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Monopole & Exotics Detector At LHC



velocity: β = v/c

Key feature: high ionisation
charge

High ionisation (HI) possible when:
▫ multiple electric charge (H++, Q-balls, etc.) = n � e
▫ very low velocity & electric charge, i.e. Stable Massive Charged Particles (SMCPs) 
▫ magnetic charge (monopoles, dyons) = ngD = n � 68.5 � e  

� a singly charged relativistic monopole has ionisation ~4700 times MIP!!

▫ any combination of the above 

= z/β

Particles must be massive, long-lived & highly ionising to be detected at MoEDAL

V.A. Mitsou
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Electric charge
Bethe-Bloch formula

Magnetic charge
Ahlen formula

LHCForward2018

MoEDAL detectors have a 
threshold of z/b ~ 5 – 10 



MoEDAL physics programme
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MoEDAL physics program
Int. J. Mod. Phys. A29 (2014) 

1430050 
[arXiv:1405.7662] 

Searching for 
massive, 

long-lived & 
highly ionising

particles
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MoEDAL detector

MoEDAL is unlike any other LHC experiment:
▫ mostly passive detectors; no trigger; no readout
▫ the largest deployment of passive Nuclear Track Detectors  (NTDs)  

at an accelerator
▫ the 1st time trapping detectors are deployed as a detector

DETECTOR SYSTEMS
� Low-threshold NTD 

(LT-NTD) array 
• z/β > ~5 – 10 

� Very High Charge 
Catcher NTD 
(HCC-NTD) array 
• z/β > ~50

� TimePix radiation 
background 
monitor

� Monopole Trapping 
detector (MMT)

MoEDALLHCb

V.A. Mitsou
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& HI par(cle detec(on in NTDs
• Passage of a highly ionising particle through the 

plastic NTD marked by an invisible damage zone 
(“latent track”) along the trajectory

• The damage zone is revealed as a cone-shaped 
etch-pit when the plastic sheet is chemically 
etched

• Plastic sheets are later scanned to detect etch-pits

V.A. Mitsou
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Looking for 
aligned etch pits 

in multiple sheets

LHCForward2018



& NTDs deployment
V.A. Mitsou
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2012: LT-NTD
NTDs sheets kept in boxes mounted 
onto LHCb VELO cavern walls

2015-2017: LT-NTD
Top of VELO cover 
Closest possible 
location to IP

2015-2017: HCC-NTD
Installed in LHCb acceptance 
between RICH1 and TT



TimePix radia*on monitor
Timepix• (MediPix) chips used to measure online the 
radia*on field  and monitor spalla*on product 
background
Essen*ally act as li>le electronic “bubble• -chambers”
The only ac*ve element in • MoEDAL

V.A. Mitsou
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• 256×256 pixel solid state detector
• 14×14 mm active area
• amplifier + comparator + counter + timer 

2015 deployment 
of MediPix chips 
in MoEDAL

Sample calibrated frame in MoEDAL TPX04 



MMT: Magne)c Monopole Trapper
Binding energy • of monopoles in nuclei 
with finite magne)c dipole moments: 
O(100 keV)
MMTs analysed with superconduc)ng •
quantum interference device (SQUID)
Material: • Aluminium

large nuclear dipole moment ▫
rela)vely cheap▫

Persistent current: • difference between 
resul)ng current aKer and before 

first subtract current measurement for ▫
empty holder 
if other than zero → ▫ monopole signature

V.A. Mitsou
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Typical sample & 
pseudo-monopole curves



MMTs deployment
V.A. Mitsou
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2012
11 boxes each containing 18 Al rods of 
60 cm length and 2.54 cm diameter (160 kg)

2015-2017
Installed in addiJonal •
locaJons: sides A & C, too
Approximately • 800 kg of Al
Total 2400 • aluminum bars
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@ 8 • TeV,  2012 exposure 
JHEP  1608 (2016) 067 [arXiv:1604.06645] 

@ 13 • TeV, 2015 exposure 
Phys.Rev.LeI. 118 (2017) 061801 [arXiv:1611.06817]   

