
MontePython Exercises

IFT School on Cosmology Tools

Miguel Zumalacarregui

March 15, 2017

The exercises have been ranked by level of difficulty (boring = v, interesting = v v, challenging = v v v)

and whether they require hi class (h c). Exercises marked� require short MCMC execution time and
have parts suitable for execution on a laptop (do when varying 1-2 parameters, otherwise use Hydra).

MP in Hydra: To run MP in Hydra you will need to do the following:

1. Load the necesary modules in your script

module load numpy

module load scipy

2. For some reason (?) MontePython has an error when runninng as is, but it works in the LUSTRE
filesystem. You have a folder asigned in that filesystem under

/lustre/school/studXX/

Make sure that the output directory (-o) is situated there, i.e. launch with

python montepython/MontePython.py run -p your_model.param \

-o /lustre/school/studXX/your_model

3. For (optional) paralelization, add prun to your call (i.e. prun python montepython/...). You
could in principle use module load mpi4py but that’s not necessary (and makes Hydra complain).

Exercise 1: The Ωm − ΩΛ plane (v→ v v, �)

This exercise relies on constraints from the cosmic expansion: is fast enough to be done on a laptop
(∼ 0.1s/model on mine). You can let it run during the coffee break and make some cool plots when you
come back!.

We will obtain Baryon Acoustic Oscillation (BAO) constraints on the Ωm − ΩΛ plane for a two
parameter model. We will vary Ωcdm and Ωk, keeping Ωb and H0 fixed by setting the 1σ values to zero
(recall ΩΛ is a derived parameter). Use the following example:

data.experiments=[’bao_boss’,’bao_boss_aniso’]

data.parameters[’Omega_cdm’] = [0.3, 0, None, 0.05, 1, ’cosmo’]

data.parameters[’Omega_k’] = [0.0, -0.5,0.5, 0.05, 1, ’cosmo’]

data.parameters[’Omega_b’] = [0.045, 0, None, 0.0, 1, ’cosmo’]

data.parameters[’h’] = [0.68, 0, None, 0, 1, ’cosmo’]

data.parameters[’Omega_Lambda’] = [1,None,None,0, 1, ’derived’]

data.cosmo_arguments[’YHe’] = 0.24

data.N=10

data.write_step=5

1

It is important to give meaningful names to the files and folders to keep track of your work. I suggest
labeling this combination of parameters and experiments as lc_bao.param (this notation means l for
Λ, c = CDM and bao = BAO from BOSS galaxies).
Note: the limits on Ωk are so that CLASS does not coplain. Fixing the Helium fraction YHe is good to
run other cases, like SNe constraints varyinb Ωb as well.

The basic part of the exercise (v) involves the following steps:

a) Write the above into a .param file and do a short Monte Python run:

time python montepython/MontePython.py -p lc_bao.param -o chains/lc_bao -N 10

The time prefix is just to know how long it will take (you can use that information to adjust the
parameters to how much time you have).

b) Now you can do the serious run

mpirun -np 4 python montepython/MontePython.py -o chains/lc_bao -N 10000

where you can adjust N to a larger number (-N 10000 should be feasible, if you take a longer break
you can increase accordingly). Because you are running from a folder with a log.param you don’t
need to provide the .param file again.

B Add either --update 300 (to improve the covariance matrix on the fly) or provide a covariance
matrix with -c name.covmat (MP will interpret the parameters for you).

The call mpirun -np 4 (use prun in Hydra, number of processes automatically determined) at
the begining of the command runs 4 chains in the same console (adjust -np to your number of
cores). If you don’t have openmpi you can remove mpirun and just run on -np different consoles.

c) Relax while your computer does the work. If you come back early and there are enough points (go
to output directory and type wc -l *.txt to count) you can cancell the work (press Ctrl+c).

d) Analyze the chains. You can use MP in info mode:

python montepython/MontePython.py info chains/lc_bao

plus the optional options. Take at the nice plots in chains/lc_bao/plots and all the other files
generated in the analysis.

e) You are encouraged to play with the different options. Try to plot the marginalized contours using
Ωm = Ωcdm + Ωb instead of Ωcdm.

f) Once you have several datasets (some ideas are suggested below) you can plot them together. Just
feed MP info mode with several folders. How do the different constraints compare?

