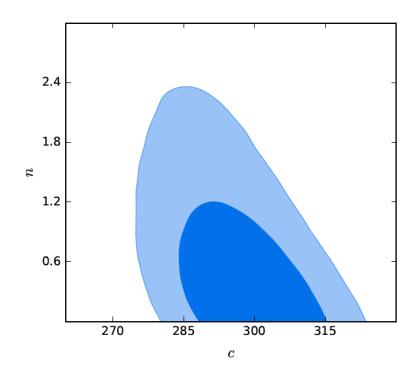
distparams.ini

- ./getdist distparams.ini (chains/root)
- Caution! The GetDist output folder has to be created beforehand or no output is created.
- Caution! Some parameters have hard boundaries that have to be taken care of:
 - #Need to give limits if prior cuts off distribution where not very small
 - limits[r02]= 0 N

- **1**. Set input & output folders:
 - file_root = chains/root
 - out_root =
 - out_dir = ./chains
 - plot_data_dir = ./chains
- 2. Set which chains to read:
 - chain_num = 4
 - first_chain = 1
 - exclude_chain = 3
- 3. Disregard burn-in if using raw chains:
 - ignore_rows = 0.3

distparams.ini

> For 1D plots:


#Parameters to use. If not specified use all parameters which have labels.

plot_params = PARAM1 PARAM2 PARAM3...

> For 2D plots:

plot_2D_param = 0
#if both zero it will plot most correlated variables
plot_2D_num = 0
plot1 = XPARAM YPARAM
plot2 = XPARAM YPARAM

distparams.ini

> For 1D plots:

#Parameters to use. If not specified use all parameters which have labels.

#plot_params = PARAM1 PARAM2 PARAM3...

> For 2D plots:

plot_2D_param = 0
#if both zero it will plot most correlated variables
plot_2D_num = 0
plot1 = XPARAM YPARAM
plot2 = XPARAM YPARAM

distparams.ini

./getdist distparams.ini chains/root

- Caution! The GetDist output folder has to be created beforehand or no output is created.
- Caution! Some parameters have hard boundaries that have to be taken care of:
 - #Need to give limits if prior cuts off distribution where not very small

limits[r02]= 0 N

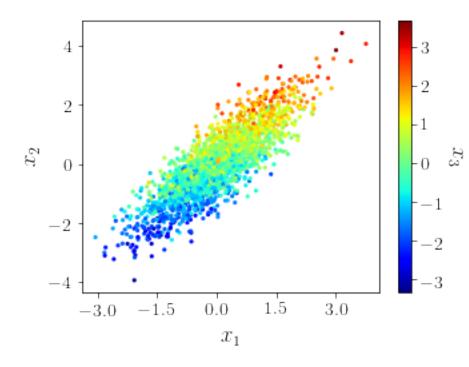
> For 3D plots:

#number of sample plots, colored by third parameter

#if last parameter is 0 or -1 colored by the parameter most correlated

#with one of the eigenvector directions (e.g. parallel or orthogonal to degeneracy)

num_3D_plots = 1


3D_plot1 = XPARAM YPARAM ZPARAM

For triangle 2D plots:

#Output 2D plots for param combos with 1D marginalized plots along the diagonal triangleplot = T

triangle_params = PARAM1 PARAM2 PARAM3...

distparams.ini

> For 3D plots:

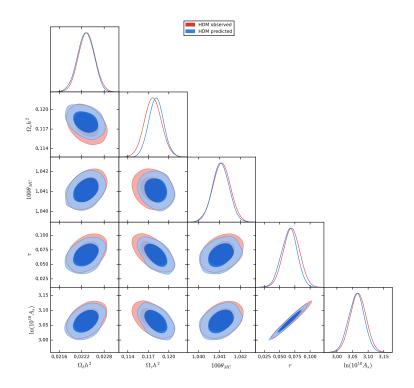
#number of sample plots, colored by third parameter

