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Moduli Stabilisation



Moduli Stabilisation in IIB

• Moduli S, Ti, Ua

• Quantum corrections
• Three options: 

In IIB string theory flux compactifications [125, 126] naturally fix the value of all the

complex structure moduli U
a

and the dilaton S and reduce the number of vacua from a con-

tinuum to a discrete but large set of points determined by the quantised three-form fluxes.

In both DRS (Dasgupta, Rajesh, Sethi) ([125]) and GKP (Giddings, Kachru, Polchinski)

[126] we have flux stabilisation of the complex structure moduli and the dilaton of a con-

struction involving a Calabi-Yau orientifold X with internal G
3

fluxes. While in both cases

the (static) solution requires that the fluxes are ISD (imaginary self-dual i.e. ⇤
6

G
3

= iG
3

)

which is compatible with the Hodge decomposition G
3

2 (2, 1)� (0, 3). Supersymmetry is

preserved only if there is no (0, 3) component as considered in DRS.

Kähler moduli T
i

are not stabilised by the fluxes nor any perturbative e↵ect. The

reason behind this is the fact that there exists a Peccei-Quinn synmetry T
i

! T
i

+ ic
i

with

constant c
i

s that together with the holomorphicity of the superpotential forbids any T
i

dependence of W to all orders in perturbation theory. However these moduli are the gauge

couplings for matter fields localised in D7 branes and therefore standard non-perturbative

e↵ects generate a superpotential for these fields. The total superpotential for closed string

moduli is

W = W
flux

(S,U) +W
np

(S,U, T ). (2.4)

The source of non-perturbative e↵ects are Euclidean brane instantons and non-perturbative

dynamics in the field theory of D7 or D3 branes such as the condensation of gauginos in the

gauge sector of the D brane. In the past decade there has been substantial progress in the

understanding and computational control of Euclidean D brane instantons [127]. Gaugino

condensation, being a dynamical e↵ect, has been well understood from the standard 4d

e↵ective field theory (EFT) but it is more di�cult to study from the full 10d e↵ective

action and the full string theory.

V = eK
⇣
K�1

a

¯

b

D
a

WD
¯

b

W
⌘
� 0 (2.5)

The starting point of the 4D EFT is the F-term 4d supergravity scalar potential for arbi-

trary superpotential W (�
M

) and Kähler potential K(�
M

, �̄
¯

M

) in units of M
p

:

V
F

= eK
⇣
K�1

MN

D
M

WD
M

W � 3|W |2
⌘

(2.6)

The tree-level Kähler potential for the Kähler moduli satisfies the celebrated no-scale prop-

erty K�1

i|̄

K
i

K
|̄

= 3 which is just a consequence of the homogeneity of V. Using this and

the fact that the flux superpotential does not depend on the T
i

fields, it implies a positive

definite scalar potential for S and U and stabilises them supersymmetrically by solving

D
UaW = D

S

W = 0. As long as these equations have solutions for di↵erent values of the

quantised fluxes they will generate the huge number of solutions that define the string land-

scape but at this stage the Kähler moduli T
i

have a completely flat potential that vanishes

for all values of the fields even for those that break supersymmetry D
T

W ⇠ K
T

W
0

6= 0.

Two main scenarios have emerged to fix the Kähler moduli: the original KKLT [15]

and the Large Volume [36, 37] (LVS) scenarios. Both start from the flux superpotential,
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compute the structure of �V . It takes schematically the form [37]:

�V / W 2

0

�K +W
0

�W (2.11)

If there were only one single expansion parameter and if, as usual, W
0

� �W and �K �
�W (since perturbative terms dominate over non-perturbative terms at weak couplings),

the first term would be the leading order term. It would lift the potential but would

give rise to a runaway behaviour, unless di↵erent order terms compete to give rise to a

minimum which would happen only if the perturbative expansion breaks down and the

corresponding expansion parameter is not small. This is the Dine-Seiberg problem [61].

Flux compactifications in IIB allow two ways to overcome this issue. First, in the KKLT

scenario the big discrete degeneracy of flux vacua is used in such a way that W
0

is tuned

to W
0

⇠ �W = W
np

. This then requires �W 2 terms to be also included in the expansion

stabilising the T
i

fields when they compete with the W
0

�W terms. Notice that in this limit

the first term in �V above is of order �W 3 and is then subdominant. Justifying neglecting

quantum corrections to the Kähler potential.

In LVS the fact that there are more than one expansion parameters plays the key role.

In this case the two terms in equation (2.10) can compete with each other to provide a

minimum as long as each comes from a di↵erent expansion. In this case �K ⇠ W
0

�W which

for �K ⇠ 1/V and �W ⇠ e�a⌧ implies that the volume is exponentially large V ⇠ ea⌧ . Here

⌧ is usually a blow-up mode that gets stabilised to values of order 1/g
s

which is large at

weak string coupling g
s

and therefore the volume is exponentially large.

In summary KKLT requires tuning of the fluxes for W
0

⌧ 1 whereas LVS works for

standard values of W
0

⇠ O(1 � 100) (as it is found in concrete examples [117, 131]) but

depends more on the perturbative corrections to K. Notice that from the eK factor in the

general expression for V the order of V
0

is V
0

⇠ M4

p

/V2 ⇠ M4

s

whereas in LVS the order

of �V is �V ⇠ W 2

0

M4

p

/V3 ⇠ M2

s

m2

3/2

⌧ M4

s

. Having V
0

vanishing at the minimum and

�V ⌧ M4

s

supports the validity of using the EFT at scales below M
s

.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [62–69]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on an orientifold of a Calabi-

Yau threefold X. This is a controlled procedure if the compactification volume V ⌘
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Kahler moduli

• Overall volume

• Blow-up

• Fibre moduli

• + their Axion partners



de Sitter



de Sitter

• Anti D3 brane 

• D+F terms in EFT or T-branes

• Complex structure/Dilaton uplift (DUW≠ 0, DSW≠ 0)

• Non critical strings, negative curvature 
compactifications, Kahler uplift, nonperturbative 
effects on D3 branes, ...
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2.6. dS from hidden F-terms

Let us now briefly present a general mechanism which can lead to dS vacua. In
globally consistent models τb is wrapped by a hidden stack of D7-branes because
of D7-tadpole cancellation. Moreover Freed-Witten anomaly cancellation induces
a non-zero gauge flux on τb.2–4 This modulus therefore acquires a U(1)-charge and
appears in the Fayet-Iliopoulos term of the D-term potential:

V bulk
D =

1

τb

(

∑

i

qD7i|φi|2 − ξD7

)2

with ξD7 =
3

(2V)2/3

The total scalar potential reads:

Vtot = V bulk
D + VF =

1

τb

(

qD7|φdS|2 − ξD7

)2
+m2

3/2|φdS|
2 + VO(V−3)

where is VO(V−3) the moduli potential (2). The minimum for φdS lies at

qD7|φdS|2 = ξD7 −
m2

3/2τb

2qD7

Substituting this result in Vtot we obtain:

Vtot = V bulk
D,0 + VF =

m4
3/2τb

4q2D7

+m2
3/2

ξD7

qD7
+ VO(V−3) (3)

The first term on the RHS of (3) is negligible since it scales as V−10/3 while the
second term on the RHS behaves as V−8/3 and can play the rôle of an uplifting
term. Minimising with respect to τs and V we obtain

⟨Vtot⟩ =
3W 2

0

4a3/2s V3

[

δV1/3 −

√

ln

(

V
W0

)