BMake sure that each model/data combination goes to a different -o directory! Otherwise you’ll
keep running the same thing over and over again.

The rest of the exercise is optional and slightly harder (v v). Bear in mind that the amount of free
parameters increases and the runs will require more time.

Realistic BAO: By not varying Ωb, H0 we are fixing the comoving BAO scale rs (i.e. the coordintate
size of the standard ruler). Although rs is well constrained by the CMB, there is some variability, which
you may take into account by letting Ωb vary within some range.

Do a run varying the baryon fraction. You can do this in two ways

a) More elegant: add a gaussian prior on ωb ≡ Ωbh
2. This is the goal of exercise 2.

b) Easier: dd a hard prior to allow for 2σ devaitions (change Omega_b→ omega_b in the .param file,
as well as the central value and limits).

2

Supernovae: There are other background observations besides BAO, like type 1A Supernovae (SNe).
Run the same model with the Union SNe compilation with data.experiments=[’sne’].

For a more challenging option you can use the JLA SNe sample data.experiments=[’JLA’]. You need
to download the data, the numexpr package and add several nuisance parameters. Read the instructions
in the likelihood folder and jla.param.

Exercise 2: Adding a new likelihood (v, �)

Adding a new likelihood in Montepython is only as complex as the likelihood itself. You will get to see
with this simple example.

Our goal is to add a gaussian prior on the physical baryon density using the Planck result

ωb = Ωbh
2 = 0.02222± 0.00023 , (1)

(https://arxiv.org/abs/1502.01589, Table 1, col 6). The steps are:

a) Copy a simple likelihood folder from montepython/likelihoods (for instance hst) and rename it
as cmb_baryon. Change the name of the .data file to be cmb_baryon.data.

b) In cmb_baryon.data change hst→cmb_baryon and h→omega_b. Update the central value and
standard deviation according to eq. (1).

c) Update __init__.py by changing the name of the class, the data (as given .data file, it is read
as self.xxx) and the theoretical value (cosmos.omega_b() as given by classy)

You can launch a short run with

data.experiments=[’cmb_baryon’]

data.parameters[’omega_b’] = [2, 0, None, 0.02, 1e-2, ’cosmo’]

data.N=10

data.write_step=5

and check that the chains are roughly gaussianly distributed around the mean (note that the parameter
is rescaled by 1e-2).

Exercise 3: Modified gravity constraints (v v, h c)

You implemented a model in hi_class, now you can test whether it makes sense or not!
Run an MCMC for the model you implemented in CLASS/hi_class sheet exercise 4. Run varying

one of the α’s parameters and the exponent n. For simplicity you can use ’synthetic’ likelihoods like
fake_planck_bluebook,euclid_pk, euclid_lensing and/or fake_desi. What happens to the con-
straints when n becomes very small? What happens when it’s large?

Exercise 4: Running of the Planck Mass (v v v, h c, �)

This exercise is meant to use hi_class interfaced with Monte Python while using only background
constraints, similarly to the previous exercise. Because the models currently implemented do not affect
the background expansion, you will need to make some minor changes.

The first part of the exercise is to introduce a model with non-trivial background dynamics in
hi_class. The Friedmann equations in hi_class (see background_gravity_functions) it read

H2 = ρ , H ′ = −3

2
a (ρ+ p) , (hi class) , (2)

where ρ is the total energy density, including the contribution from modified gravity. Recall that H = ȧ/a
(derivative wrt cosmic time, while F ′ = Ḟ /a denotes derivative wrt conformal time) and in CLASS the
prefactor 8πG/3 is absorbed in the units of ρ.

3

https://arxiv.org/abs/1502.01589

A more interesting model amounts to letting the effective Planck mass M2
∗ determine the cosmological

strength of gravity by entering the Friedmann equation explicitly:

H2 =
ρ

M2
∗
, H ′ = −3

2
a
ρ+ p

M2
∗
, (modified) (3)

so that M2
∗ > 1 weakens the gravitational strength (i.e. Geff = M−2

∗). This model is described in Z.
Huang’s https://arxiv.org/abs/1511.02808, along with observational constraints, some of which we
can reproduce.