#if last parameter is 0 or -1 colored by the parameter most correlated

#with one of the eigenvector directions (e.g. parallel or orthogonal to degeneracy)

num_3D_plots = 1

3D_plot1 = XPARAM YPARAM ZPARAM


> For triangle 2D plots:

#Output 2D plots for param combos with 1D marginalized plots along the diagonal

triangleplot = T

triangle_params = PARAM1 PARAM2 PARAM3...

distparams.ini

> For 3D plots:

#number of sample plots, colored by third parameter

#if last parameter is 0 or -1 colored by the parameter most correlated

#with one of the eigenvector directions (e.g. parallel or orthogonal to degeneracy)

num_3D_plots = 1

3D_plot1 = XPARAM YPARAM ZPARAM

For triangle 2D plots:

#Output 2D plots for param combos with 1D marginalized plots along the diagonal

triangleplot = T

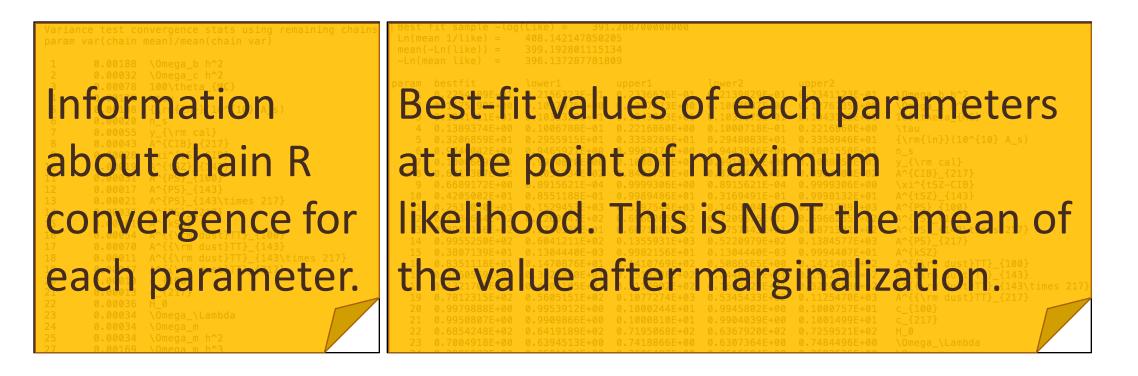
triangle_params = PARAM1 PARAM2 PARAM3...

GetDist outputs

root.converge	ightarrow Information about chain R convergence for each parameter.
root.likestats	ightarrow Best-fit values of each parameters at the point of maximum likelihood.
(action=2)	This is NOT the mean of the value after marginalization.
root.margestats	$ ightarrow$ μ , σ , lower and upper limits at the 68%, 95% & 99% C.L. of each parameter.
(action=4)	It takes into account whether the distribution has one tail (like r)
	or two tails (like $\Omega_b h^2$, $\Omega_c h^2$, τ , 100 θ_{MC} , n _s , A _s),
	or uneven (plus/minus) upper and lower error bands.
	This are the distribution values you put on your paper tables.
root.covmat	\rightarrow Covariance matric Cov _{XY} of the MCMC chain: Cov _{XY} = E[(X- μ_X)(Y- μ_Y)]
root.corrmat	\rightarrow Correlation matrix Corr _{XY} of the MCMC chain: Corr _{XY} = E[(X- μ_X)(Y- μ_Y)]/($\sigma_X \sigma_Y$)
	Using this can accellerate A LOT the convergence of your chain.

