de Sitter vs Quintessence in String Compactifications

Fernando Quevedo ICTP + Cambridge Vistas Swampland Madrid, 2018

Outline

- de Sitter
- Quintessence
- de Sitter vs Quintessence
- de Sitter and Quintessence ??
- No de Sitter and no Quintessence???

Moduli Stabilisation

Moduli Stabilisation in IIB

Moduli S,
$$T_i$$
, U_a $V_F = e^K \left(K_{M\overline{N}}^{-1} D_M W \overline{D}_{\overline{M}} \overline{W} - 3|W|^2 \right)$

$$W_{\rm tree} = W_{\rm flux}(U,S) \qquad K_{i\bar{\jmath}}^{-1} K_i K_{\bar{\jmath}} = 3 \qquad \text{No-scale}$$

$$V_F = e^K \left(K_{a\bar{b}}^{-1} D_a W D_{\bar{b}} W \right) \geq 0$$

Fix S,U but T arbitrary

Quantum corrections $\delta V \propto W_0^2 \delta K + W_0 \delta W$

$$\delta V \propto W_0^2 \delta K + W_0 \delta W$$

Three options: $W_0 \gg \delta W$

$$\delta K \gg \delta W$$

 $\delta K \gg \delta W$ Runaway: Dine-Seiberg problem

 $W_0 \sim \delta W = W_{\rm np}$. $W_0 \ll 1$

Fix T-modulus: KKLT

 $\delta K \sim W_0 \delta W$

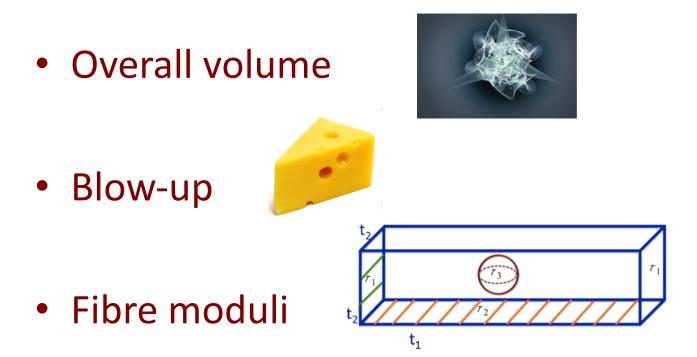
Fix T-moduli: LVS

 $\delta K \sim 1/\mathcal{V}$ and $\delta W \sim e^{-a\tau}$

N=1, 4D Effective Field Theory

$$K = -2\log(\mathcal{V}_{\mathrm{CY}}) - \log(S + \bar{S}) - \log\left(\int \Omega \wedge \bar{\Omega}\right)$$
 $W = W_0 + Ae^{-aT_i}$ $W_0 = \int G_3 \wedge \Omega$

e.g. KKLT


$$V/M_{
m Pl}^4 = rac{e^{K_{
m cs}}}{6 au^2} \left(aA^2(3+a au)e^{-2a au} - 3aAe^{-a au}W_0
ight) \quad _{V_{
m up}} \simeq \left(rac{T+\overline{T}}{2}
ight)^{-2}$$

e.g. LVS

$$V_F \propto \left(\frac{K^{S\bar{S}} |D_S W|^2 + K^{a\bar{b}} D_a W \bar{D}_{\bar{b}} \bar{W}}{\mathcal{V}^2} \right) + \left(\frac{Ae^{-2a\tau}}{\mathcal{V}} - \frac{Be^{-a\tau} W_0}{\mathcal{V}^2} + \frac{C|W_0|^2}{\mathcal{V}^3} \right)$$

$$\left(\mathcal{V} \sim e^{a_s \tau_s} \gg 1 \text{ with } \tau_s \sim \frac{\xi^{2/3}}{g_s}. \right)$$

