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Regge theory and the Pomeron

Regge Theory grew out

of pre-QCD S-matrix theory of the 50's S v
' . . 120} + Lower energy pp i
and 60's. Amplitudes are seen as unitary, Loob. & oy andcesmic e po
. . . . [~ — COMPETE HPR1R2 1
Lorentz invariant functions of analytic gof. 27T 01an’ts) E
momenta. (doesn't assume an underlying 60l 1
theory) Amplitudes have poles representing 0
particle exchange. Using a partial wave S e
analysis, dominant contribution to simple e w7 o e
[hep-ex,/1607.06605] ooV

amplitudes is the exchange of an entire
trajectory of particles: Pomeron exchange: oo ~ s — 1
This soft Pomeron has been used to fit to p-p total cross sections since '70s.

Authors ap(0)
Donnachie-Landshoff (1992) 1.0808
Cudell, Kang and Kim (1997) 1.096199%2
Cudell et al. (2000) 1.093 + 0.003
COMPETE Collaboration (2002) | 1.0959 + 0.0021
Luna and Menon (2003) 1.085 - 1.104
Menon and Silva (2013) 1.0926 + 0.0016

Throughout this talk | will mainly be focused on single Reggeon exchange although | mig|

comment on the end about multi-Reggon exchange, Regge cuts, and saturation
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What is it good for?

e Regge theory predicts a wide rang of phenomena connecting perturbative to
non-perturbative regimes. See work by TR & collaborators on holographic
Pomeron/Odderon |

|
Regge limit of many amplitudes and cross !

. |
sections simplifies
Figure: Optical theorem involving

analytic properties of an amplitude.
e Often gives model independent® results

for BSM physics
e Weak coupling resums an infinite number of neglected Feynman diagrams.

e Assumption of simple physical arguments: Lorentz invariance, crossing
symmetry, analyticity, etc. is similar to many other successful approachesg®
Forward physics, Amplitudes, Regge CFT, the Bootstrap, etc.
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BFKL

Balitsky, Fadin, Kuraev, Lipatov

(BFKL): perturbative Pomeron. Large
logs get in the way of usual perturabtion
theory: resum a; log(s) to all orders. Bfkl
equation — integral equation for Green's o
function in Mellin space

3
)
3
Q000

1,
+ioco 5 tioco
n(K)ES o(K'
G(k,k/,q, Y): / dw wa (k k q)_> / dw sz / ’Y ( ) ( )
=~ 27 wfasx('y, n)
—ioco —ioco 1_ico
2

where in Leading Log (LL)

x(%n)=2w(1)—¢(7+|*g|)—¢(1—7+% and wo—4as

In(2)

Surprising conformal symmetry greatly simplifies things in coordinate space
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First Complication

Forward vs non-forward BFKL: The forward solution is much simpler. The non-forward

case is usually represented in coordinate space due to a surprising conformal symmetry found by
Lipatov Zh.Eksp.Teor.Fiz. 90 (1986) 1536-1552.

t=20 t#0
wf = (ks — Fo) + Ko f Wi, Ay = (27)'52(by — b{)3 by — b))
+as{complicated}
Solutions to BFKL kernel, Ko: f(b) = FT { fkile.d)
olutions to ernel, Ko (b) { e har }El b E ok
n —s+iv ln z/2 n
E) = (k) ativeln? —Efdyfdf[m

n n
This simple form, coupled with the optical X M
w—asXn(V)
theorem, make tackling inclusive jet production

Nn . . |
an “easier” endeavor. E] involves o Fy (Will return!)
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Previous Applications

Here today:

MN angular decorrelation
In general: :

(Colferai)
DIS MN Multijet process
PP ’_cotal/dﬁferentnal cross (Gordo Gomez &
sections

Francesco Giovanni
Celiberto)

Minijet Radiation (KU &
UAM)

Inclusive Jet Production
Higgs Production

Deganutti, Raben, Royon (KU)