@ 13 • TeV, 2015-2016 exposure
arXiv:1712.09849 [hep-ex]



Magne&c monopoles
• Motivation
▫ symmetrisation of Maxwell’s 

equations
▫ electric charge quantisation

• Properties
▫ magnetic charge: ng = n×68.5e 
▫ coupling constant 

� large: g/Ћc ~34
� may depend on velocity: g → βg

▫ spin and mass not predicted

V.A. Mitsou
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MoEDAL improves reach of monopole searches w.r.t. cross section & charge 

Drell Yan mechanism Photon fusion

HIGHLY IONISING

Produc0on 
mechanisms 
in colliders

Box diagram



MMT scanning 
Analysed with SQUID at ETH • Zürich
Goo• d charge resolu?on except for outliers 

V.A. Mitsou
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• Same procedure used for 2015+2016 exposure
• No monopole observed in MMT samples

Persistent current after first 
passage for all samples

Detector: prototype of 222 kg 
of aluminium bars

Exposure: 0.371 fb-1 of 13 TeV
pp collisions during 2015

PRL 118 (2017) 061801 
[arXiv:1611.06817]

Persistent current for multiple 
measurements of candidates



Geometry

Material descrip1on 

between IP & detector

Kinema1cs

Event generation of Drell Yan 
production
coupling ⪼ 1 ⇒ non-perturbative! 

Propaga1on in maAer

• Ahlen formula

• Monopole energy loss

• Stopping range

MMT analysis

V.A. MitsouLHCForward2018
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JHEP 1608 (2016) 067 arXiv:1606.01220 
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MMT 2015-2016 results 
V.A. MitsouLHCForward2018
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Detector: prototype of 222 kg of Al bars
Exposure: 2.11 fb-1 of 13 TeV pp collisions 2015 & 2016

arXiv:1712.09849
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Monopole mass limits

• Mass limits are highly
model-dependent
▫ Drell-Yan production does 

not take into account non-

perturbative nature of the 

large monopole-photon 

coupling

• World-best collider limits 

for |g| ≥ 2 gD

V.A. MitsouLHCForward2018
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DY lower mass limits 
[GeV]

Magnetic charge |g|
gD 2gD 3gD 4gD 5gD

MoEDAL
13 TeV

2015+2016 
exp.

spin 0 600 1000 1080 950 690

spin ½ 1100 1540 1600 1400 —

spin 1 1100 1640 1790 1710 1570

spin 0, β-dep. 490 880 960 890 690

spin ½, β-dep. 850 1300 1380 1250 1070

spin 1, β-dep. 930 1450 1620 1600 1460

MoEDAL
13 TeV

2015 exp.

spin 0 460 760 800 650 —

spin ½ 890 1250 1260 1100 —

MoEDAL
8 TeV

spin 0 420 600 560 — —

spin ½ 700 920 840 — —

ATLAS 
8 TeV

spin 0 1050 — — — —

spin ½ 1340 — — — —

New interpretaRons for Drell-Yan producRon w.r.t. previous MoEDAL analyses

spin• -1 monopoles
- harder kineRc-energy distribuRons for spin 1 

• β-dependent γMMV coupling

- similar η distribuRons and higher monopole energy on 

average for β-dependent coupling

- probability of generaRng a low-velocity monopole is suppressed by a factor < 1

arXiv:1712.09849

βg
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• Beyond Drell-Yan interpretation
• What about electrically-charged particles?  



Monopole produc+on via photon fusion
• Monopole production in γγ fusion has 

higher cross section than Drell-Yan
• Different kinematics than

Drell-Yan
• Involves two diagrams for spin ½ 
• Recently implemented in MadGraph for

spin 0, ½ and 1

V.A. MitsouLHCForward2018
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Dougall & Wick, 
Eur.Phys.J. A39 (2009) 213 Arka Santra



Why MoEDAL when searching SMCPs?
• ATLAS and CMS triggers have to 
▫ rely on other “objects”, e.g. ET

miss, that accompany SMCPs, thus limiting the 
reach of the search
� final states with associated object present
� trigger threshold set high for high luminosity  