The models (2, 3) are related by a redefinition of the dark energy density entering in ρ. By comparing
both sets of equations we see that they are related by the following redefinition

ρsmg −→ ρsmg +
1−M2

∗
M2
∗

ρ , (4)

where ρ is the total energy density (including ρsmg), and similarly for the pressure. The existence
of such a simple redefinition is why we have decided to keep the standard Friedmann equations for
parameterizations (not to mention things like compatibility with the perturbation equations, or the
cosmic sum rule). If you believe (and it is a reasonable belief) that (3) is the right description for modified
gravity, or you just want to explore its consequences, you can just define a new expansion_model_smg.

a) Start by including eq. (4) in an expansion model. To keep things general we can use the (w0 −
wa) parameterization as the base (wowa in the code). In background_gravity_functions (of
background.c) search for wowa and add

pvecback[pba->index_bg_rho_smg] += (1.-M_pl)/M_pl*(pvecback[pba->index_bg_rho_smg] +

pvecback[pba->index_bg_rho_tot_wo_smg]);

pvecback[pba->index_bg_p_smg] += (1.-M_pl)/M_pl*(pvecback[pba->index_bg_p_smg] +

pvecback[pba->index_bg_p_tot_wo_smg]);

Add a message to background_gravity_parameters in case wowa, so you know that you are
modifying the Friedmann equation.

Better implementation: Instead of just modifying an existing parameterization, add an additional
expansion_model_smg following the guidelines given in the hi_class exercise 4 (name suggestion
wowa_Mrun). This will take a bit longer, but allows (2) and (3) to coexist.

b) Compile and make sure that the code works. Run it with the following .ini file

Omega_fld = 0

Omega_Lambda = 0

Omega_smg = -1

expansion_model = wowa #or your new expansion model name

expansion_smg = 0.7, -1, 0

gravity_model = propto_omega

parameters_smg = 1., 0., 1.0., 0., 1.

root = output/Mpl_run_test_1.0_

write background = yes please

Plot the angular diameter distance. You should find a ≈ −2.5% decrease for cM = 1 relative to
cM = 0. Although (3) näıvely suggests that a higher M2

∗ reduces the Hubble rate (which would
increase the distances), the parameters are adjusted so the value of H0 is equal in all cases and
hence H(z) increases with αM at intermediate redshifts.

BNote that we’re interested mainly in the background. However, with the modifications you have
just made all linear perturbations (Cl, P (k), etc...) are automatically consistent with the model.

c) Now test the model against the data! Vary the value of cM for BAO and/or SNe. I suggest that
you start by varying only αM , with all the other parameters fixed. For the .param file try:

data.cosmo_arguments[’expansion_model’] = ’wede’

4

https://arxiv.org/abs/1511.02808

data.parameters[’expansion_smg__1’] = [0.7, 0,None, 0.0, 1, ’cosmo’]

data.parameters[’expansion_smg__2’] = [-1, 0,None, 0.0, 1, ’cosmo’]

data.parameters[’expansion_smg__3’] = [0.0, 0,None, 0.0, 1, ’cosmo’]

data.cosmo_arguments[’gravity_model’] = ’propto_omega’

data.parameters[’parameters_smg__1’] = [1., 0, None, 0, 1, ’cosmo’]

data.parameters[’parameters_smg__2’] = [0., None,None, 0, 1, ’cosmo’]

data.parameters[’parameters_smg__3’] = [0., -2 ,2 , 1e-1, 1, ’cosmo’]

data.parameters[’parameters_smg__4’] = [0., 0, None, 0, 1, ’cosmo’]

data.parameters[’parameters_smg__5’] = [1., None,None, 0, 1, ’cosmo’]

d) Plot the results and compare with https://arxiv.org/abs/1511.02808.

e) To make things more interesting repeat the run with different datasets and parameters.

5

https://arxiv.org/abs/1511.02808