]

with δ ≃ 0.01

(

a3/2s

qD7

)

Clearly W0 can be tuned to get ⟨Vtot⟩ = 0. In particular, W0 ∼ O(1) gives rise
to solutions around V ∼ 106-107 which are the values needed to get TeV-scale
SUSY.2,3,5

This uplifting mechanism has an interesting higher dimensional understanding
in terms of T-branes.18 In fact, the effective field theory has to be expanded around
the correct background. For a hidden D7-stack this is parameterised by an adjoint
complex scalar Φ. The non-zero gauge flux breaks SO(8) to U(4) (focusing on the
case of 4 D7s on top of an O7), and so Φ decomposes as 28 → 160 ⊕ 6+2 ⊕ 6−2. A
deformation of Φ can be written as

δΦ =

(

φ160
φ6+2

φ6−2
−φT160

)

The 8D BPS equation of motion for a hidden D7-brane is J∧FD7+
[

Φ, Φ̄
]

dvol4 = 0,
implying that if J ∧ FD7 ̸= 0 for FD7 ̸= 0,

[

Φ, Φ̄
]

̸= 0. Thus Φ cannot be in the
Cartan and has to take the simple form:

⟨Φ⟩ =
(

0 φ6+2

0 0

)
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in terms of T-branes.18 In fact, the effective field theory has to be expanded around
the correct background. For a hidden D7-stack this is parameterised by an adjoint
complex scalar Φ. The non-zero gauge flux breaks SO(8) to U(4) (focusing on the
case of 4 D7s on top of an O7), and so Φ decomposes as 28 → 160 ⊕ 6+2 ⊕ 6−2. A
deformation of Φ can be written as

δΦ =

(

φ160
φ6+2

φ6−2
−φT160

)

The 8D BPS equation of motion for a hidden D7-brane is J∧FD7+
[

Φ, Φ̄
]

dvol4 = 0,
implying that if J ∧ FD7 ̸= 0 for FD7 ̸= 0,

[

Φ, Φ̄
]

̸= 0. Thus Φ cannot be in the
Cartan and has to take the simple form:

⟨Φ⟩ =
(

0 φ6+2

0 0

)
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4D EFT: F and D terms

10D: T-branes

e.g. T- Branes



IIB Advantages

• Fluxes imply (warped) Calabi-Yau
• No-scale structure
• Scales m3/2<< Ms<<Mp

• Two sets of 3-fluxes F3, H3 (allows `tuning’)

• GVW Superpotential W(S,U) not renormalised!
• Many loop (gs) and !’ corrections to K computed
• Kahler moduli gauge couplings Wnp(T)



Achievements
• Remarkable: well defined prescription exists that includes 

all stringy ingredients: branes, orientifolds, warping, anti (T)-
branes, perturbative, non-perturbative effects, etc. 

• IIB with fluxes~ Calabi-Yau (moduli space understood).

• W0<<1 is plausible (not achieved yet) due to the large 
number of fluxes.

• Perturbative effects in LVS in better control as the volume 
is exponentially large. All computed so far harmless. 

• Antibrane: nonlinearly realised SUSY (see Wrase’s talk)

• Hierarchies: 

Type IIB flux compactifications provide two ways to overcome this problem. First,

in the KKLT scenario the big discrete degeneracy of flux vacua is used to tune W
0

to

an exponentially small value so that W
0

⇠ W
np

. This then requires W 2

np

terms to be

also included in (2.9) stabilising the T -fields when they compete with W
0

W
np

terms [15].

Notice that in this limit quantum corrections to the Kähler potential can be consistently

neglected since the first term in (2.9) is subdominant given that W 2

0

K
p

⌧ W
0

W
np

⇠ W 2

0

for K
p

⌧ 1 (this is always the case at large volume since the perturbative e↵ects K
p

are

suppressed by inverse powers of V).
The second case is LVS models where the fact that there is more than one expansion

parameter plays the key rôle. In this case the two terms in (2.9) can compete with each

other to provide a minimum as long as each comes from a di↵erent expansion. Hence at

the minimum one has W 2

0

K
p

⇠ W
0

W
np

which, for K
p

⇠ 1/V and W
np

⇠ e�⌧s , yields

an overall volume of order V ⇠ W
0

e⌧s . Here ⌧s is a blow-up mode that gets stabilised to

values of order 1/gs. It is therefore large for weak string coupling, implying that the CY

volume is exponentially large [47–49].

In summary, KKLT requires a major tuning of the fluxes to obtain W
0

⇠ W
np

⌧ 1,

whereas LVS works for natural values of the flux superpotential of order W
0

⇠ O(1� 100)

(as found in concrete examples [50, 51]) but depends more on perturbative corrections to

K. Notice that, from the eK factor in the general expression (2.5), the order of V
0

is

V
0

⇠ M4

p /V2 ⇠ M4

s , whereas in LVS the order of �V is �V ⇠ W 2

0

M4

p /V3 ⇠ M2

sm
2

3/2 ⌧ M4

s .

Having V
0

vanishing at the minimum and �V ⌧ M4

s supports the validity of the EFT at

scales below Ms.

2.2.2 Advantages

We would like here to emphasise several advantages of type IIB constructions:

1. Controlled flux backreaction: Background fluxes can be turned on to generate a po-

tential for the moduli in a controlled way since their backreaction on the internal

geometry just renders the compactification manifold conformally Calabi-Yau. There-

fore the understanding of the underlying moduli space is better than in other string

theories. Some progress has been made recently in computing the form of the Kähler

potential including the e↵ect of warping [52–59]. Notice that the warping induces

corrections to the definition of the correct moduli coordinates which are however

negligible at large volume.

2. Suppressed scalar potential scale: The starting point of dS models is the classical

low-energy limit of type IIB string theory compactified on a CY orientifold. This is

a controlled procedure if the compactification volume is large so that the following

hierarchy of scales is valid:

E ⌧ M
KK

=
Ms

V1/6
⌧ Ms ⌘ 1

`s
⌘ 1

2⇡
p
↵0

= g1/4s
Mpp
4⇡V . (2.10)

As mentioned above, at tree-level the dilaton and the complex structure moduli are

fixed supersymmetrically at DSW = DUW = 0 via non-zero quantised G
3

fluxes
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tation it was introduced as an uplift mechanism of the
original AdS vacuum providing a positive correction to
the scalar potential of the form:

¢V = e A

V ∞
, (12)

with e A the flux-induced warp factor and ∞ = 4/3 in the
warped region while ∞ = 2 in an unwarped region. The
warp factor can be used to tune the minimum to dS at
almost zero vacuum energy.

Criticism 1

Since it was proposed, this has been considered as the
weakest part of the KKLT proposal. Despite the relation
with the KPV scenario, adding an anti-brane seems ar-
bitrary. It also seems to break supersymmetry explicitly,
losing computational control of the EFT and giving a run-
away behaviour to 10D at the classical level7. Further-
more the original scenario was not substantiated by ex-
plicit models on concrete Calabi-Yau orientifolds. More
recently detailed study of the geometry corresponding to
anti-branes on a throat indicated the presence of singu-
larities that were claimed to destabilise the KKLT system
if anti-branes were present [20, 104].