Mueller Tang: Jet-Gap-Jet

Using rapidity gaps to investigate

BFKL effects dates back to the late 80's & early

'90s [Sov.J.Nucl.Phys. 46 (1987) 712-719]&[Phys. Rev. D 47 1
(1993)] Mueller and Tang: augmented BFKL hard Pomeron.

o1 — oo \" ot — 0} h NP/ NP NIV
Enu(Pl’ pz) = - T - - 7* - — 7*
P1P2 2 P2 I P1 o}

Lipatov term Mueller-Tang correction

At finite momentum transferred can be investigated at hadron colliders looking for
highly exclusive processes where two jets far apart in rapidity represent the sole
observed radiation. The absence of any additional emission over a large rapidity
region suggests that the color-singlet exchange contributes substantially to the
jet-gap-jet cross section.

DGLAP suppressed at large Ay — Good window into BFKL effects.
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previous fits and analysis

Cusan
< BIRLSCL20.)
s S BIKLSCL 10D
Soans - 15 b S BIKLNaSCLMI %)
A A DO Data <RI
o012 z
001 £
ooos £
0.006 osf 7] S E
0004 ; 1
— BFKLNLL/NLO QCD
0 .
oo ; s )
..... BFKL LL/NLO QCD 3 3. 4 1
’ |
T ) .
o0z Low E; sample ) .
oo s s 4 as
o bl |
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cws dn
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Ay Any BEKL (No SCI. M1 1.5%)

Left: LL & NLL BFKL at Tevatron [hep-ph/1012.3849].

Right LL+SCl at CMS [hep-ph/1703.10919]
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incorporating NLO impact factor

A full NLL/O calculation is within

reach. NLO MT impact factors recently
calculated [1406.5625,1409.6704]. Very
complicated! (not in a factorizable form!)
But...only certain combinations

of jet vertex and Green's function
approximation orders contribute effectively
to the NL order of the cross section.

The most complicated combinations can
be discarded because they are subleading.

e GGF NLL + LO vertices. For this
special case the general formula for the

cross section can be expressed in a much simpler form because LL vertices are idependent

from the reggeon momenta.

e GGF LL + LO vertex + NLO vertex.
The non trivial dependence of the NLO
jet vertex from the reggeon momenta
introduces an important complication.

o GGF LL + both NLO vertices.
Discarded because subleading.
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Second Complication

details of NLO impact factor

dV ) x, k, Iy, b xg s kg Mx maxs 0)

k

dJ a
- Vgo)z‘i: [552)(k,x). [7 % |:{In (%) +1n (“1;72’()2) +{le 2}} - ?} — 8¢
+ % [{% {/12 n ((11 I—fk)Z) + 0 — k%I ((11 112,()2) —ann —k|¢1sin¢1}
,z [m (5) +ln (“1 ;Zk)z)} —n (,I(iz) In ((Il :Ok)2)7|n ((Il ;2‘()2) In (g) — 202 + {1 & 2}} +on? 4 1;4]

A2 2 2 2 In(1 — z)
(2) 2 (2) (2)
In — 57 (k, 2x) [qu(z)+ C—%qu(z)] + [(1 —2) {1 - ;C—‘%} +2(1+2%) (12)+:| Sy (ky 2x) + 45 (k,x)}

2

1
4 X (p — zk)? la
+/ dz/ - {qu(Z)@ (Mi,max - 21— 2) © 1z ?
0

K2 a?
(3) 02 (3)
X pErp— S (b, a, (1= 2)x, )+© (qumax - . Z)) S7p, 4, 2x, X)Pgq(2)
Ca c2 2 2
X {3[11(q1k-'1-2)+l1(q~ kb, 2)] + gb(m kil h)O(p™ — A7) H
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Second Complication Cont'd

BFKL Eigenfunctions: A nice derivation can be found in hep-ph/0102221

) o N e
Enu(ky, ko) = N(n, ) {kl*” 2h 2zFl(l—h,z—h;z,—7>za(l—h,z—h;z,—kl )+ {1 -2}
2 1

where h = (# +i1/) , h= (15" + il/)
Still to compute physical observables this must be convoluted with the vertex functions and
parton distribution functions:

do

R 97 ¢ M) g L g GLL & ()
dxadadYdpy [fare x VW@ et oy

4 ><V(O) ® G(NLL)®G(NLL) ® V(O) x fq/g]
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NLL BFKL with LO vertices

The normalization of the Gluon Green function fixes the jet vertex leading order.