GetDist outputs: Conv. & Like. stats.

root.converge


root.likestats

Varian	e test convergence stats using remaining chains	Best	fit sample -log	(Like) = 391	208700000000				
	/ar(chain mean)/mean(chain var)		an 1/like) =	408.1421478502					
			-Ln(like)) =	399.1928011151					
1 0.00188 \Omega_b h^2			-Ln(mean like) = 396.137287781809						
2			,						
2	0.00032 \Omega_c h^2 0.00078 100\theta {MC}	param	bestfit	lower1	upper1	lower2	upper2		
2		1	0.2254609E-01	0.2156323E-01		0.2139829E-01		∖Omega_b h^2	
4	0.00130 \tau	2	0.1175199E+00	0.1097975E+00				\Omega_c h^2	
5	0.00138 {\rm{ln}}(10^{10} A_s)	3	0.1041411E+01	0.1039323E+01	0.1043063E+01	0.1039075E+01		100\theta_{MC}	
6	0.00020 n_s	4	0.1389374E+00	0.1006788E-01	0.2216860E+00			\tau	
/	0.00055 y_{\rm cal}	5	0.3206859E+01		0.3358265E+01			{\rm{ln}}(10^{10} A_s)	
8	0.00043 A^{CIB}_{217}	6	0.9740042E+00	0.9465927E+00	0.9967470E+00			n_s	
9	0.00028 \xi^{tSZ-CIB}	7	0.1000669E+01	0.9920820E+00	0.1008768E+01	0.9918367E+00		y_{\rm cal}	
10	0.00019 A^{tSZ}_{143}	8	0.6017307E+02	0.4051734E+02	0.8401751E+02			A^{CIB}_{217}	
11	0.00031 A^{PS}_{100}	9	0.6689172E+00					\xi^{tSZ-CIB}	
12	0.00017 A^{PS}_{143}	10	0.4205002E+01	0.8551188E-01	0.9989486E+01	0.3169491E-01		A^{tSZ}_{143}	
13	0.00021 A^{PS}_{143\times 217}	11	0.2537030E+03	0.1529453E+03	0.3397544E+03			A^{PS}_{100}	
14	0.00037 A^{PS}_{217}	12		0.1260847E+02		0.7209575E+01		A^{PS}_{143}	
15	0.00061 A^{kSZ}	13		0.9750135E+01		0.4757443E+01		A^{PS}_{143\times 217}	
16	0.00054 A^{{\rm dust}TT}_{100}	14	0.9955250E+02			0.5220979E+02		A^{PS}_{217}	
17	0.00070 A^{{\rm dust}TT}_{143}	15	0.3807139E+01	0.1304440E-03	0.9982156E+01	0.1304440E-03		A^{kSZ}	
18	0.00011 A^{{\rm dust}TT}_{143\times 217}	16		0.1470876E+01		0.5086565E+00		A^{{\rm dust}TT}_{100}	
19	0.00047 A^{{\rm dust}TT}_{217}	17	0.7560569E+01	0.3028060E+01	0.1513238E+02			A^{{\rm dust}TT}_{143}	
20	0.00010 c_{100}	18	0.1321709E+02		0.3113902E+02			A^{{\rm dust}TT}_{143\times 217]	
21	0.00013 c_{217}	19	0.7812315E+02	0.5605151E+02	0.1077274E+03	0.5345433E+02		A^{{\rm dust}TT}_{217}	
22	0.00036 H_0	20	0.9979888E+00	0.9953912E+00	0.1000244E+01			c_{100}	
23	0.00034 \Omega_\Lambda	21	0.9950807E+00	0.9909866E+00	0.1000810E+01	0.9904039E+00	0.1001499E+01	c_{217}	
24	0.00034 \Omega_m	22	0.6854248E+02	0.6419189E+02	0.7195068E+02	0.6367920E+02		H_0	
25	0.00034 \Omega_m h^2	23	0.7004918E+00	0.6394513E+00	0.7418866E+00	0.6307364E+00	0.7484496E+00	\Omega_\Lambda	
27	0.00169 \Omega m h^3	24	0.0000000000000000000000000000000000000	0.00011245.00	0 00000000000	0.05455045.00		\0~~~~	

GetDist outputs: Conv. & Like. stats.

root.converge

root.likestats

GetDist outputs: Marginalized distr.