Comments

The anti-brane sector has been probably the most ques-
tioned component of the KKLT proposal. Regarding the
apparent arbitrariness, the KPV scenario already provides
a natural motivation for its consideration. The fact that
supersymmetry is broken has been better understood
by the recent developments relating the EFT of the anti-
brane to non-linearly realised supersymmetry a la Volkov
and Akulov. Moreover, a concrete superspace formula-
tion in terms of a nilpotent chiral superfield X (X 2 = 0)
[105, 106] captures precisely the term in (12) by adding to
the original superpotential and Kähler potential a general
dependence on X :

¢W = c X , ¢K =ØX X̄ . (13)

Here c is in principle a function of the complex struc-
ture moduli which can be naturally associated to warping

7 For an early discussion of the problems with anti-branes in
KKLT see [103].

whileØ depends also on the Kähler moduli. The superfield
X has a single propagating degree of freedom correspond-
ing to the goldstino. Concrete Calabi-Yau orientifolds have
been constructed (compact and non-compact) with pre-
cisely this single degree of freedom [107,108], so providing
the first explicit realisations of the dS KKLT scenario. Fi-
nally an EFT analysis of the anti-brane singularity has
been done for the simplest case of one single anti-brane
(which is sufficient to achieve dS) for which the probe
approximation is under control and no divergences are
found, so addressing the anti-brane induced singular-
ity problem [109, 110]. The same conclusion has been
reached recently using different techniques [101,111,112].

Criticism 2

Another potential obstacle has been claimed by ref. [21] re-
garding the calculation of non-perturbative effects when
anti-branes are present. In an effort to have a 10D de-
scription of gaugino condensation, ref. [21] developed a
technique to compute the contribution of the anti-brane
to the scalar potential and found no dS solution. This was
understood also from the 4D EFT in terms of the nilpotent
superfield X by considering the X dependence of W as:

¢W = X
°
c +e Wnp

¢
. (14)

It is easy to check that for c = 0 and e 6= 0 the contribution
of X to the scalar potential is such that there is no dS
vacuum either in KKLT [21] or in LVS [113].

Comments

The result regarding the non-perturbative superpotential
in the presence of anti-branes is based on a number of
different assumptions which are not fully justified. The
most relevant is perhaps assuming that the dynamics of
gaugino condensation h∏∏i can be described in terms of
the ∏∏ dependence of the classical action. Gaugino con-
densation is clearly a 4D non-perturbative effect due to
the non-trivial low-energy dynamics of the corresponding
gauge theory. Its effect needs to be computed by properly
performing the path integral of the gauge degrees of free-
dom below the scale of the relevant gauge theory which
is a highly complicated quantum calculation. It is actu-
ally known in field theory that properly computing the
effective superpotential does not reproduce the result of
naively substituting ∏∏ª§strong in the classical effective
action where §strong is the condensation scale. In fact, at
least in the case of the heterotic string, one can show the
conflict quite explicitly [103, 114].
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indicated the presence of singularities that were claimed to destabilise the KKLT system
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better understood by the recent developments relating the EFT of the anti-brane to non-

linearly realised supersymmetry a la Volkov and Akulov. Moreover, a concrete superspace
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the term in (2.11) by adding to the original superpotential and Kähler potential a general

dependence on X:
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a single propagating degree of freedom corresponding to the goldstino. Concrete Calabi-

Yau orientifolds have been constructed (compact and non-compact) with precisely this

single degree of freedom [104, 105], so providing the first explicit realisations of the dS

KKLT scenario. Finally an EFT analysis of the anti-brane singularity has been done for

the simplest case of one single anti-brane (which is su�cient to achieve dS) for which

the probe approximation is under control and no divergences are found, so addressing the

anti-brane induced singularity problem [106, 107]. The same conclusion has been reached
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Criticism 2

Another potential obstacle has been claimed by ref. [21] regarding the calculation of non-
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Abstract: The magnitude of the flux superpotential Wflux plays a crucial rôle in de-

termining the scales of IIB string compactifications after moduli stabilisation. It has

been argued that values of Wflux ≪ 1 are preferred, and even required for physical and

consistency reasons. This note revisits these arguments. We establish that the cou-

plings of heavy Kaluza-Klein modes to light states scale with the internal volume as

g ∼ MKK/MP ∼ V−2/3 ≪ 1 and argue that consistency of the superspace derivative

expansion requires gF/M2 ∼ m3/2/MKK ≪ 1, where F is the auxiliary field of the light

fields and M the ultraviolet cutoff. This gives only a mild constraint on the flux superpo-

tential, Wflux ≪ V1/3, which can be easily satisfied for O(1) values of Wflux. This regime

is also statistically favoured and makes the Bousso-Polchinski mechanism for the vacuum

energy hierarchically more efficient.

1. Argument from Consistency I: a small W0 has been required by the following con-

sistency argument. The use of a derivative expansion in a supersymmetric effective

field theory indicates that there should also be an expansion in powers of ϵ ≡ F/M2

where F is the auxiliary field of the relevant light fields and M an ultraviolet cutoff.

Imposing ϵ ≪ 1 implies that the superpotential which is proportional to F should be

very small [3, 4].

2. Argument from Consistency II: a natural value W0 ≃ O(1−10) has been argued to be

incompatible with a four-dimensional effective field theory since it implies background

fluxes with an energy density of order the string scale: Vflux ≃ O(M4
s ). This is not

true since the important quantity to look at is not the scaling of the flux potential

energy but its vacuum expectation value (VEV). If the dilaton and the complex

structure moduli are fixed supersymmetrically, then this VEV is vanishing at leading

order, even if it would formally scale as M4
s . In order to trust the four-dimensional

effective field theory, one has to check that the effects used to fix the Kähler moduli,

develop a potential whose VEV satisfies ⟨V ⟩ ≪ M4
KK .

3. Argument from Phenomenology I: a small W0 has been argued to be necessary also

for a viable phenomenology. In the original efforts to stabilise the Kähler moduli T , a

non-perturbative term Wnp was added to Wflux [5]. In order to stabilise the T -moduli

at values large enough to trust the effective field theory, Wnp has to be of the same

order as Wflux, requiring the latter to be ‘fine tuned’ to values as small as 10−10 in

string units. Even though Wflux is determined from a combination of integers, small

values of Wflux are allowed in the multi-dimensional space of integer fluxes.

4. Argument from Phenomenology II: the string scale Ms is set by the Planck scale MP

and the internal volume V, Ms ≃ MP /V1/2, whereas the gravitino mass depends also

on W0: m3/2 ≃ W0MP /V. Therefore the standard phenomenological preference for

Ms ≃ MGUT ≃ 1016 GeV from unification and m3/2 ≃ Msoft ≃ O(1) TeV in order to

address the hierarchy problem, requires V ≃ O(104) and W0 ≃ O(10−11).

5. Argument from Statistics: a small W0 has also been argued to be preferred on statis-

tical grounds. In the original treatments [6] the magnitude of W0 was argued to be

uniformly distributed. More recently, arguments have been given that the statistical

distribution of W0 can peak at zero [7], indicating some preference for a hierarchically

small value of W0. Similarly, recent statements have been made arguing that a small

cosmological constant requires a small W0 [8, 9].
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Potential Problems
• To EFT

• To fluxes

• To perturbative effects

• To nonperturbative effects

• To de Sitter



de Sitter Challenges
• Define S-matrix (resonance?)

• Classical no-go theorems

• No dS solution of string theory under full 
calculational control (KKLT, LVS,...?)



Challenges to KKLT, LVS,...
• Fluxes under control only in SUSY 10D

• All SUSY breaking part is 4D EFT (with string inputs). 

Trust EFT?