Kahler moduli

+ their Axion partners

de Sitter

de Sitter

Anti D3 brane

• D+F terms in EFT or T-branes

- Complex structure/Dilaton uplift (D_UW≠ 0, D_SW≠ 0)
- Non critical strings, negative curvature compactifications, Kahler uplift, nonperturbative effects on D3 branes, ...

e.g. T- Branes

4D EFT: F and D terms

$$V_{\text{tot}} = V_D^{\text{bulk}} + V_F = \frac{1}{\tau_b} \left(q_{D7} |\phi_{dS}|^2 - \xi_{D7} \right)^2 + m_{3/2}^2 |\phi_{dS}|^2 + V_{\mathcal{O}(\mathcal{V}^{-3})}$$

$$V_{\text{tot}} = V_{D,0}^{\text{bulk}} + V_F = \frac{m_{3/2}^4 \tau_b}{4q_{D7}^2} + m_{3/2}^2 \frac{\xi_{D7}}{q_{D7}} + V_{\mathcal{O}(\mathcal{V}^{-3})}$$

$$\mathcal{V}^{-8/3}$$

$$\langle V_{\text{tot}} \rangle = \frac{3W_0^2}{4a_s^{3/2} \mathcal{V}^3} \left[\delta \mathcal{V}^{1/3} - \sqrt{\ln\left(\frac{\mathcal{V}}{W_0}\right)} \right] \quad \text{with} \quad \delta \simeq 0.01 \left(\frac{a_s^{3/2}}{q_{D7}}\right)$$

10D: T-branes

$$J \wedge \mathcal{F}_{D7} + [\Phi, \bar{\Phi}] d\text{vol}_4 = 0,$$
 $\langle \Phi \rangle = \begin{pmatrix} 0 & \phi_{\mathbf{6}_{+2}} \\ 0 & 0 \end{pmatrix}$

IIB Advantages

- Fluxes imply (warped) Calabi-Yau
- No-scale structure
- Scales $m_{3/2} << M_s << M_p$
- Two sets of 3-fluxes F₃, H₃ (allows `tuning')
- GVW Superpotential W(S,U) not renormalised!
- Many loop (g_s) and α' corrections to K computed
- Kahler moduli gauge couplings W_{np}(T)

Achievements

- Remarkable: well defined prescription exists that includes all stringy ingredients: branes, orientifolds, warping, anti (T)branes, perturbative, non-perturbative effects, etc.
- IIB with fluxes~ Calabi-Yau (moduli space understood).
- W₀<<1 is plausible (not achieved yet) due to the large number of fluxes.
- Perturbative effects in LVS in better control as the volume is exponentially large. All computed so far harmless.
- Antibrane: nonlinearly realised SUSY (see Wrase's talk)

$$X^2 = 0$$
 $\Delta W = c X$, $\Delta K = \beta X \bar{X}$.

Hierarchies:

$$E \ll M_{\rm KK} = \frac{M_s}{\mathcal{V}^{1/6}} \ll M_s \equiv \frac{1}{\ell_s} \equiv \frac{1}{2\pi\sqrt{\alpha'}} = g_s^{1/4} \frac{M_p}{\sqrt{4\pi\mathcal{V}}}.$$
 $m_{3/2} \simeq W_0 M_P/\mathcal{V} \qquad m_{3/2}/M_{KK} \ll 1$

Potential Problems

To EFT

To fluxes

To perturbative effects

To nonperturbative effects

To de Sitter

de Sitter Challenges

Define S-matrix (resonance?)

Classical no-go theorems

 No dS solution of string theory under full calculational control (KKLT, LVS,...?)

Challenges to KKLT, LVS,...

Danielson, Van Riet's talks

- Fluxes under control only in SUSY 10D
 Sethi
- All SUSY breaking part is 4D EFT (with string inputs).
 Trust EFT?
- Tuning W₀<<1? in KKLT
- Higher correction in LVS?
- Antibranes (by hand, non susy, singularity?)
- T-branes in a controlled region?
- Antibranes and non-perturbative effects?