root.margestats

Marginalized	limits: 0.68; 0	.95; 0.99										
parameter	mean	sddev	lower1	upper1	limit1	lower2	upper2	limit2	lower3	upper3	limit3	
omegabh2	0.2240105E-01	0.2720869E-03	0.2213491E-01	0.2267298E-01	two	0.2187295E-01	0.2293902E-01	two	0.2170909E-01	0.2311312E-01	two	∖Omega_b h^2
omegach2	0.1180795E+00	0.2601772E-02	0.1154620E+00	0.1207285E+00	two	0.1130735E+00	0.1231817E+00	two	0.1116684E+00	0.1247566E+00	two	∖Omega_c h^2
theta	0.1041093E+01	0.5252627E-03	0.1040571E+01	0.1041617E+01	two	0.1040062E+01	0.1042126E+01	two	0.1039734E+01	0.1042452E+01	two	100\theta_{MC}
tau	0.1122441E+00	0.3308596E-01	0.8022497E-01	0.1484359E+00	two	0.4454194E-01	0.1739681E+00	two	0.2469220E-01	0.1894897E+00	two	\tau
logA	0.3154177E+01	0.6216351E-01	0.3094375E+01	0.3222096E+01	two	0.3026148E+01	0.3270048E+01	two	0.2989510E+01	0.3298291E+01	two	{\rm{ln}}(10^{10} A_s)
ns	0.9711264E+00	0.7949215E-02	0.9630789E+00	0.9791998E+00	two	0.9560376E+00	0.9867325E+00	two	0.9510960E+00	0.9912493E+00	two	n_s
calPlanck	0.1000240E+01	0.2458639E-02	0.9978083E+00	0.1002675E+01	two	0.9953802E+00	0.1005107E+01	two	0.9939051E+00	0.1006521E+01	two	y_{\rm cal}
acib217	0.6232246E+02	0.6733444E+01	0.5558833E+02	0.6901537E+02	two	0.4907236E+02	0.7557394E+02	two	0.4498581E+02	0.7950621E+02	two	A^{CIB}_{217}
xi	0.5313423E+00	0.2832136E+00	0.000000E+00	0.1000000E+01	none	0.000000E+00	0.1000000E+01	none	0.000000E+00	0.1000000E+01	none	\xi^{tSZ-CIB}
asz143	0.5427851E+01	0.1893317E+01	0.3561682E+01	0.7552006E+01	two	0.1637007E+01	0.9010552E+01	two	0.000000E+00	0.1000000E+02	none	A^{tSZ}_{143}
aps100	0.2517272E+03	0.2818557E+02	0.2234962E+03	0.2794511E+03	two	0.1960807E+03	0.3074713E+03	two	0.1784630E+03	0.3247337E+03	two	A^{PS}_{100}
aps143	0.4084459E+02	0.8177795E+01	0.3268743E+02	0.4901528E+02	two	0.2453979E+02	0.5658535E+02	two	0.1987311E+02	0.6113381E+02	two	A^{PS}_{143}
aps143217	0.3865720E+02	0.9809581E+01	0.2859053E+02	0.4888123E+02	two	0.2004803E+02	0.5736936E+02	two	0.1499268E+02	0.6230958E+02	two	A^{PS}_{143\times 217}
aps217	0.9798726E+02	0.1101387E+02	0.8690086E+02	0.1090775E+03	two	0.7642706E+02	0.1188460E+03	two	0.6917582E+02	0.1260989E+03	two	A^{PS}_{217}
aksz	0.3026377E+01	0.2307365E+01	0.000000E+00	0.3837883E+01	>	0.000000E+00	0.7571021E+01	>	0.000000E+00	0.1000000E+02	none	A^{kSZ}
kgal100	0.7396573E+01	0.1890509E+01	0.5509501E+01	0.9289582E+01	two	0.3704003E+01	0.1112353E+02	two	0.2441027E+01	0.1214036E+02	two	A^{{\rm dust}TT}_{100}
kgal143	0.8954715E+01	0.1856776E+01	0.7110114E+01	0.1077449E+02	two	0.5298666E+01	0.1259713E+02	two	0.4214609E+01	0.1384710E+02	two	A^{{\rm dust}TT}_{143}
kgal143217	0.1691740E+02	0.4170524E+01	0.1275497E+02	0.2108686E+02	two	0.8633815E+01	0.2498006E+02	two	0.6236259E+01	0.2757912E+02	two	A^{{\rm dust}TT}
_{143\times 2	217}											
kgal217	0.8186303E+02	0.7436888E+01	0.7442150E+02	0.8929146E+02	two	0.6717990E+02	0.9629155E+02	two	0.6254587E+02	0.1007803E+03	two	A^{{\rm dust}TT}_{217}
cal0	0.9978826E+00	0.7817532E-03	0.9971161E+00	0.9986690E+00	two	0.9963363E+00	0.9994061E+00	two	0.9958315E+00	0.9998717E+00	two	c_{100}
cal2	0.9957631E+00	0.1461775E-02	0.9943244E+00	0.9972108E+00	two	0.9928894E+00	0.9986552E+00	two	0.9919926E+00	0.9995745E+00	two	c_{217}
H0*	0.6812991E+02	0.1211243E+01	0.6690890E+02	0.6935398E+02	two	0.6577937E+02	0.7051601E+02	two	0.6512496E+02	0.7125740E+02	two	H_0
omegal*	0.6954928E+00	0.1593819E-01	0.6801620E+00	0.7129643E+00	two	0.6632804E+00	0.7252183E+00	two	0.6532571E+00	0.7332156E+00	two	\Omega_\Lambda
omegam*	0.3045072E+00	0.1593819E-01	0.2870357E+00	0.3198380E+00	two	0.2747889E+00	0.3367197E+00	two	0.2667916E+00	0.3467447E+00	two	∖Omega_m
omegamh2*	0.1411257E+00	0.2421213E-02	0.1386906E+00	0.1435618E+00	two	0.1364763E+00	0.1458851E+00	two	0.1351923E+00	0.1473413E+00	two	\Omega_m h^2

