Conjeturas de la Ciénaga, Agujeros Negros y Estados BPS

Tom Rudelius IAS

Based on work to appear w/ Murad Alim, Iñaki García Etxebarria, Ben Heidenreich, and Matt Reece

Outline

- Review of Swampland Conjectures
- A Tower/Sublattice WGC Counterexample?
- Black Holes and BPS States

Review of Swampland Conjectures

The Swampland Distance Conjecture

Ooguri, Vafa '06

At large distances in moduli space, a tower of resonances becomes light exponentially quickly with increasing distance:

$$m_n^2(\phi) \sim e^{-\alpha n\phi}$$

The Weak Gravity Conjecture

Arkani-Hamed, Motl, Nicolis, Vafa, '06

In any U(1) gauge theory that admits a UV completion with gravity, there must exist a "superextremal" state of charge q, mass m:

$$\frac{q}{m} \ge \frac{Q}{M}|_{\text{ext}}$$

Strong Forms of the WGC

- Superextremal particles at:
 - Infinitely many sites in the charge lattice (Tower WGC) Andriolo, Junghans, Noemi, Shiu '18
 - Every charge site in a sublattice (sLWGC)
 - Every site in the charge lattice (LWGC)

Heidenreich, Reece, T.R. '16

$$WGC_d \stackrel{\sim}{\Rightarrow} T/sLWGC_{d+1}$$

BPS States

• In theories with extended SUSY, massive states must satisfy BPS bound:

$$m \ge |\zeta_{q_i}(a_i)|$$

- Central charge ζ depends on moduli a_i , charge q_i of state
- In 4d $\mathcal{N}=2$ theories from IIA on CY₃, D2-brane BPS states counted by Gopakumar-Vafa invariants

AT/sLWGC Counterexample?

A T/sLWGC Counterexample?

• At conifold singularity in IIA, BPS bound becomes trivial:

$$m_{q=1} \to 0, \quad m_{q \neq 1} \to 0.$$

No tower of BPS states!

• GMSV Conifold:	q_2 q_1	0	1	2	3	4
	0	_	640	10032	288384	10979984
Greene, Morrison, Strominger '95	1	16	2144	231888	23953120	2388434784
Greene, Morrison, Vafa '96	2	0	120	356368	144785584	36512550816
	3	0	-32	14608	144051072	115675981232
	4	0	3	-4920	5273880	85456640608
	5	0	0	1680	-1505472	3018009984
Empty "wedge"	6	0	0	-480	512136	-748922304
w/o BPS states	7	0	0	80	-209856	218062416
W/O DES States	8	0	0	+6	75300	-90910176
	9	0	0	0	-21600	37721680
	10	0	0	0	4312	-15086208
	11	0	0	0	-512	5300736

4d Conifolds

(see also Grimm, Patti, Valenzuela '18)

• For IIA at conifold singularity, logarithmic running of gauge coupling:

$$g_4 \sim \log m \to 0$$

- Violation of T/sLWGC in 4d
 - Need to renormalize WGC bound,

$$q(m)/m \ge 1/M_{\rm Pl}$$

- Recall: WGC_d $\stackrel{\sim}{\Rightarrow}$ T/sLWGC_{d+1}
- WGC₃ not necessarily valid

(see however Montero, Shiu, Soler '16)

5d Conifolds

- For 5d conifold, $g_5 \not\to 0$
- To be consistent with T/sLWGC, must have infinite tower of states becoming light whenever 5d gauge coupling vanishes
- Recall SDC: Infinite tower of light states \Rightarrow expect divergence of field space metric
- Indeed, can prove zero coupling points are at infinite distance for M-theory compactifications on a CY₃ (up to certain regularity assumptions)

5d Conifolds (cont.)

- Claim: zero coupling points are at infinite distance for M-theory compactifications on CY₃
- Proof (sketch):
 - Write $\mathcal{F} = \frac{1}{6}C_{IJK}Y^IY^JY^K = 1$, with $C_{IJK}, Y^I \geq 0$.
 - Assume Laurent expansion for $Y^{I}(t)$ for path ending at t=0.
 - Show that metric behaves as $1/t^2$ whenever gauge kinetic term $a_{IJ}(t \to 0)$ blows up

Black Holes and BPS States

An Important Reminder

• In general,

$$BPS \neq BHE$$

(even in theories with BPS states)

• Ex: heterotic string on torus

$$M^2 = Q^2 - 1$$

BPS vs. BHE

BPS vs. BHE

- Since $g_5 \not\to 0, \zeta \to 0$, must have BPS \neq BHE for conifold
- Q: When does BPS = BHE?
- A: BPS = BHE $\Leftrightarrow \zeta_{q_i}(a_i) > 0 \,\forall a_i$ $\Leftrightarrow q_i \in \bigcap \text{Mori Cone}$ All phases

BPS vs. BHE (cont.)

- Claim: BPS = BHE $\Leftrightarrow \zeta_{q_i}(a_i) > 0 \,\forall a_i$
- Proof (sketch):
 - Critical points of ζ_{q_i} are all local minima (maxima) with $\zeta_{q_i} > 0$ ($\zeta_{q_i} < 0$).
 - By Morse theory, such local minima are therefore global minima
 - So, either:
 - $\zeta_{q_i} > 0$ everywhere (BPS=BHE)
 - $\zeta_{q_i} = 0$ somewhere, no critical points (no BPS BH solutions exist)

Primer on Algebraic Geometry

- Calabi-Yau X, irreducible curves $\{C_i\}$
- Mori Cone $M(X) := \{ \sum a_i [C_i], 0 \le a_i \}$
- Kähler Form $J \in H^{1,1}(X)$
- Kähler Cone $K(X) := \{J, \operatorname{Vol}(C_i) = \int_{C_i} J > 0\}$

Flop $X \to X$

SUGRA and Geometry

- Curve $[C_i] \to \text{charge } \vec{q} = \vec{q}([C_i])$
- $\zeta_{\vec{q}} > 0 \Rightarrow \operatorname{Vol}(C_i) > 0$
- So, BPS = BHE $\Leftrightarrow \zeta_{q_i}(a_i) > 0 \,\forall a_i$ $\Leftrightarrow q_i \in \bigcap \text{Mori Cone}$ All phases

GMSV Revisited

Summary

- Beautiful interplay between
 - BPS states and GV invariants
 - SUGRA central charges
 - Calabi-Yau geometry/intersection theory
 - Black hole extremality bounds leads to consistency with T/sLWGC and SDC
- · Not to mention relationship between WGC, SDC and
 - Axion cosmology and inflation
 - Cosmic censorship (see Toby's talk)
 - Emergence (see Irene's and Matt's talks)
 - Gravitational instantons (see Pablo's talk)
 - AdS/CFT (see Miguel's talk)
 - Black hole entropy (see Grant's talk)
 - Scattering amplitudes (see Gary's talk)
 - F-theory and tensionless strings (see Timo's talk)
- Exciting time to be hiking through the Swampland!