5%(k — k')
lim G(k,k',q,Y) = G(k,k',q,0) = —=.
Jim (k,k',q,Y) = G(k,k',q,0) k2(q — k)2
At this order, apart for the jet distribution function S that fixes the jet
momentum, the jet vertex is a simple color factors (c-number)

Va(Xa q, Xy, kJ) = 5_(1)(X7 q; Xy, kJ)hga
2
Q 0
W= Crsgg S1 = x0(ks — @)l =)
The independence of the LO vertices from the reggeon momenta allow for
considerable simplification.
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Hard Hypergeometrics

(1) How does one compute Gauss Hypergeometric functions: 2Fi(a, b, ¢, z)? For some special
values of the arguments they simplify, but the Mueller-Tang case involves:

1 n 3 n kq

Fi(z —=-Fiv,- —-Fiv,2, —

2 1(2 5 F 575 F k2)

Must perform a Mellin transform in v and sum over n, clearly won't always be in “nice” regions.

Deganutti, Raben, Royon (KU)
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(1) How does one compute Gauss Hypergeometric functions: 2Fi(a, b, ¢, z)? For some special
values of the arguments they simplify, but the Mueller-Tang case involves:

1 n 3 n kq

Fi(z —=-Fiv,- —-Fiv,2, —

2 1(2 5 F 575 F k2)

Must perform a Mellin transform in v and sum over n, clearly won't always be in “nice” regions.

(2) What about the rest of the complex plane outside |z| < 17 For example, for d = b — a:

c,—d

1
2F1(av b,C,Z) = r( )(_Z)ibQFl(bvl _C+b71+d77)+(a<_> b)
a,c—b z

But each term naively diverges when d € Z!

Deganutti, Raben, Royon (KU)



Hard Hypergeometrics

(1) How does one compute Gauss Hypergeometric functions: 2Fi(a, b, ¢, z)? For some special
values of the arguments they simplify, but the Mueller-Tang case involves:

1 n 3 n kq

Fi(z —=-Fiv,- —-Fiv,2, —

2 1(2 5 F 575 F k2)

Must perform a Mellin transform in v and sum over n, clearly won't always be in “nice” regions.

(2) What about the rest of the complex plane outside |z| < 17 For example, for d = b — a:

c,—d

2F1(avb7c7z):r( a,cfb

1

) (—2) b 2Fi(b1—c+ b1+ d, 1)+ (a s b)
z

But each term naively diverges when d € Z!

But we know the Gauss hypergeometric function converges for a wide range of these values, this
must just be a computational approach. (Physicists are cavalier about canceling infinities!)
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Recent

Numerical Methods

The solution is to write d — m + ¢, expand
everything in terms of €, and try to cancel the
resulting divergences.Biihring, SIAM J. Math.
Anal. 18 (1987), no. 3 For our case,

d = b — a =1, this can be done explicitly. 2

ntz]
=

m AR

= Al

o At-4

O Al
mAE

£ depends on (n,v)
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Recent Numerical Methods

The solution is to write d — m + ¢, expand
everything in terms of €, and try to cancel the
resulting divergences.Biihring, SIAM J. Math.
Anal. 18 (1987), no. 3 For our case,

d = b — a =1, this can be done explicitly.