• Tuning W0<<1? in KKLT

• Higher correction in LVS?

• Antibranes (by hand, non susy, singularity?)

• T-branes in a controlled region?

• Antibranes and non-perturbative effects?

Sethi

Bena et al.

Moritz et al.

Danielson, Van Riet’s talks



e.g. Bounds on W0

• Naively derivative expansion implies

• But detailed calculations, expansion 
parameter is 

Implying: 

In this note we revisit these arguments and argue that actually the natural values

for the flux superpotential are the largest possible allowed by tadpole constraints, that is

W0 ≃ O(10). As is well known, the requirement in the original KKLT scenario that the flux

superpotential be the same order as the non-perturbative superpotential no longer holds
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W0 is statistically preferred and in the LVS it substantially improves the tuning needed in

the Bousso-Polchinski mechanism.

2. Arguments from Consistency

It has been argued that since the supersymmetry multiplet for a chiral superfield includes

the auxiliary fields F , the standard derivative expansion in an effective field theory will

also incorporate an expansion in powers of F . Concretely, if heavy fields of mass M have

been integrated out, then the effective theory will naively contain an expansion in powers

of F/M2 [3, 4] (here F is the normalised magnitude of the F-term: F ≡
√

KT T̄F
TF T̄ ).

In particular consider string flux compactifications where |F T | ≃ M2
PW0/V. If the

heavy mass is set to be the ten-dimensional Kaluza-Klein scale MKK ≃ MP /V2/3, then

imposing |F |/M2
KK ≪ 1 would imply:

|F |
M2

KK

≃ W0V1/3 ≪ 1. (2.1)

As the volume of the compact space has to be large for the effective field theory to be

valid, if correct, this condition would set a strong constraint on the value of W0, implying

W0 ≪ 1.

We will review this argument here and readdress the original argument for the identi-

fication of the right expansion parameter. As the analysis is made after integrating out the

heavy fields, the key-point is that the physical implications must depend on the strength

of the coupling between heavy and light fields.

In order to get some intuition let us discuss this issue in global supersymmetry. We

require a case in which supersymmetry is broken and the F-terms are not trivially small.

We therefore revisit the simplest O’Raifertaigh model.
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with:

g =
MKK

MP
∼

1

V2/3
. (2.19)

Therefore each of the couplings can be clearly written in terms of the dimensionless

coupling g and the four-dimensional cut-off scale MKK . Note that φ here stands for both

light (L) and heavy (H) states and therefore this potential captures the light-heavy KK

couplings needed in the text to show that in the supersymmetric extension the expansion

parameter is ϵ = gF/M2 = F/(MPMKK) ∼ W0/V1/3.

Note also that the expansion of the kinetic terms is of the form (∂φ)2 + φ
MP

(∂φ)2 +
(

φ
M2

P

)2
(∂φ)2 + · · · illustrating that the low-energy derivative interactions are Planck sup-

pressed in contrast to those in the scalar potential that have a universal additional sup-

pression by a factor of M2
KK/M

2
P = 1/V4/3 relative to the generic Planck size [13]. We note

that this is in agreement with the results obtained from the requirement of holomorphy of

the superpotential.

Having identified g from three different approaches we may then continue to determine

the consistency expansion parameter in terms of g and F :

ϵ =
∆M

M
=

m3/2

MKK

=
W0

V1/3
=

gF

M2
KK

, (2.20)

where we have used that in supergravity theories with (almost) vanishing cosmological

constant the value of F is of order F ∼ W/(MPV).2 Imposing ϵ ≪ 1 implies:

W0

V1/3
≪ 1 , (2.21)

which is easily satisfied for W0 ∼ O(1− 10) and large volume.3

The last equality in (2.20) can be seen as a consistency check that the identification

of g and ϵ are correct since it has the same functional form as in the O’Raifertaigh case.

The fact that the expansion parameter is gF/M2 instead of F/M2 makes a big difference

since g ∼ V−2/3.

2.3 Integrating out dilaton and complex structure moduli

A crucial ingredient to stabilise the dilaton S and the complex structure moduli U is the

turning on of three-form background fluxes G3 which carry an energy density of order:

ρflux = α′−4
∫

d6y
√
g6 G3 · Ḡ3 ∼ W 2

0M
4
s . (2.22)

2In no-scale models F = m3/2MP exactly at leading order.
3This is consistent with the independent discussion of the validity of the effective field theory in LVS

made in section 4.5 of [11].
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Open Questions
• Full control of quantum corrections 

• EFT of branes at singularities

• Realistic phenomenology (de Sitter but no SM?)

• F-theory moduli stabilisation

• Populating the landscape (large # of U moduli + vacuum 

transitions)

• ...



Partly full Partly empty



Quintessence



Swampland conjectures
• Swampland: Quantum gravity vs EFT !

• Weak gravity conjecture

• Distance conjecture

• New (‘anti’ de Sitter?) conjecture: 

(It would imply quintessence and no de Sitter 

and hard to have inflation!).

inflationary models. The conjecture states that everywhere in field space the full quantum

scalar potential V obeys the relation:

Mp
|rV |
V

& c , (1.1)

where c is an O(1) positive constant. It is important to examine whether such a criterion

can be consistent with phenomenology. The criterion (1.1) has many strong implications

for cosmology [9–11]. In particular it implies that at present we are necessarily in an

epoch of quintessence. The tight bounds on fifth-forces [12] and the time variation of

fundamental constants [13], provide strong constraints on the couplings of the quintessence

field. Furthermore, in the context of N = 1 supergravity it seems very hard to be able to

decouple a quintessence field from the Standard Model. Finally, depending on the model,

naturalness considerations require fine-tuning of the quintessence potential at the functional

level,1 or at least one additional tuning compared to dS models. This makes explicit

constructions of quintessence models from string compactifications very challenging.

This conjecture is the most recent of a series of articles claiming potential problems

with the standard approach to obtain a landscape of metastable dS string vacua as initiated

by the KKLT seminal paper [15] and followed-up by many other developments that have

improved the robustness of the original and other related scenarios. The challenges vary

from points of principle (e.g. how to properly define an S-matrix and a quantum theory in

general in dS space [16–18]) to details about each of the di↵erent steps of the KKLT scenario

[19–21] which seem to make it natural to explore alternatives to dS. The main purpose of

the first part of this article is to assess the pros and cons of the di↵erent approaches to dS

compactifications. This is important in order to have a clear idea of the assumptions used

and the continuous progress but also the open challenges. We will argue that dS models

reached a good level of concreteness and calculational control which has been improving

over time and provide interesting phenomenological applications to cosmology and particle

physics. Moreover we shall stress that some of the computational challenges apply also to

4D N = 1 supersymmetric vacua which, above all, do not seem to be promising starting

points for phenomenology. We will also point out that, even if dS string models are not

characterised by expansion parameters which can be made parametrically small, these

parameters can still be small enough to trust the phenomenological implications of these

constructions.

In the second part of the paper we first discuss the theoretical consistency of quintessence

models pointing out that in general, in the absence of a symmetry principle, their construc-

tion is more challenging that dS models since one needs to perform two fine-tunings to get

the correct energy scale and mass of the quintessence field. We then use a more phe-

nomenological approach to assess to which extent quintessence is a viable alternative to

dS from observations. In particular, we found (as recently shown also in [22]), that if

the quintessence picture is valid, and there is no other scalar field around other than the

Higgs, in order to satisfy the swampland conjecture (1.1), the Higgs field has to couple

1A similar problem has been discussed in the context of attempts to explain time variation of coupling

constants in terms of a time varying field [14].
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Challenges for the new conjecture

• Higgs potential with quintessence field? (at the <H>=0 
point.