 Moritz et al.

e.g. Bounds on W₀

Naively derivative expansion implies

$$\frac{|F|}{M_{KK}^2} \simeq W_0 \mathcal{V}^{1/3} \ll 1.$$

But detailed calculations, expansion parameter is

$$\epsilon = \frac{\Delta M}{M} = \frac{m_{3/2}}{M_{KK}} = \frac{W_0}{\mathcal{V}^{1/3}} = \frac{gF}{M_{KK}^2},$$

Implying:
$$\frac{W_0}{v^{1/3}} \ll 1$$
,

Open Questions

- Full control of quantum corrections
- EFT of branes at singularities
- Realistic phenomenology (de Sitter but no SM?)
- F-theory moduli stabilisation
- Populating the landscape (large # of U moduli + vacuum transitions)

•

Partly full Partly empty

Quintessence

Swampland conjectures

- Swampland: Quantum gravity vs EFT!
 Vafa et al
- Weak gravity conjecture
- Distance conjecture

Other talksl

• New ('anti' de Sitter?) conjecture: $M_p \frac{|\nabla V|}{V} \gtrsim c$,

Obied et al (It would imply quintessence and no de Sitter and hard to have inflation!).

Challenges for the new conjecture

- Higgs potential with quintessence field? (at the <H>=0
 point.

 Denef et al.
 Hebecker's talk?
- If V asymptotes to infinity from above even Conlon supersymmetric AdS forbidden.
- Both addressed if modify conjecture (allow saddle points for V>0).
 see e.g. Andriot

$$V(H,9) = A(9) \left(\frac{H}{2} - \alpha^{2}(9) \right)^{2} + B(9)$$

$$V(H,9) = A(9) \left(\frac{H}{2} - \alpha^{2}(9) \right)^{2} + B(9)$$

$$V_{4} = 0; \quad H = \infty$$

$$V_{5} = A' \left(\frac{H^{2} - \alpha^{2}}{4} \right) + A(1) \left(-2\lambda \lambda^{2} \right) + B$$

$$V_{5} = A' \left(\frac{H^{2} - \alpha^{2}}{4} \right) + A(1) \left(-2\lambda \lambda^{2} \right) + B$$

$$V_{5} = A' \lambda^{4} + A(1) + A(1) + B'$$

$$V_{5} = B'$$

$$V_{5} = B'$$

$$V_{5} = B'$$

Higgs and Quintessence

Higgs as quintessence??

$$V = \Lambda^4 + C^4 e^{-k h/M_p}$$
 $C \simeq 10^{-52} e^{2.5 \cdot 10^{71}} M_p$ $k = 10^{88}$

Higgs-quintessence coupling?

$$V = f(\chi) \, \tilde{V}(h) + \hat{V}(\chi) \qquad \text{with} \qquad f(\chi) = e^{-\chi} \qquad \qquad \frac{f_{\chi}(\chi) \, \tilde{V}(h) + \hat{V}_{\chi}(\chi)}{f(\chi) \, \tilde{V}(h) + \hat{V}(\chi)} \simeq \frac{f_{\chi}(\chi)}{f(\chi)} \simeq 1$$

Several fields?

$$V = f(\phi) \,\tilde{V}(h) + g(\phi) + \hat{V}(\chi)$$

Couplings to SM?, Supergravity?

de Sitter vs Quintessence

Quintessence from Strings?

- Need stabilise all moduli except for quintessence field:
 as difficult as getting de Sitter
- Or have many fields rolling but slower than quintessence. Difficult.
- Fifth force and varying couplings constraints (e.g. volume modulus or dilaton problematic)

Yukawa's

e.g. Banks, Dine, Douglas '00

$$\hat{Y}_{ijk} = e^{K/2} \frac{Y_{ijk}(U)}{\sqrt{\tilde{K}_i \tilde{K}_j \tilde{K}_k}},$$

Quintessence Candidates

 Modulus (fibre, blow-up) that does not couple directly to SM. It also would require a very small string scale (e.g. Ms~TeV)