But! Not all expansions are created equal.
There are a variety of maps that can cover the
complex plane: z,1/z,1/(z — z),(z — 1) /z.
Want to select a covering of the complex plane.
Special care must be taken near

z=1{0,1, 00, exp(£im/3)} Michel and Stoitsov,
arXiv:0708.0116 [math-ph] and Doornik, Math.
Comp. 84 (2015), 1813-1833.

imiz)
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|
|
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Recent Numerical Methods

The solution is to write d — m + ¢, expand
everything in terms of €, and try to cancel the
resulting divergences.Biihring, SIAM J. Math.
Anal. 18 (1987), no. 3 For our case,

d = b — a =1, this can be done explicitly.

But! Not all expansions are created equal.
There are a variety of maps that can cover the
complex plane: z,1/z,1/(z — z9),(z — 1)/ 2.
Want to select a covering of the complex plane.
Special care must be taken near

z ={0,1, 00, exp(£im/3)} Michel and Stoitsov,
arXiv:0708.0116 [math-ph] and Doornik, Math.
Comp. 84 (2015), 1813-1833.

In all cases you end up with a numerically
manageable convergent power series.

Imlz]

imiz)

m AR

= Al

o Af-4

O Fil5-57
mAE

£ depends on (n,v)
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Numerical Methods Cont’'d

Numerical accuracy can be evaluated by testing how well solutions satisfy
Hypergeometric equation.
2(1=2)f+ [c = (a+ b+ 1)zl ~ F(2)

|F(2)| + A + |f]

T =

Various algorithms have been proposed Michel, Stoitsov, Doornik and
implemented in CPP (including our own makeshift, but Doornik’s is most
efficient) All give accuracy —logio(T) — single to double precision. All algorithms
are roughly the same “speed” ~ 1000s of evaluations per second on personal
computer.

The LO/LL calculation is currently being used for calibration/debugging and
various series convergence acceleration (example Willis, arXiv:1102.3003
[math.NA]) are being considered.
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Upgraded Numerics

Simpler calculations have taken several weeks to run on pc.

e HPC ordered at KU: 40-cores at 2.4 GHz with 192 GB 2666 MHz DDR4
memory.

e want to focus time on (1) maximizing efficiency for LO/LL calculation (i.e.
Gauss hypergeometrics) and (2) identify convenient parameterizations/order
of integrals for NLO impact factor

e Want to identify physical regions where NLO impact factor is “more”
factorizable
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Conclusions

Outreach

C on CI usions Sus Bachelor's Degrees Earned by Women

-~ All Bachelors

— Biology

— Chemistry

— Math & Stats
Earth Sciences

= Physics

e Single Pomeron exchange is still an exciting
exploration ground.

— Engineering

e JGJ at LHC seems like fertile ground for
identifying BFKL signals

0%
1965 1975 1985 1995 2005 2015

Why are we last!?
e Already seen hints that full NLO description
will fit data.

Special thanks for useful discussions: Dmitri Colferai, Evan
Weinberg, Grigorios Chachamis, Agustin Sabio Vera, David

GK-12
www.gkl2.org/

Gordo Gomez.
Get out and teach!
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NLO impact factors

In general the cross section for these processes is given as a multiple convolution between the the
jet vertices and the GGFs.

dé
— = | d’k1d?k'1d%kod?k’5 V(K1 ko, T1,q) X
d7d T / 1d°k'1d ko d k2 Va(ky, k2, J1, Q)

G(kly kllv q, Y)G(kZ»kl27q7 Y) Vb(kll»kl27s727q)7 57 = {kJ’XJ}'

Jet Functions for NLO impact factor

P K2 1 - 2)? 1 101 -z K2 R
et e N " @) e e 7@

1 1 —@=2k2 -k
4(q—k+1)2 (g — zk)2 q2 '

1 2 (k= h)?
Rl k) =2 [(,, TPkt ? (a0 - )2
4 (k= b)Y 1 ( (h — b)?
+ + - -
(@—K2(@—k+h)?  (@—k2a—h)? 2\(q—h)%(q—h)?
N (k—h —b)? N (k=1 — b)? (h — b)? )]
(@—k+1n)2(a—h)?2 (qa—k+h)a—1n)? (q—k+h)%(a—k+h)?
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