▫ develop specialised triggers
� dedicated studies needed
� usually efficiency significantly less than 100%

• Timing: signal from (slow-moving) SMCP should arrive within the correct 
bunch crossing
• MoEDAL mainly constrained by its geometrical acceptance 
• When looking for trapped particles
▫ monitoring of detector volumes in an underground/basement laboratory has 

less background than using empty butches in LHC cavern 

V.A. MitsouLHCForward2018
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SUSY long-lived par1cles (relevant for MoEDAL)
Long• -lived sleptons (staus mostly)

Gauge▫ -mediated symmetry-breaking (GMSB): 
stau NLSP decays via gravita1onal interac1on 
to gravi1no LSP
Coannihila;on▫ region in CMSSM: long-lived τ,̃ when m(τ̃) − m(χ̃1

0) < m(τ)
➜ naturally long life1me for stau in both cases

• R-hadrons
Gluinos▫ in Split Supersymmetry: g̃qq̄, g̃qqq, g̃g

long� -lived because squarks very heavy
gluino� hadrons may flip charge as they pass through maOer

Stops▫ : tq̄̃, tq̃q
e.g� . stop NLSP in gravi1no dark maOer
e.g. as LSP in R� -parity viola1ng SUSY, long-lived when RPV coupling(s) small

Long• -lived charginos
Anomaly▫ -mediated symmetry-breaking (AMSB):  χ̃1

± and  χ̃1
0

are mass degenerate ⇒ χ̃1
± becomes long-lived

V.A. Mitsou
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!τ → τ !χ1
0

!t → t !G

!χ1
± → π ± !χ1

0



Complementarity w.r.t. ATLAS/CMS
Relaxing constraints imposed in ATLAS/CMS selec<ons•
Example: CMS • dE/dx analysis @7-8 TeV
[JHEP07 (2013) 122, arXiv:1305.0491]

V.A. MitsouLHCForward2018
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Relaxing both constraints

In collabora<on with Kazuki Sakurai



Results for g̃g̃,  g̃→jjχ1̃
0,  χ1̃

0→τ±τ̃1

V.A. MitsouLHCForward2018
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CMS affected two-ways: 

no pixel hita)

too large impact parametersb)

End-of-run-3 (2023) luminosity

Different 
β thresholds

Run 2 (2018) vs. Run-3 (2023) luminosity

βthr = 0.2
3 MoEDAL signal

events required

• Comparison of CMS exclusion with MoEDAL

discovery potential requiring 1 event 

• Conservative estimate of MoEDAL luminosity

τ1̃ metastable, e.g. graviUno LSP

➜ detected by MoEDAL

χ̃1
0 long-lived despite large

mass split between χ̃1
0 and 

τ1̃ ➜ decays in tracker

(massive) τ± produces a kink

between χ̃1
0 and τ̃1 tracks

⇒ large impact parameters  

dxy, dz

MoEDAL may extend LHC coverage for  

long-lived partciles even with a 

moderate NTD performance z/β > 10
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Mini• -charged par?cles – MAPP 
ATLAS/CMS• beam pipes
Monopolium• produc?on in central exclusive produc?on



MoEDAL Apparatus for Penetra/ng Par/cles

• MAPP will be able to take data in p-p, p-A,A-A and also fixed-target interactions

using SMOG (an internal gas target in LHCb)

• MAPP will search for

▫ particles with charges <<1e – e.g. from new dark sectors

▫ new pseudo-stable neutrals with long lifetime

▫ anomalously penetrating particles (e.g. SUSY models, HV models of dark matter, etc.)

