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The context: forward di-hadrons 
Forward dijets in dilute-dense hadronic collisions

ŝ = (p + k)2

t̂ = (p2 � p)2

û = (p1 � p)2

Incoming partons’ energy fractions:

x1 = 1p
s
(|p1t |ey1 + |p2t |ey2)

x2 = 1p
s
(|p1t |e�y1 + |p2t |e�y2)

y1,y2�0�! x1 ⇠ 1

x2 ⌧ 1

Gluon’s transverse momentum (p1t , p2t imbalance):

|kt |2 = |p1t + p2t |2 = |p1t |2 + |p2t |2 + 2|p1t ||p2t | cos ��
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•  large-x projectile (proton) on small-x target (proton or nucleus) 

so-called “dilute-dense” kinematics 

hk1ti ⇠ ⇤QCD hk2ti ⇠ Qs(x2)

Qs(x2) � ⇤QCD

prediction: modification of the kt distribution in p+Pb vs p+p collisions 

|p1t|, |p2t| � |kt|, Qs

CM (2007) 



Di-hadron angular correlations  

central d+Au collisions 
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comparisons between d+Au → h1 h2 X (or p+Au → h1 h2 X ) and p+p → h1 h2 X 
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however, when y1 ~ y2 ~ 0 (and therefore xA ~ 0.03), 
the p+p and d+Au curves are almost identical 
€ 
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Color Glass Condensate (CGC) 
calculation of forward di-jets 



Saturation calculation 
b: quark in the amplitude 
x: gluon in the amplitude 
b’: quark in the conj. amplitude 
x’: gluon in the conj. amplitude 

CM (2007) 



Saturation calculation 

collinear factorization of quark density in deuteron  
Fourier transform k┴ and q┴ 
into transverse coordinates 

pQCD q → qg  
wavefunction 

b: quark in the amplitude 
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Saturation calculation 

collinear factorization of quark density in deuteron  
Fourier transform k┴ and q┴ 
into transverse coordinates 

pQCD q → qg  
wavefunction 

b: quark in the amplitude 
x: gluon in the amplitude 
b’: quark in the conj. amplitude 
x’: gluon in the conj. amplitude 

interaction with target nucleus 
n-point functions that resums the powers of gS A and the powers of αS ln(1/xA) 

CM (2007) 



Scattering on the dense target 

scattering of a quark: 
•  this is described by Wilson lines 

dependence kept implicit in the following 

in the CGC framework, any cross-section is determined by colorless combinations of 
Wilson lines           , averaged over the CGC wave function ][][

2
ααα SDS xx ∫ Φ=][αS
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scattering of a quark: 
•  this is described by Wilson lines 

dependence kept implicit in the following 

in the CGC framework, any cross-section is determined by colorless combinations of 
Wilson lines           , averaged over the CGC wave function ][][

2
ααα SDS xx ∫ Φ=][αS

))()((1 1  ),( xyyx FF
c

qq WWTrNT +−=

x : quark transverse coordinate 
y : antiquark transverse coordinate 

the      dipole scattering amplitude: qq

this is the most common Wilson-line average 

•  the 2-point function or dipole amplitude 

or 



2-  4-  and 6-point functions 

the scattering off the CGC is expressed through the following correlators of Wilson lines: 

if the gluon is emitted before the interaction, four partons scatter off the CGC 

if the gluon is emitted after the interaction, only the quarks interact with the CGC 

interference terms, the gluon interacts in the amplitude only (or c.c. amplitude only) 

•  coming back to the double-inclusive cross-section 



Connections with 
high-energy factorization 

and TMD factorization 



The linear regime 

•  taking all involved momenta >> Qs, the CGC formula reduces to 

e.g. Kutak and Sapeta (2012) 
this is the so-called high-energy factorization (HEF) formula 

d�pA!dijets+X

dy1dy2d2p1td2p2t
=

↵2
s

⇡(x1x2s)2

X

a,c,d

x1fa/p(x1, µ
2) |Mag⇤!cd|2 Fg/A(x2, k

2
t )

1

1 + �cd
.

HEF and generalized TMD factorization

High Energy Factorization

d�pA!dijets+X

dy1dy2d
2p1td

2p2t

/
X

a,c,d

x1fa/p(x1, µ
2) |Mag⇤!cd |2Fg/A(x2, kt)

x1fa/p(x1, µ2) – collinear PDF in p, suitable for x1 ⇠ 1

|Mag⇤!cd |2 – matrix element with o↵-shell incoming gluon

Fg/A(x2, kt) – unintegrated gluon PDF in A, suitable for x2 ⌧ 1

Generalized TMD factorization

d�pA!dijets+X

dy1dy2d
2p1td

2p2t

/
X

a,c,d

x1fa/p(x1, µ
2)

X

i

H
(i)

ag!cd
F (i)

ag
(x2, kt)

H
(i)

ag!cd
– hard factor of i-th type, with on-shell incoming gluon

F (i)

ag (x2, kt) – unintegrated gluon distribution of i-th type in A
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X
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2
t )

1

1 + �cd
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the unintegrated gluon density involved is also the also involved in deep 
inelastic scattering, it is related to the dipole scattering amplitude 
 

N (x, r)

Fg/A(x, k
2) =

Nc

↵s(2⇡)3

Z
d2b

Z
d2r e�ik·rr2

r N (x, r)
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The back-to-back regime 

•  a factorization can be established in the small x limit, for nearly 
back-to-back di-jets Dominguez, CM, Xiao and Yuan (2011) 

this is the so-called Transverse Momentum Dependent (TMD) factorization formula 
e.g. Bomhof, Mulders and Pijlman (2006) 

|p1t|, |p2t| � |kt|, Qs

d�
pA!dijets+X

dy1dy2d
2p1td

2p2t
=

↵
2
s

(x1x2S)2

"
X

q

x1fq/p(x1, µ
2)