GetDist outputs: Marginalized distr.

root.margestats

μ , σ , lower and upper limits at the 68%, 95% & 99%
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} $
It takes into account whether the distribution has
one tail (like r) or two tails (like $\Omega_b h^2$, $\Omega_c h^2$, τ , 100 θ_{MC} ,
n _s , A _s and uneven (plus/minus) error bands.

GetDist outputs: Covariance Matrices

root.covmat

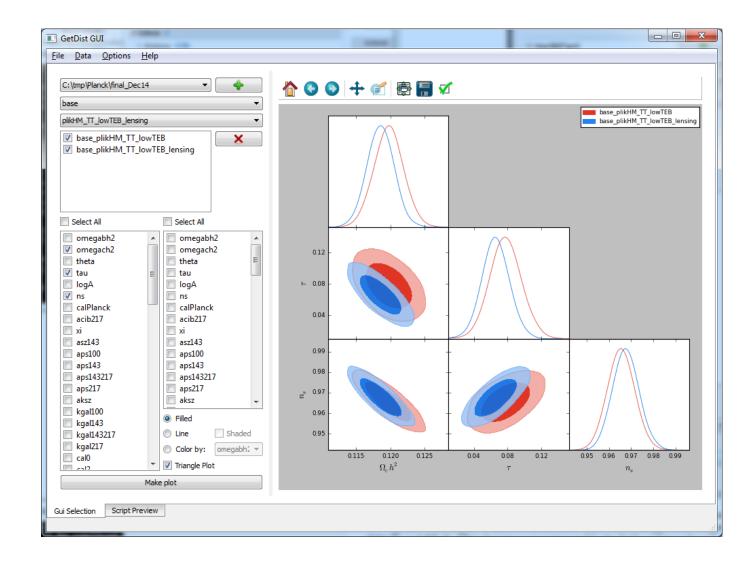
omegabh2 omegach2 theta tau logA ns calPlanck acib217 xi asz143 aps100 aps143 aps143217 aps217 aksz kgal100 kgal143 kgal143217 kgal217 cal0 cal2 -0.4904856E-06 0.8092008E-07 0.5746298E-05 0.1046478E-04 0.1545109E-05 0.2233939E-07 0.7403128E-07 -0.3924507E-03 0.9924280E-05 0.8743173E-04 -0.1579764E-02 -0.8710876E-03 -0.1780580E-03 0.6997603E-04 -0.1213103E-03 -0.1243924E-04 -0.1438233E-04 -0.3858449E-04 0.3016098E-04 0.2974383E-08 -0.3432493E-07 -0.4904856E-06 0.6769215E-05 -0.7830788E-06 -0.5789203E-04 -0.9961561E-04 -0.1847922E-04 -0.9909124E-07 0.2536625E-02 -0.6428382E-04 -0.5112298E-03 0.5767582E-02 0.1403701E-02 -0.3365252E-03 0.7156340E-03 0.1058943E-01 0.4988922E-04 0.1092689E-03 0.3574208E-03 0.7068472E-04 -0.2082193E-07 0.2802215E-06 0.8092008E-07 -0.7830788E-06 0.4602097E-07 0.2759009E-06 0.8013429E-05 0.1443024E-04 0.2479319E-05 -0.3676843E-03 0.8162940E-05 0.6235312E-04 -0.1446224E-02 -0.8087629E-03 -0.2359120E-03 0.4553454E-04 -0.9699484E-04 -0.3999631E-05 -0.1509502E-04 -0.4070976E-04 0.4398018E-04 -0.2870789E-07 0.2600451E-08 0.5746298E-05 -0.5789203E-04 