GRAVITY CONJECTURES AND BLACK HOLE EVAPORATION IN DE SITTER SPACE

Miguel Montero
Harvard University

Navigating the Swampland, IFT Madrid, September 27th 2019
Swampland conjectures are mostly based on experimental evidence (they are true in every example).
- Swampland conjectures are mostly based on experimental evidence (they are true in every example).

- But sometimes we also understand the underlying principle
Swampland conjectures are mostly based on **experimental evidence** (they are true in every example).

But sometimes we also understand the underlying **principle**.

E.g. we don’t think (B-L) is an exact symmetry in the real world, even if we don’t know the right compactification.
EVIDENCE FOR WGC

- True in all **known examples**.

- Proof of mild form in worldsheet (proven stronger statement, a **lattice** version)
 [Heidenreich-Reece-Rudelius '15, '16, MM-Shiu-Soler '16, Aalsma-Cole-Shiu '19].

- Arguments from holography [**MM'18**].

- Connection to Cosmic Censorship in AdS [**Crisford, Santos, Horowitz '17-'18-'19**]

- IR consistency/Unitarity [**Cheung-Remmen '18-19, Andriolo-Junghans-Noumi-Shiu '18, Hamada-Noumi-Shiu '18,Charles '19**]

- Strong enough breaking of global symmetries [**See Tom’s talk**, connections to SDC
 [Heidenreich-Reece-Rudelius '18,Valenzuela-Palti-Grimm ‘18]]
EVIDENCE FOR WGC

- True in all **known examples**.

- Proof of mild form in worldsheet (proven stronger statement, a **lattice** version) [Heidenreich-Reece-Rudelius '15, '16, MM-Shiu-Soler '16, Aalsma-Cole-Shiu '19].

- Arguments from holography [MM'18].

- Connection to Cosmic Censorship in AdS [Crisford, Santos, Horowitz '17-'18-'19]

- Strong enough breaking of global symmetries [See Tom’s talk], connections to SDC [Heidenreich-Reece-Rudelius ’18, Valenzuela-Palti-Grimm ‘18]

These support **principle**: It is bad if black holes are not (marginally) unstable
In work with T. Van Riet and G. Venken, we took first steps to understand WGC in (quasi)-dS spacetimes.

Tools available:

- Holography/supersymmetry
- String theory
- Connection to black hole evaporation
In work with **T. Van Riet** and **G. Venken**, we took first steps to understand **WGC** in (quasi)-**dS** spacetimes.

Tools available:

- Holography/supersymmetry
- String theory
- Connection to black hole evaporation
In work with T. Van Riet and G. Venken, we took first steps to understand WGC in (quasi)-dS spacetimes.

Tools available:

- Holography/supersymmetry
- String theory
- Connection to black hole evaporation
In work with T. Van Riet and G. Venken, we took first steps to understand \textbf{WGC} in (quasi)-\textbf{dS} spacetimes.

Tools available:

- Holography/supersymmetry
- String theory
- Connection to black hole evaporation
Good review: [Anninos '12]

Static patch: What a local observer in dS can see

\[ds^2 = -\left(1 - \frac{r^2}{\ell^2}\right) dt^2 + \frac{dr^2}{1 - \frac{r^2}{\ell^2}} + d\Omega^2 \]

There is a cosmological horizon

Radiates at a temperature \(T = \frac{H}{2\pi} \)
Observation/Principle [Gibbons-Hawking '83, Banks '00-'03-'05, Witten '07...]

Physics in the dS static patch is described by a finite-dimensional thermal density matrix at the horizon temperature
Observation/Principle [Gibbons-Hawking ’83, Banks ’00-’03-’05, Witten ’07…]

Physics in the dS static patch is described by a finite-dimensional thermal density matrix at the horizon temperature

- Thermalization of long-wavelength modes with incoming radiation
- Finite horizon area suggests finite entropy
- Static patch is ``finite'': Maximum energy, charge…

Black hole physics: Horizon area backreaction, black hole evaporation, Schottky anomaly [Dinsmore-Draper-Kastor-Qiu-Traschen ’19, Johnson ’19]
Two principles:

- Black holes should decay while remaining subextremal (WGC)
- Physics in de Sitter space is (approximately) thermal
Two principles:

- Black holes should decay while remaining subextremal (WGC)
- Physics in de Sitter space is (approximately) thermal

In this talk:

- Second implies (particular case of) the first
- Leads to a new constraint on the EFT.