• If V asymptotes to infinity from above even 
supersymmetric AdS forbidden.

• Both addressed if modify conjecture (allow saddle points 
for V>0). 

Denef et al. 
Hebecker’s talk?

Conlon

see e.g. Andriot





Higgs and Quintessence
• Higgs as quintessence??

• Higgs-quintessence coupling?

• Several fields?

There are several ways to cure this problem but none of them seems very natural from

the string theory point of view:

• Higgs as quintessence: As a first pass at a solution one might ask whether the

quintessence field can be identified with the Higgs field itself along the lines for

instance of Higgs inflation, modified appropriately for quintessence. In this case at

low energies (below the scale of electroweak breaking) the Higgs potential (for the

neutral Higgs in unitary gauge) may acquire the form:

V = ⇤4 + C4 e�k h/M
p . (3.7)

Imposing that the Higgs is rolling today at h = v with values of the slow-roll pa-

rameter ✏ =
M2

p

2

⇣
Vh
V

⌘
2

of order 1/2 and V ' ⇤4 together with the right Higgs

mass, one can fix the values of the parameters C and k at C ' 10�52e2.5·10
71

M
p

and

k = 1088. Notice that this model is in agreement with observational data since, due

to the huge value of k, one can get around 5 efoldings of exponential expansion for

�h ' 10�85.7M
p

, implying that no time-variation of the fermion masses could be

observable. However the unreasonable value of k and C show that this is more a

curious observation rather than a real solution.

• A direct Higgs-quintessence coupling: Ref. [22] modified the initial potential

(3.5) via the introduction of a coupling between � and h of the form:

V = f(�) Ṽ (h) + V̂ (�) with f(�) = e�� . (3.8)

In this case the swampland conjecture is satisfied since the ratio in (3.6) at h = 0

where Ṽh(h) = 0 takes the form:

f�(�) Ṽ (h) + V̂�(�)

f(�) Ṽ (h) + V̂ (�)
' f�(�)

f(�)
' 1 . (3.9)

However, even if the Higgs-quintessence coupling in (3.8) is not ruled out by fifth-

force constraints [22], one would need to explain why the SM fermions are instead

decoupled from the quintessence field since a direct coupling between them and �

would not be allowed by fifth-force bounds. Given that in 4D string models a direct

coupling between � and h would generically also imply a direct coupling between the

quintessence field and SM fermions, we interpret this tension as a phenomenological

hint against the validity of the swampland conjecture.

• Adding more fields: Another solution involves the introduction of a third field �

which is heavy in the electroweak vacuum but makes a non-trivial contribution to

the criterion at the symmetric point of the Higgs potential. Hence the potential (3.5)

gets modified to:

V = f(�) Ṽ (h) + g(�) + V̂ (�) . (3.10)
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where Ṽh(h) = 0 takes the form:
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V = f(�) Ṽ (h) + V̂ (�) with f(�) = e�� . (3.8)

In this case the swampland conjecture is satisfied since the ratio in (3.6) at h = 0
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f(�) Ṽ (h) + V̂ (�)
' f�(�)

f(�)
' 1 . (3.9)

However, even if the Higgs-quintessence coupling in (3.8) is not ruled out by fifth-

force constraints [22], one would need to explain why the SM fermions are instead

decoupled from the quintessence field since a direct coupling between them and �

would not be allowed by fifth-force bounds. Given that in 4D string models a direct

coupling between � and h would generically also imply a direct coupling between the

quintessence field and SM fermions, we interpret this tension as a phenomenological

hint against the validity of the swampland conjecture.

• Adding more fields: Another solution involves the introduction of a third field �

which is heavy in the electroweak vacuum but makes a non-trivial contribution to

the criterion at the symmetric point of the Higgs potential. Hence the potential (3.5)

gets modified to:
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de Sitter vs Quintessence



Quintessence from Strings?
• Need stabilise all moduli except for quintessence field: 

as difficult as getting de Sitter

• Or have many fields rolling but slower than 

quintessence. Difficult.

• Fifth force and varying couplings constraints (e.g. 

volume modulus or dilaton problematic)
e.g. Banks, Dine, Douglas ‘00

Yukawa’s

bounds from fifth-forces [12]. Moreover, if the quintessence field is a string modulus

which sets the visible sector gauge kinetic function, a rolling modulus would give

rise to a time variation of the coupling constants. This last problem can be avoided

simply by considering a modulus which is not supporting the visible sector stack of

D-branes. However, evading fifth-force bounds is more complicated. The volume

mode couples democratically to all fields with Planckian strength, and so it cannot

be the quintessence field. This is a direct consequence of the locality of the SM

construction. The fact that the volume mode has to couple to SM fields can be

seen by looking at the relation between the physical Yukawa couplings Ŷijk and the

holomorphic ones Yijk(U) which depend just on the complex structure moduli because

of the holomorphicity of the superpotential and the axionic shift symmetry [139]:

Ŷijk = eK/2 Yijk(U)q
K̃iK̃jK̃k

, (3.4)

where K̃i is the Kähler metric for matter fields. Due to locality, the physical Yukawa

couplings should not depend on the overall volume, and so the matter Kähler metric

K̃i has to depend on the volume mode V in order to cancel the powers of V in

eK/2. Consequently, the volume mode has always a direct M
p

-suppressed coupling

to SM-fields from expanding the matter Kähler metric in the kinetic terms.

The best case scenario is therefore when the quintessence field is a modulus di↵er-

ent from the overall volume which supports a hidden sector stack of branes, while

the visible sector is localised on a blow-up mode which does not intersect with the

quintessence divisor. This has been advocated in the context of swampland conjec-

tures in [9]. However even in this case, one would need to check that no interaction

between the quintessence modulus and visible sector fields is induced by kinetic mix-

ing between the moduli (see for example the moduli redefinitions in [140–142] induced

by non-canonical kinetic terms) or between hidden and visible sector Abelian gauge

bosons [143–146]. This issue is currently under detailed investigation [147].

3.2 The swampland and the Higgs

As already pointed out in [22], the swampland conjecture is in tension with basic features

of the Higgs potential. In fact if h is the standard Higgs field and � the quintessence field,

the total scalar potential can be written as:

V = Ṽ (h) + V̂ (�) with Ṽ (h) = �
�
h2 � v2

�
2

. (3.5)

The swampland conjecture at the maximum of the Higgs potential for h = 0 then implies:

|rV |
V

& 1 , V̂�(�)

Ṽ (h) + V̂ (�)
=

V̂�(�)

�v4 + V̂ (�)
& 1 . (3.6)

However the quintessence potential today has to scale as V̂ (�
0

) = ⇤4. Typical quintessence

potentials have the form V̂ (�) = ⇤4 e�� with �
0

' 0. Hence V̂�(�0

) ' V̂ (�
0

) = ⇤4, imply-

ing that the ratio in (3.6) violates the swampland conjecture by 57 orders of magnitude!
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Quintessence Candidates
• Modulus (fibre, blow-up) that does not couple 

directly to SM. It also would require a very small 
string scale (e.g. Ms~TeV)

• Axions 

Cicoli, et al 
‘12 

K. Choi ’99
Panda et al ‘11
Kaloper et al. ’08
Kamionkowski et al ‘13

smaller than 'max
core belong to the stable branch while those with larger core amplitude

belong to the unstable branch. Oscillaton configurations perturbed around the un-

stable branch can either collapse to black holes or radiate energy and migrate back

to the stable branch, depending on the perturbation. If self-interaction terms are

present and ⇤ = MP the numerics become extremely more involved and the study

of a generic interacting potential is currently missing. Equilibrium configurations in

the case of a repulsive quartic interaction has been studied in [50, 56] for moderately

large values of the dimensionsless coupling g̃ =
gM

2
P

m

2 in the range g̃ ⇠ 1-4. In this

case the expected maximum oscillaton mass is enhanced but to numerically check

the behaviour in eq. (4.30) it would be necessary to probe the region of parameter

space g̃ � 1. Finally, dense solutions with ⇤ ⌧ MP correspond to the regime in

which gravity is negligible. In this case compact objects corresponding to oscillons

can be formed in the presence of attractive self-interactions. As an example, oscillons

formed in blow-up potentials studied in [28] belong to this case. In particular we

stress that it is self-consistent to neglect gravity in that case.