> Cicoli, et al '12

Axions

$$\mathcal{L} = -\frac{1}{2}\partial^{\mu}\theta\partial_{\mu}\theta - \mu^{4}\left(1 - \cos\left(\frac{\theta}{f}\right)\right),\,$$

K. Choi '99 Panda et al '11 Kaloper et al. '08 Kamionkowski et al '13

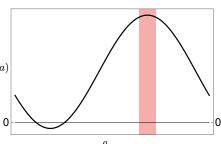
de Sitter and Quintessence

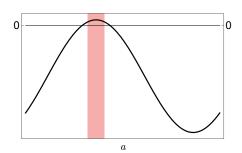
Axion Quintessence in LVS

$$m_a \simeq \sqrt{rac{g_s}{8\pi}}\,rac{M_p}{\mathcal{V}^{2/3}}\,e^{-rac{\pi}{N}\mathcal{V}^{2/3}}M_p\,, \qquad ext{Naturally very small!}$$

$$V = \Lambda^4 - \sum_{i=1}^{N_{\mathrm{ULA}}} \Lambda_i^4 \cos\left(rac{a_i}{f_i}
ight) + \cdots,$$
 Minimum not necessarily at zero

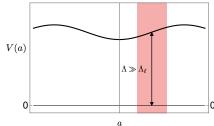
$$\epsilon = \frac{1}{2} \left[\left(\frac{\Lambda_{\ell}}{\Lambda} \right)^4 \frac{M_p}{f_{\ell}} \right]^2 \frac{\sin^2\left(a_{\ell}/f_{\ell}\right)}{\left(1 - (\Lambda_{\ell}/\Lambda)^4 \cos\left(a_{\ell}/f_{\ell}\right)\right)^2} < 1.$$
 Slow-roll

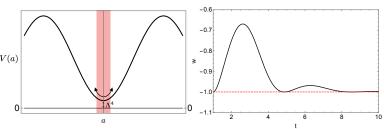

 $f_{\ell} \gtrsim M_{p}$. Not necessarily


ULA: (fuzzy) dark matter and dark radiation or dark energy and dark radiation?

(A)dS and Axion Quintessence

Hilltop Quintessence_{V(a)}


$$\Lambda^4 + \Lambda_i^4 > 0$$


Quasi-natural quintessence

$$egin{aligned} f_\ell &\gtrsim \left(rac{\Lambda_\ell}{\Lambda}
ight)^4 M_p \ &f_\ell < M_p & \Lambda \gg \Lambda_\ell. \end{aligned}$$

$$w = \frac{p}{\rho} = \frac{\dot{a}^2}{\frac{\dot{a}^2}{2} + V} \sim -\frac{1 - \frac{1}{3}\epsilon}{1 + \frac{1}{3}\epsilon} \sim -1 + \frac{2}{3}\epsilon.$$

Oscillating quintessence

Conclusions

 de Sitter and Quintessence: Many achievements, challenges, open questions

 Observational challenges for both! (w<-1 and varying??)

Maths Webmail Service

Message Mailbo

Mailbox Folders

Compose

Addressbook

Manage

Help

Logout

Reminder: Logout when you have finished.

User currently logged into Maths : fq201

From: Joseph Polchinski <joep@kitp.ucsb.edu>

To: fq201@damtp.cam.ac.uk

Cc: Senarath de Alwis <dealwiss@gmail.com>

Date: Mon, 7 Aug 2017 17:01:48 -0700 **Subject:**Re: Question on: Hartle-Hawking

By the way, I have a new principle: if we have a seemingly powerful no-go theorem, then we will find a powerful exception just beyond the limit of validity of the theorem.

Example:

No stable atoms in classical electrodynamics.

No symmetries beyond Coleman-Mandula.

No composite graviton in field theory.

No de Sitter in classical GR (including branes).

(are there others?)

So the no-go argument is just a red flag that it is irrelevant.

Best, Joe