X

i

H
(i)
qg F (i)

qg (x2, |p1t + p2t|)

+
1

2
x1fg/p(x1, µ

2)
X

i

H
(i)
gg F (i)

gg (x2, |p1t + p2t|)
#

but it involves several unintegrated gluon densities    and 
and their associated hard matrix elements 

F (i)
qg F (i)

gg
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s
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"
X

q
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H
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F (i)
qg F (i)
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•  only valid in asymmetric situations 

does not apply with unintegrated parton densities for both colliding projectiles 

Collins and Qiu (2007), Xiao and Yuan (2010) 



•  this TMD factorization formula for         can be derived 
in two ways: 

The back-to-back regime 

from the generic TMD factorization framework (valid up to power corrections): 
by taking the small-x limit 
 
 
from the CGC framework (valid at small-x): by extracting the leading power 

 Dominguez, CM, Xiao and Yuan (2011) 

Bomhof, Mulders and Pijlman (2006) 
Kotko, Kutak, CM, Petreska, Sapeta and van Hameren (2015) 

CM, Petreska, Roiesnel (2016) 

x2 ⌧ x1 ⇠ 1
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x2 ⌧ x1 ⇠ 1

F (1)
qg (x2, |kt|) =

4

g2

Z
d2xd2y

(2⇡)3
e�ikt·(x�y)

⌦
Tr

⇥
(@iUy)(@iU

†
x)
⇤↵

x2

F (2)
qg (x2, |kt|) = � 4

g2

Z
d2xd2y

(2⇡)3
e�ikt·(x�y) 1

Nc

⌦
Tr

⇥
(@iUx)U

†
y(@iUy)U

†
x

⇤
Tr

⇥
UyU

†
x

⇤↵
x2

Ux = P exp


ig

Z 1

�1
dx+A�

a (x
+,x)ta

�

these Wilson line correlators also emerge directly in CGC calculations 
when     |p1t|, |p2t| � |kt|, Qs

•  at small x, the TMD gluon distributions can be written as: 
(showing here the          channel TMDs only ) qg⇤ ! qg



Evaluating the gluon TMDs 
at small-x 



The other TMDs at small-x 
•  involved in the          and          channels 

with a special one singled out: the Weizsäcker-Williams TMD 

gg⇤ ! qq̄ gg⇤ ! gg

F (3)
gg (x2, kt) = � 4

g2

Z
d2xd2y

(2⇡)3
e�ikt·(x�y)

⌦
Tr

⇥
(@iUx)U

†
y(@iUy)U

†
x

⇤↵
x2



Jalilian-Marian, Iancu, 
McLerran, Weigert, 
Leonidov, Kovner 

x evolution of the gluon TMDs 
the evolution of Wilson line correlators with decreasing x can 

be computed from the so-called JIMWLK equation 

a functional RG equation that resums the 
leading logarithms in 

d

d ln(1/x2)
hOix2

= hHJIMWLK Oix2

y = ln(1/x2)



Jalilian-Marian, Iancu, 
McLerran, Weigert, 
Leonidov, Kovner 

x evolution of the gluon TMDs 
the evolution of Wilson line correlators with decreasing x can 

be computed from the so-called JIMWLK equation 

a functional RG equation that resums the 
leading logarithms in 

d

d ln(1/x2)
hOix2

= hHJIMWLK Oix2

y = ln(1/x2)

the distribution of partons 
as a function of x and kT 

•  qualitative solutions for the gluon TMDs: 

The curve translates 
to the right with 

decreasing x  



JIMWLK numerical results 

saturation effects impact the various gluon TMDs in very different ways 

using a code written by Claude Roiesnel 

CM, Petreska, Roiesnel (2016) initial condition at y=0 : MV model 
evolution: JIMWLK at leading log 



Back to experiments 



STAR forward di-hadrons 

cannot be applied to the overall ΔΦ range, but improves the previous 
approximations near ΔΦ = π (also gluon initiated process are included) 

new description of the away-side peak suppression 

Albacete, Giacalone, CM and Matas, in preparation 
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LHCb forward di-hadrons 
the delta phi distribution shows: 
- a ridge contribution (could be flow, Glasma graphs or something else) 
- the remainder of the away-side peak can be qualitatively described in the CGC 

•  LHCb measured the di-hadron correlation function at forward rapidities 
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-  need p+p baseline to be conclusive 
Giacalone and CM, in progress 



LHCb forward di-hadrons 
the delta phi distribution shows: 
- a ridge contribution (could be flow, Glasma graphs or something else) 
- the remainder of the away-side peak can be qualitatively described in the CGC 

•  LHCb measured the di-hadron correlation function at forward rapidities 

suppression of the away-side peak 
with increasing centrality seen in the data 
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Conclusions I 

 

•  for forward di-hadron production, TMD factorization and CGC 
calculations are consistent with each other in the overlapping 
domain of validity 
 

 small x and leading power of the hard scale 
 

•  saturation physics is relevant if the di-hadron transverse 
momentum imbalance |kt| is of the order of the saturation scale Qs 

•  the cross-section involves several gluon TMDs, with different 
operator definitions 

|p1t|, |p2t| � |kt|, Qs



Conclusions II 

 

•  given an initial condition, the gluon TMDs can all be obtained at 
smaller values of x, from the JIMWLK equation 

•  as expected, the various gluon TMDs coincide at large transverse 
momentum, in the linear regime 

•  however, they differ significantly from one another at low transverse 
momentum, in the non-linear saturation regime 

•  we hope to see at the LHC, a confirmation of the saturation signal 
seen at RHIC 