V.A. MitsouLHCForward2018
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J. Pinfold, ISVHECRI 2016, EPJ Web Conf. 145, 12002 (2017)



Searches in beam pipes

MoEDAL• - Beampipe Consor7um have submi:ed a proposal to 

ATLAS & CMS to u7lise their decommission Run-1 beryllium beam

pipes in order to scan them for the presence of very highly ionising

monopoles trapped in the beam pipe walls

h:ps://cds.cern.ch/record/▫ 2270165

MoEDAL• proposed to serve as a formal plaNorm

▫ sample machining at U. Alberta

▫ magnetometer runs at 

ETH Zurich

Search• to be performed soon

with▫ CMS beam pipe

simula7ons▫ s7ll needed

V.A. MitsouLHCForward2018
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https://cds.cern.ch/record/2270165


Monopolium and central exclusive produc3on
• Final-state protons in central production 

process, pp → p + X + p exit the LHC beam 
vacuum chamber at locations determined by 
their fractional momentum losses 

• Can be detected by Beam Loss Monitoring (BLM) 
detectors

• Masses and widths of centrally produced X-
particles are correlated with fractional 
(longitudinal) momentum losses, 
ξ1,2 =1− p(f1,2) / p(i) , of the final state protons 
(f1,2) and the intial beam proton (i), as:
MX

2 ≈ξ1ξ2s
• Monopolium is a bound state between a 

monopole and an anti-monopole
• May be produced in γγ collisions 
➜ dominant cross-section at large central 
masses, MX

V.A. MitsouLHCForward2018
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R. Orava et al, arXiv:1604.05778
V. Vento et al, Eur.Phys.J.Plus 127 (2012) 60



• MoEDAL is searching for (meta)stable highly ionising particles
▫ least tested signals of New Physics
▫ predicted in variety of theoretical models
▫ design optimised for such searches 
▫ combining various detector technologies

• Results on monopole searches at 8 TeV & 13 TeV published
▫ no magnetic monopole detected
▫ set bounds significantly extend previous results at high charges

• Looking forward to many more results from Run-II and beyond
▫ production via photon fusion
▫ NTD analysis
▫ electrically-charged particles
▫ mini-charged particles
▫ beam-pipe searches
▫ monopolia

Summary & outlook
V.A. Mitsou
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Analysis procedure

• Electrically-charged par0cle: dE/dx ~ β-2 ➔ slows down appreciably within NTD 
➔ opening angle of etch-pit cone becomes smaller
Magne0c monopole• :  dE/dx ~ lnβ

slow MM: slows down within an NTD stack ▫ ➔ its ionisa0on falls ➔ opening angle of the 
etch pits would become larger
rela0vis0c MM: ▫ dE/dx essen0ally constant ➔ trail of equal diameter etch-pit pairs

The reduced etch rate is simply related to the • restricted energy loss 
REL = (dE/dx)10nm from track

V.A. Mitsou
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depth:

LHCForward2018



Dirac’s Monopole
Paul Dirac in 1931 hypothesized that the magne;c •
monopole exists

In his concep;on the monopole was the end of an •
infinitely long and infinitely thin solenoid

Dirac’s • quan;sa;on condi;on:

Where g is the “magne;c charge” and • α is the fine 
structure constant 1/137

This means that • g = 68.5e (when n=1)! 

The other way around: IF there is a magne;c •
monopole then charge is quan;sed:

V.A. Mitsou
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Dirac String
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Cross sec(on limits versus mass

Limits extend up to masses > 2500 GeV for the first time at the LHC
� reminder: shown (tiny) LO DY cross sections are not reliable 
⇒ makes sense to probe and constrain very high masses

V.A. MitsouLHCForward2018
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JHEP 1608 (2016) 067 [arXiv:1604.06645] 

DY spin-1/2  DY spin-0  

Detector: prototype 
of 160 kg of Al rods
Exposure: 0.75 /-1

of 8 TeV pp collisions



Cross section limits versus charge

World-best limits for |g| > 1.5 gD
previously ~400 ▫ GeV at Tevatron [e.g. CDF hep-ex/0509015]
first 7me at the LHC▫

V.A. MitsouLHCForward2018
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also covered by ATLAS search

JHEP 1608 (2016) 
067 

[arXiv:1604.06645] 