Oscillatons include the important case in which the real scalar is an axion-like particle

giving rise to axion stars (see [54] and references therein for the state of the art). The

Lagrangian is

L = �1

2
@µ✓@

µ

✓ � µ4

✓
1� cos

✓
✓

f

◆◆
, (2.15)

where µ is an energy scale generated by non-perturbative e↵ects that break the original

PQ shift-symmetry. If the leading interaction term is an attractive quartic term (e.g.

Vinteraction = � (g/4!)'4) as for axion-like particles there is an additional regime for which
f

8⇡MP
. '0

2⇡f . 1, called the critical regime [54]. In the critical regime the amplitude

of the background field is still small but large enough such that the leading order self-

interaction is stronger than gravity and balance the kinetic pressure from the uncertainty

principle. Configurations in the critical regime are unstable against small perturbations:

they either disperse or collapse to denser objects [57–59]. The critical regime exists only

if the quartic order self-interaction is attractive: in the repulsive case there is a single

branch with 'core/⇤ < 1 that is always stable [60]. The dense regime of axion stars has

first been studied in the Thomas-Fermi approximation that resulted to be not well justi-

fied [61]. Recently, the it has been properly studied in full GR [58]: it turns out that axion

stars have a di↵erent evolution depending on their mass and on the axion decay constant:

they can be (meta-)stable, collapse to black holes or disperse. One particularly interesting

application of axion stars appears for an ultralight axion-like particle (ULA) with mass

mULA ⇠ 1-10⇥10�22 eV, which constitutes a good dark matter candidate called fuzzy dark

matter [62] or ultralight dark matter (ULDM). Interestingly, ULDM could address several

issues arising in the cold dark matter case [63], even though m . 1-2 ⇥ 10�21 eV are in

tension with observations of the Lyman-↵ forest [64]. In particular, numerical simulations

show that in the presence of ULDM solitonic cores of O (kpc) size are formed in dark mat-

ter halos [65–67], potentially addressing the cusp-core problem of cold dark matter [68].
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Axion Quintessence in LVS

value parametrises the size of the cycle supporting non-perturbative e↵ects. As ⌧ can be

rather large, i.e. much larger than the values needed to trust the e↵ective field theory, the

axion mass can easily be very small, as required for quintessence. Moreover, if the saxions

receive a mass from perturbative e↵ects, the low-energy EFT includes only the ultra-light

axions. Concrete examples that feature all these properties are LVS models which admit

at least one ultra-light axion corresponding to the axionic partner of the overall volume

mode (which is stabilised perturbatively) with mass [48, 164]:

ma '
r

gs
8⇡

Mp

V2/3
e�

⇡
N V2/3

Mp , (3.20)

which can be in the right range for example for gs = 0.1, N = 3 (N is the rank of the

condensing gauge group) and V = 1400 as required to match the observed amplitude of the

density perturbation in fibre inflation models [165]. LVS models with more than one large

cycle would feature more ultra-light axionic candidates for explaining dark energy (as in

the case of fibred CY threefolds where the fibre moduli are stabilised perturbatively and the

corresponding axions remain light [165]). Another positive property of axions is that they

feature a shift-symmetry at the perturbative level that naturally prevents their potential

to acquire large quantum corrections. Finally ultra-light axions, being pseudo-scalars, can

easily evade existing constraints from fifth-forces. For these reasons, axions are arguably

one of the best candidate fields for quintessence in string theory. In this section we briefly

review how axions can give rise to an accelerated late-time expansion of the universe.

In a moduli stabilisation scenario such as LVS we can separate the moduli between

those that are stabilised by non-perturbative e↵ects (such as blow-up modes) and those that

are stabilised by perturbative e↵ects (such as the overall volume and many fibre moduli).

For the first group both the modulus and its corresponding axion get mass of the same

order ma ⇠ m
3/2. For the second group, the axions are much lighter than the moduli

and we can study the EFT only for these ultra-light axions after integrating out all other

massive fields. Since most known CY manifolds have a fibration structure, the number

N
ULA

of ultra-light axions can be very large (N
ULA

⇠ O(100)). To leading order in the

non-perturbative expansion this axion potential takes the form:14

V = ⇤4 �
N

ULAX

i=1

⇤4

i cos

✓
ai
fi

◆
+ · · · , (3.21)

where fi is the axion decay constant of the i-th canonically normalised axion field ai, ⇤

is the cosmological constant scale that can be tuned by fluxes and ⇤i is the scale of the

non-perturbative e↵ect that gives mass to the i-th axion. In string compactifications the

axion decay constant is roughly given by fi ' Mp/⌧i < Mp for ⌧i > 1 [161–163]. For a

quintessence candidate we need the slow-roll condition ✏ =
M2

p

2

⇣
V 0

V

⌘
2

< 1 to be satisfied.

The scalar potential in (3.21) has a minimum at hV i = ⇤4 � P
i ⇤

4

i and a maximum at

V
max

= ⇤4 +
P

i ⇤
4

i with inflection points at V
infl

= ⇤4 as well as many (2NULA

�1) saddle

points. In phenomenological and cosmological discussions it is usually assumed that the

14For potential generalisations of this scalar potential see for instance [166].
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value parametrises the size of the cycle supporting non-perturbative e↵ects. As ⌧ can be

rather large, i.e. much larger than the values needed to trust the e↵ective field theory, the

axion mass can easily be very small, as required for quintessence. Moreover, if the saxions
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which can be in the right range for example for gs = 0.1, N = 3 (N is the rank of the

condensing gauge group) and V = 1400 as required to match the observed amplitude of the

density perturbation in fibre inflation models [165]. LVS models with more than one large

cycle would feature more ultra-light axionic candidates for explaining dark energy (as in

the case of fibred CY threefolds where the fibre moduli are stabilised perturbatively and the

corresponding axions remain light [165]). Another positive property of axions is that they

feature a shift-symmetry at the perturbative level that naturally prevents their potential

to acquire large quantum corrections. Finally ultra-light axions, being pseudo-scalars, can

easily evade existing constraints from fifth-forces. For these reasons, axions are arguably

one of the best candidate fields for quintessence in string theory. In this section we briefly

review how axions can give rise to an accelerated late-time expansion of the universe.

In a moduli stabilisation scenario such as LVS we can separate the moduli between

those that are stabilised by non-perturbative e↵ects (such as blow-up modes) and those that

are stabilised by perturbative e↵ects (such as the overall volume and many fibre moduli).