To establish this, we will study charged black hole evaporation in dS
BH'S IN DE SITTER

- We have **RN-dS** black holes

\[ds^2 = -U(r)dt^2 + U^{-1}(r)dr^2 + r^2d\Omega^2 \]

\[U(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} - r^2 \]

\[Q \equiv \frac{G(gQ_e)^2}{\ell^2}, \quad M \equiv \frac{GM_r}{\ell} \]

- First thing you do is to **draw extremality curve**.
- We have **two families** of extremal solutions
 - Usual extremal \((\text{AdS}_2 \times S^2)\)
 - Nariai solutions \((\text{dS}_2 \times S^2)\): **Biggest black hole that fits**
- **Problem**: How do they evaporate?
 - Exchange mass via **Hawking radiation**
 - Shed charge via **Schwinger effect** (particle of mass \(m\), ch. \(q\))
- **Difficulties**: Both horizons contribute, no asymptotic
 [see Hiscock-Weems ’90 for flat space case]
- Hawking radiation is always small (except for tiny BH’s).
Hawking radiation is always small (except for tiny BH’s).

But Schwinger current is controlled by

\[J \sim e^{-\pi \frac{m^2}{qE}} \]

So there are **two regimes**, depending on whether

\[m^2 \gg qE \]

or

\[m^2 \ll qE \]

We will analyze **both**.
- Suppose charge and mass flux is small, so solutions evolve **slowly**

- Einstein eqs. turn into **quasistatic** evolution equations on the (M,Q) plane

\[
\dot{Q} = -4\pi r_g^2 \mathcal{J}, \quad \dot{M} = -4\pi r_g^2 \left(G \sqrt{U(r_g)} \mathcal{T} + \frac{Q}{r_g} \mathcal{J} \right)
\]

- Flow on **Nariai branch** stays there

- Very simple physics: $dS_2 \times S^2$ with constant electric field given by the charge of the black hole
These equations are only valid for weak currents,

\[m^2 \gg qE \]

In the opposite limit, a different (adiabatic) approximation works: Electric field discharges instantaneously, gets replaced by radiation

\[\vec{E} \]
These equations are only valid for weak currents,

\[m^2 \gg qE \]

In the opposite limit, a different (adiabatic) approximation works: Electric field discharges instantaneously, gets replaced by radiation

\[\vec{E} \]
These equations are only valid for weak currents, \(m^2 \gg qE\).

In the opposite limit, a different (adiabatic) approximation works: Electric field discharges instantaneously, gets replaced by radiation.
These equations are only valid for weak currents,

\[m^2 \gg qE \]

In the opposite limit, a different (adiabatic) approximation works: Electric field discharges instantaneously, gets replaced by radiation.
These equations are only valid for weak currents,

\[m^2 \gg qE \]

In the opposite limit, a different (adiabatic) approximation works: Electric field discharges instantaneously, gets replaced by radiation.
- We can work out adiabatic dynamics on the Nariai branch — it is a simple 2d radiation-filled cosmology. However…
- We can work out adiabatic dynamics on the Nariai branch — it is a simple 2d radiation-filled cosmology. However…

- The 2d energy density is above the **critical value**.
We can work out adiabatic dynamics on the Nariai branch — it is a simple 2d radiation-filled cosmology. However…

- The 2d energy density is above the **critical value**.
- The whole spacetime collapses to a **Big Crunch**.
Crunch is the “same” as the one in a super-extremal neutral Nariai
Crunch is the “same” as the one in a super-extremal neutral Nariai
Crunch is the “same” as the one in a super-extremal neutral Nariai
To recap:
To recap:

- **Quasi-static** decay is OK with black hole sub-extremality and thermodynamic picture of dS

- **Adiabatic is not.**
To recap:

- **Quasi-static** decay is OK with black hole sub-extremality and thermodynamic picture of dS

- **Adiabatic is not.**

- Perhaps the crunch magically thermalizes and goes back to dS.