0.8013429E-05 0.1094681E-02 0.2043952E-02 0.1950492E-03 -0.1692286E-05 -0.4789840E-01 -0.1941932E+00 -0.1541530E-01 0.1211651E-02 0.8941231E-02 -0.8997870E-01 -0.1027853E-01 0.2021908E-01 -0.2294695E-02 -0.2447339E-02 -0.7572012E-02 -0.8556180E-03 -0.1439203E-06 -0.5308757E-05 0.1046478E-04 -0.9961561E-04 0.1443024E-04 0.2043952E-02 0.3864302E-02 0.3436868E-03 0.8618189E-05 -0.9028255E-01 0.4554277E-01 0.2303450E-02 0.1676398E-01 -0.3578979E+00 -0.1655686E+00 -0.1494953E-01 -0.2983471E-01 -0.4745292E-02 -0.5121210E-02 -0.1457946E-01 0.4262537E-03 -0.7323391E-07 -0.1006075E-04 -0.1847922E-04 0.2479319E-05 0.1950492E-03 0.3436868E-03 0.6319002E-04 0.1323770E-06 -0.1292790E-01 0.1545109E-05 -0.4472613E-02 0.3327060E-03 0.2503872E-02 -0.5781278E-01 -0.2343101E-01 -0.9576717E-03 0.7291539E-02 0.1430250E-03 -0.4512391E-03 -0.1817738E-02 0.2005840E-03 -0.1835668E-06 -0.1287372E-05 0.2233939E-07 -0.9909124E-07 0.4602097E-07 -0.1692286E-05 0.8618189E-05 0.1323770E-06 0.6044907E-05 0.6099607E-03 -0.5085330E-05 0.2590295E-04 0.3481454E-02 0.1609045E-03 0.1535810E-03 0.1238527E-02 0.9124751E-05 -0.1021976E-05 0.2594028E-04 0.2378471E-04 0.8576764E-03 -0.3239925E-08 -0.2934137E-07 0.2536625E-02 -0.3676843E-03 -0.4789840E-01 -0.9028255E-01 -0.1292790E-01 -0.3924507E-03 0.6099607E-03 0.4533927E+02 -0.5545483E+00 -0.2171337E+01 0.5201484E+02 0.4308102E+01 -0.2121300E+02 -0.6211410E+02 0.1063413E+01 0.6300170E-01 0.1298894E+00 -0.1682619E+01 -0.1827893E+02 -0.2634071E-03 0.4612065E-02 0 00242005 C420202E A 33434545 A