For the first group both the modulus and its corresponding axion get mass of the same

order ma ⇠ m
3/2. For the second group, the axions are much lighter than the moduli

and we can study the EFT only for these ultra-light axions after integrating out all other

massive fields. Since most known CY manifolds have a fibration structure, the number

N
ULA

of ultra-light axions can be very large (N
ULA

⇠ O(100)). To leading order in the

non-perturbative expansion this axion potential takes the form:14

V = ⇤4 �
N

ULAX

i=1

⇤4

i cos

✓
ai
fi

◆
+ · · · , (3.21)

where fi is the axion decay constant of the i-th canonically normalised axion field ai, ⇤

is the cosmological constant scale that can be tuned by fluxes and ⇤i is the scale of the

non-perturbative e↵ect that gives mass to the i-th axion. In string compactifications the

axion decay constant is roughly given by fi ' Mp/⌧i < Mp for ⌧i > 1 [161–163]. For a

quintessence candidate we need the slow-roll condition ✏ =
M2

p

2

⇣
V 0

V

⌘
2

< 1 to be satisfied.

The scalar potential in (3.21) has a minimum at hV i = ⇤4 � P
i ⇤

4

i and a maximum at

V
max

= ⇤4 +
P

i ⇤
4

i with inflection points at V
infl

= ⇤4 as well as many (2NULA

�1) saddle

points. In phenomenological and cosmological discussions it is usually assumed that the

14For potential generalisations of this scalar potential see for instance [166].

– 29 –

minimum is tuned to zero but this is not natural in the landscape since the tuning for the

overall minimum is not necessarily related with the scales of each the ⇤i’s. Therefore we

may study di↵erent possibilities in particular for ⇤ greater, smaller or of the same order as

the smallest ⇤i.

Depending on the values of ⌧i and the coe�cients of the non-perturbative e↵ects, the

corresponding axions can also be integrated out until we reach the lightest one, that we

denote with a`. Focusing for simplicity on a`, the corresponding slow-roll condition is:

✏ =
1

2

"✓
⇤`

⇤

◆
4 Mp

f`

#
2

sin2 (a`/f`)⇣
1� (⇤`/⇤)

4 cos (a`/f`)
⌘
2

< 1 . (3.22)

However, before integrating out the heavier axions, the original potential can give rise to

interesting early universe cosmology. In particular, as the universe evolves and the Hubble

parameter decreases, each axion field is essentially frozen at its value after inflation due to

the large Hubble friction. Once the Hubble scale hits the mass threshold of a given axion,

the axion starts to roll and oscillates around its minimum. Depending on the relative values

of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed

in the range ai/fi 2 [�⇡,⇡], and so it should not be di�cult to find one of them around

its maximum. We stress that this case is not considered for axion inflation since for
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minimum is tuned to zero but this is not natural in the landscape since the tuning for the

overall minimum is not necessarily related with the scales of each the ⇤i’s. Therefore we
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However, before integrating out the heavier axions, the original potential can give rise to

interesting early universe cosmology. In particular, as the universe evolves and the Hubble

parameter decreases, each axion field is essentially frozen at its value after inflation due to

the large Hubble friction. Once the Hubble scale hits the mass threshold of a given axion,

the axion starts to roll and oscillates around its minimum. Depending on the relative values

of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed

in the range ai/fi 2 [�⇡,⇡], and so it should not be di�cult to find one of them around

its maximum. We stress that this case is not considered for axion inflation since for
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Naturally very small!

Minimum not necessarily at zero

Slow-roll

Not necessarily

ULA: (fuzzy) dark matter and dark radiation or dark energy and dark radiation?



(A)dS and Axion Quintessence 
• Hilltop Quintessence

• Quasi-natural quintessence

• Oscillating quintessence

0 0

0 0

Figure 1. Examples of potentials that allow for hilltop quintessence. The red domains schemati-
cally represent the regions of the potentials where slow-roll can take place.

0 0

Figure 2. In the case ⇤ � ⇤` slow-roll can happen also in the region close to the inflection point
of the potential, and given (3.23) this does not require a super-Planckian axion decay constant.

low redshift. Their considerations can be adapted to the present discussion but with the

di↵erence that we do not assume the minimum of the potential to vanish.

In summary string theory axions provide interesting candidates to be quintessence for

several reasons:

• Ultra-light axions are a natural outcome of moduli stabilisation scenarios with expo-

nentially suppressed masses.

• Depending on the value of these masses, the axions can be ultra light dark matter or

dark energy.

• These ultra-light axions are also natural candidates for dark radiation produced after

the decay of the corresponding modulus field [174–178] which can put constraints on
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• Ultra-light axions are a natural outcome of moduli stabilisation scenarios with expo-

nentially suppressed masses.

• Depending on the value of these masses, the axions can be ultra light dark matter or

dark energy.

• These ultra-light axions are also natural candidates for dark radiation produced after

the decay of the corresponding modulus field [174–178] which can put constraints on
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Figure 3. We illustrate how the equation of state oscillates while the axion oscillates around its
minimum (time is in units of the axion mass). Contrary to the dark matter case in which the
average w vanishes, here the presence of ⇤ causes the average to be non-zero. This behaviour can
be compared with data from low-redshift observations, in order to explore the existence of axions
with mass around H0.

string scenarios but also can partially address cosmological issues such as the tension

between high and low redshift measurements of the Hubble parameter by increasing

the value of N
e↵

[179].15

• The fact that there may be hundreds or thousands of ultra-light axions can give rise

to interesting cosmological periods in early universe cosmology with also potential

implications for di↵erent measurements of H.

• If the overall minimum of the potential is not tuned at zero several scenarios emerge

with accelerating universes. A negative vacuum energy is allowed if slow-roll starts

close to a maximum or a saddle point at positive V and the slow-roll condition can

be easily satisfied with no trans-Planckian decay constant as long as ⇤ � ⇤`. The

di↵erent axions oscillating around their minima do not risk overclosing the universe

since the minimum is not at zero. An oscillating scalar around a minimum with

positive vacuum energy can give rise to a varying equation of state. The time in

which the field climbs the potential may mimic w < �1 as suggested in [180]. How-

ever, reproducing the recent analysis, which suggests a turning point for the Hubble

parameter [24–26], remains a theoretical challenge if these results were confirmed.

4 Conclusions

In this paper we have analysed general aspects regarding dS and quintessence scenarios to

have a concrete realisation in e↵ective field theories derived from string compactifications.

We have seen that even though in order to have full control of dS moduli stabilisation a

non-perturbative formulation of string theory is needed, there has been substantial progress

15Notice however that larger values of N
e↵

, even if they decrease the tension between di↵erent determi-

nations of H
0

, increase the existing tension between di↵erent measurements of the �
8

parameter.
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minimum is tuned to zero but this is not natural in the landscape since the tuning for the

overall minimum is not necessarily related with the scales of each the ⇤i’s. Therefore we

may study di↵erent possibilities in particular for ⇤ greater, smaller or of the same order as

the smallest ⇤i.