- Perhaps one should not think about charged black holes in theories with very light charged particles.
To recap:

- **Quasi-static** decay is OK with black hole sub-extremality and thermodynamic picture of dS

- **Adiabatic is not.**

- Perhaps the crunch magically thermalizes and goes back to dS.

- Perhaps one should not think about charged black holes in theories with very light charged particles.

- Perhaps the adiabatic regime is pathological, and avoiding it leads to a Swamp-like constraint.
Electric field on Nariai branch is $gM_P H$. If the crunch is pathological, we are forced to conclude that

$$m^2 \gtrsim gq M_P H$$

for every particle in the theory.
Electric field on Nariai branch is $gM_P H$. If the crunch is pathological, we are forced to conclude that

$$m^2 \gtrsim gq M_P H$$

for every particle in the theory.

- **Flavor** of a Swampland constraint, but we cannot check against stringy examples.

- Becomes trivial in flat-space limit.

- Black holes satisfy the bound.

- Crunch is not avoided by slow-roll quintessence (so it applies to not-so-long-lived dS [Dvali-Gomez-Zell’17, Obied-Ooguri-Spodyenko-Vafa’18, Bedroya-Vafa ‘19])
- Taking the $U(1)$ to be electromagnetism, the constraint is satisfied by all charged fields in the SM.

- Since in SM masses are related to Higgs vev, it alleviates electroweak hierarchy problem [See Isabel’s talk]:

$$y v \gtrsim g \rho_{\text{vac.}}^{1/4}$$
Constraints on mili-charged dark matter, but uninteresting

Constrains inflationary models. Some ways out:

- Small field inflation ($\rho^{1/4} \sim 10^9$ GeV)

 [Similar bounds in Bedraya-Vafa ’19, Tom Banks’ talk]

- Higgs inflation with specific, flat potentials

- Coupling of gauge fields to inflaton (very small nongaussianities)
What about WGC?
What about **WGC**?

Old argument [Dias-Reall-Santos ’18, others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q
What about **WGC**?

Old argument [Dias-Real-Santos '18,others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q

We see this in the quasistatic approximation.
What about **WGC**?

Old argument [Dias-Reall-Santos ’18, others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q

We see this in the quasistatic approximation.

However
What about \textbf{WGC}?

Old argument \cite{Dias-Reall-Santos_18,others}: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q

We see this in the quasistatic approximation.

However

One gets into adiabatic regime if there is a very light particle, or \textbf{too many} heavy ones
What about \textbf{WGC}?

Old argument [Dias-Reall-Santos '18, others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any \(m, q \).

We see this in the quasistatic approximation.

However

One gets into adiabatic regime if there is a very light particle, or \textbf{too many} heavy ones.

In a theory not satisfying WGC, small extremal black holes are quasi stable (very long-lived).
What about WGC?

Old argument [Dias-Reall-Santos ’18, others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q

We see this in the quasistatic approximation.

However

One gets into adiabatic regime if there is a very light particle, or too many heavy ones

In a theory not satisfying WGC, small extremal black holes are quasi stable (very long-lived)

\[\mathcal{J} \sim \frac{1}{g} e^{-\frac{\Delta}{H}} \]
What about **WGC**?

Old argument [Dias-Reall-Santos ’18, others]: No kinematic obstruction for WGC, since particles can tunnel to the horizon for any m, q.

We see this in the quasistatic approximation.

However

- One gets into adiabatic regime if there is a very light particle, or **too many** heavy ones.
- In a theory not satisfying WGC, small extremal black holes are quasi stable (very long-lived)

\[J \sim \frac{1}{g} e^{-\frac{\Delta}{H}} \]

- For g small enough, we go **adiabatic** again.
CONCLUSIONS

- Worked out the dynamics of evaporating RN-dS black holes
- Too fast evaporation of charged black holes leads to tension with thermal behavior of dS and superextremal-like crunches
- Avoiding this leads to a **constraint** on the EFT that is satisfied today and constrains inflation.
- It also leads to requiring **extremal BH’s to be unstable (WGC)**.
Thank you!