GetDist outputs: Covariance Matrices

root.covmat

Covariance matrix Cov_{xY} of the MCMC chain: $Cov_{xY} = E[(X-\mu_x)(Y-\mu_Y)],$ related to the correlation matrix $Corr_{XY}$ of the MCMC chain by $Cov_{XY} = Corr_{XY}/(\sigma_x\sigma_Y).$ And to the idea of the Figures of Merit in a 2D contour plot: $FoM_{XY} = 1/Area_{XY} = |M(Cov)_{XY}|^{1/2} = (\sigma_x^2 \sigma_Y^2 - Cov_{xY}^2)^{1/2}$

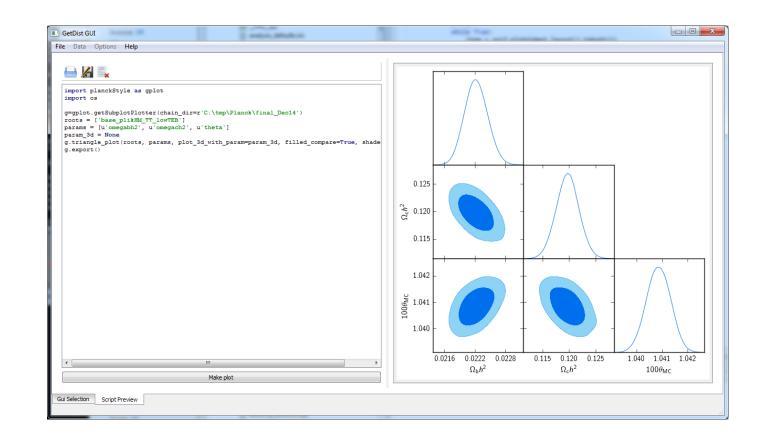
The GetDist GUI


GETDIST GUI COMPILATION & EXECUTION

- Stand alone version: A. Lewis, March 2017 GitHub: <u>https://github.com/cmbant/getdist</u>
- 1. Get MacPorts/PiP/Brew to install GetDist port install python27 port select --set python python27 → NN = 27 port install py-matplotlib port install py-scipy port install py-pyside port install texlive-latex-extra port install texlive-fonts-recommended port install dvipng
- Also for the GetDist GUI you also need port install pyNN-pyside port install pyNN-pyqt4
- Add to hour ~/.bashr file the lineS export LC_ALL=en_US.UTF-8 export LANG=en_US.UTF-8
- 4. Compile and launch the GetDist GUI
 - 1. cd getdist-master
 - 2. python setup.py install
 - 3. python GetDistGUI.py

The GetDist GUI GUI – Interactive mode

Advantages: Extremly easy & fast to use.


Disadvantages: Not as customizable as Python.

The GetDist GUI GUI – Python mode

Advantages: Almost customizable as Python.

Disadvantages: Not many, really. You can modify the script as much as you like.

Useful links

Introduction to MCMCs:http://www.uco.es/~ajcuesta/cosmomc-ugr---day-1.pdfIntroduction to CosmoMC:http://www.uco.es/~ajcuesta/cosmomc-ugr---day-2.pdfIntroduction to GetDist:http://www.uco.es/~ajcuesta/cosmomc-ugr---day-3.pdf

CosmoCoffee wiki:http://cosmocoffee.info/CosmoMC Readme:http://cosmologist.info/cosmomc/readme.htmlPlanck Readme:http://cosmologist.info/cosmomc/readme_planck.htmlPython Readme:http://cosmologist.info/cosmomc/readme_planck.htmlGetDist GUI Readme :http://cosmologist.info/cosmomc/readme_gui.html