Depending on the values of ⌧i and the coe�cients of the non-perturbative e↵ects, the

corresponding axions can also be integrated out until we reach the lightest one, that we

denote with a`. Focusing for simplicity on a`, the corresponding slow-roll condition is:

✏ =
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"✓
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⇤

◆
4 Mp

f`

#
2

sin2 (a`/f`)⇣
1� (⇤`/⇤)

4 cos (a`/f`)
⌘
2

< 1 . (3.22)

However, before integrating out the heavier axions, the original potential can give rise to

interesting early universe cosmology. In particular, as the universe evolves and the Hubble

parameter decreases, each axion field is essentially frozen at its value after inflation due to

the large Hubble friction. Once the Hubble scale hits the mass threshold of a given axion,

the axion starts to roll and oscillates around its minimum. Depending on the relative values

of ⇤ and ⇤i as well as the initial value of the field, the slow roll condition may or may not

be satisfied.

Depending on the values of di↵erent constants we will have distinctive scenarios which

we now state:

1. Alignment mechanism: If the minimum of the potential is tuned to be at vanishing

energy (i.e. if ⇤ = ⇤`) as is usually done in the literature, we can observe from eq.

(3.22) that in order to get an accelerated expansion of the universe the axion decay

constant has to be f` & Mp. Getting a (super-)Planckian axion decay constant is a

well-known issue in string theory since it is in tension with the fact that the cycles

volumes are expected to be larger than the string scale (⌧` & 1). However there might

be possible way-outs that rely on alignment mechanisms involving two [167, 168] or

many fields [169, 170].

2. Hilltop quintessence: As explained above, the generic situation is to have axions

with sub-Planckian decay constants. In this case, even if ⇤ = ⇤`, the axion a` could

still drive the present epoch of accelerated expansion without the need to rely on

complicated misalignment-like mechanisms. In fact, if the maximum of the potential

for a` is located at positive energy (i.e. ⇤4+⇤4

i > 0), as in the two examples reported

in Fig. 1, and the field is initially displaced close to it, the universe undergoes

accelerated expansion [171]. Notice that in order for this mechanism to work, the

minimum of the potential does not need to be tuned to 0: the crucial point is just

that a region of the potential around the maximum is at positive energy. Moreover,

axion fields are very light, and so it is very easy to displace them from their minima,

e.g. during inflation. Given the large number of ultra-light axions in generic string

compactifications, we expect that the displacement of these fields is evenly distributed

in the range ai/fi 2 [�⇡,⇡], and so it should not be di�cult to find one of them around

its maximum. We stress that this case is not considered for axion inflation since for
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f` < Mp hilltop inflation would not give rise to enough efoldings of inflation. For

quintessence this problem is absent since a large number of efoldings is not needed.

3. Quasi-natural quintessence: Notice that in the landscape there is no reason to

tune the minimum to vanishing vacuum energy. If the minimum of the potential for

the lightest axion is tuned to be of the order of the current value of the cosmological

constant ⇤, the slow-roll condition just implies (the term which depends on a`/f` in

eq. (3.22) is always smaller than 1):
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which allows for a sub-Planckian axion decay constant f` < Mp as long as ⇤ � ⇤`.

The slow-roll condition ✏ < 1 is naturally satisfied for a very large region of field space,

not only close to the hilltop as can be seen in Fig. 2). The corresponding equation
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It is worth mentioning that the case ⇤ � ⇤` is never considered for inflation since the

energy scale of the potential would be of order the cosmological constant scale, and so

would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion

field space, and so there would be no way to end inflation.

4. Oscillating scalar: Another possible modification of the constant dark energy sce-

nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current

value of the cosmological constant as in the left panel of Fig. 3 and that a` is initially

displaced from its minimum, the field starts oscillating around its minimum when H

is of order of its mass. This will then produce an interesting oscillating equation of

state, as shown in the right panel of Fig. 3 for f/Mp = 1 and ⇤`/⇤ = 0.85. This

expected behaviour could be used to study the existence of axions with mass of the

same order of H
0

, comparing with low-redshift observations.

Notice that cases (3) and (4) necessarily violate the swampland conjecture (1.1) since

they require dS minima, while case (1) would violate the swampland conjecture on field

distances [5] since it requires trans-Planckian physics. On the other hand, as shown in Fig.

1, case (2) just requires the presence of a maximum at positive energy but it would work

also for sub-Planckian axion decay constants. Hence this case would violate the swampland

conjecture (1.1) but it would still be allowed by a refined conjecture which does not exclude

dS maxima [10].

Considerations of ultra-light axions corresponding to a quintessence field have been

made in several recent studies [171–173]. The fact that there may be many axions domi-

nating the energy density at di↵erent stages of the evolution of the universe may be a way

to address the apparent discrepancy among the di↵erent measurements of H at high and
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ȧ2
2

+ V
⇠ �1� 1

3

✏

1 + 1

3

✏
⇠ �1 +

2

3
✏ . (3.24)

It is worth mentioning that the case ⇤ � ⇤` is never considered for inflation since the

energy scale of the potential would be of order the cosmological constant scale, and so

would be way too low to match the observed amplitude of the density perturbations.

Moreover, for ⇤ � ⇤`, if f` is not too low, ✏ is below unity everywhere in the axion

field space, and so there would be no way to end inflation.

4. Oscillating scalar: Another possible modification of the constant dark energy sce-

nario could be given by an oscillating axion. Assuming that ⇤ is tuned at the current

value of the cosmological constant as in the left panel of Fig. 3 and that a` is initially

displaced from its minimum, the field starts oscillating around its minimum when H

is of order of its mass. This will then produce an interesting oscillating equation of

state, as shown in the right panel of Fig. 3 for f/Mp = 1 and ⇤`/⇤ = 0.85. This

expected behaviour could be used to study the existence of axions with mass of the

same order of H
0

, comparing with low-redshift observations.

Notice that cases (3) and (4) necessarily violate the swampland conjecture (1.1) since

they require dS minima, while case (1) would violate the swampland conjecture on field

distances [5] since it requires trans-Planckian physics. On the other hand, as shown in Fig.

1, case (2) just requires the presence of a maximum at positive energy but it would work

also for sub-Planckian axion decay constants. Hence this case would violate the swampland

conjecture (1.1) but it would still be allowed by a refined conjecture which does not exclude

dS maxima [10].

Considerations of ultra-light axions corresponding to a quintessence field have been

made in several recent studies [171–173]. The fact that there may be many axions domi-

nating the energy density at di↵erent stages of the evolution of the universe may be a way

to address the apparent discrepancy among the di↵erent measurements of H at high and

– 31 –



Conclusions 

• de Sitter and Quintessence: Many 
achievements, challenges, open questions

• Observational challenges for both!                   
(w<-1 and varying??)
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By the way, I have a new principle: if we have a seemingly powerful no-go
theorem, then we will find a powerful exception just beyond the limit of
validity of the theorem.

Example:

No stable atoms in classical electrodynamics.

No symmetries beyond Coleman-Mandula.

No composite graviton in field theory.

No de Sitter in classical GR (including branes).

(are there others?)

So when Sav uses the no-go argument (15 times!), it is just a red flag that it
is irrelevant.

Best,
Joe

> On Aug 7, 2017, at 3:13 PM, fq201@damtp.cam.ac.uk wrote:
> 
> Dear Joe:
> 
> Good. I am glad you find the AJL results surprising. We also and thought that
> FGG could be the answer but then found the et al Shenker but also your paper
> FMP. So there is hope that there is a way to establish that despite AJL the
> dS-dS transitions work. Will keep trying.
> 
> Also good to know your opinion on Sav's draft (I was given a hard time at a
> conference in Lucca (Tuscany) a few months ago where Sav made some of these
> claims (other participants included Tom Banks and Bena)).
> 
> Best regards,
> 
> Fernando
> 
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