DY spin-1/2  DY spin-0  

Detector: prototype 
of 160 kg of Al rods
Exposure: 0.75 A-1

of 8 TeV pp collisions



Complementarity of MoEDAL & other LHC exps

Op:mised• for singly electrically 
charged par:cles (z/b ~ 1) 
LHC :ming/trigger restricts •
sensi:vity to (nearly) rela*vis*c
par:cles (b ≈ 1)
Typically a largish sta:s:cal sample •
is needed to establish a signal
ATLAS & CMS cannot be calibrated •
for highly ionising objects
Magne:c charge detec:on via its •
trajectory in non-bend plane 
→  calibra:on introduces large 
systema:cs

Designed to detect charged •
par:cles, with effec:ve or actual 
z/b > 5
No trigger/electronics → slowly moving •
(b < ~0.5) par:cles are no problem
One candidate event should be enough •
to establish a signal (no SM bkg)
MoEDAL• NTDs are calibrated using 
heavy ion beams
Magne:c• -charge sensi:vity directly 
calibrated in a clear way

ATLAS+CMS MoEDAL

MoEDAL strengthens & expands the physics reach of LHC

V.A. Mitsou
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MoEDAL sensi+vity

Cross-sec+on limits for magne+c and electric charge assuming that: 

~ one ▫ MoEDAL event is required for discovery and ~100 events in the other LHC detectors

integrated luminosi+es correspond to about two years of 14 ▫ TeV run

De Roeck, Katre, Mermod, Milstead, Sloan, EPJC72 (2012) 1985 [arXiv:1112.2999]

V.A. Mitsou
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MoEDAL offers robustness against +ming and well-es+mated signal efficiency 



Slepton searches comparison*
ATLAS / CMS MoEDAL comments

Velocity β > 0.2
Constrained by LHC bunch 
pattern 

β < 0.2
Constrained by NTD Z/β 
threshold

Complementarity 

Analysis Not simple, involving several 
detector components, 
electronics, triggers, …

Simple and robust

Efficiency
ε × A  order of 20%
See limitations in previous 
slide

~ 100% (if β ≲ 0.2)

Acceptance • Geometry: ~ 50% for 2015;
scalable to higher coverage

• β-cut yield: ~10%
☞ highly model dependent

Background May be considerable or 
difficult to estimate

Practically zero For same signal yield, 
MoEDAL should have 
better sensitivity 

Luminosity high factor of 10-50 less LIMITING FACTOR

V.A. MitsouLHCForward2018
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* Indicabve numbers



Nuclear Track Detectors coverage

High acceptance in central region • η~0

back▫ -to-back pair produc<on means probability >~ 70% for at least one SMCP 

to hit NTD

For par<cles over z/• β threshold, detec<on efficiency prac<cally 100%

V.A. MitsouLHCForward2018
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Credit: Daniel Felea

2015 NTDs



Central exclusive produc2on
V.A. MitsouLHCForward2018
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KMR: arXiv 0111078(2001)

R. Orava et al, arXiv:1604.05778



Doubly-charged Higgs
Extended Higgs sector in BSM models: •
SUL(2) × SUR(2) × UB-L(1)  P-violaFng 
model 

Higgs triplet model with massive leI• -
handed neutrinos but not right-handed 
ones                      

Common feature: • doubly charged Higgs 
bosons H±± as parts of a Higgs triplet

LifeFme•
depends on many  parameters: ▫
Yukawa hij (long if < 10-8), H±± mass, ...

essenFally there are no constraints on its ▫
lifeFme ➜ relevant for MoEDAL

V.A. Mitsou
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Chiang, Nomura, Tsumura, 
Phys.Rev. D85 (2012) 095023 [arXiv:1202.2014]
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In some • Large Extra Dimension models the forma/on of TeV Black Holes (BH)
by high energy SM par/cle collisions is predicted 

BH average charge 4/3 ▫
slowly moving (▫ β ≲ 0.3)

Charged Hawking BH evaporate but not completely  •
➜ certain frac/on of final BH remnants 

carry mul:ple charges
➜ highly ionising, relevant to MoEDAL

Black-hole remnants 

V.A. Mitsou
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BHR charges @ 14 TeV LHC 

[CHARYBDIS+PYTHIA]

LHCForward2018

Hossenfelder, Koch, Bleicher, 
hep-ph/0507140 


